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Abstract

Primates worldwide are faced with increasing threats making them more vulnerable

to extinction. Anthropogenic disturbances, such as habitat degradation and frag-

mentation, are among the main concerns, and in Madagascar, these issues have

become widespread. As this situation continues to worsen, we sought to understand

how fragmentation affects primate distribution throughout the island. Further, be-

cause species may exhibit different sensitivity to fragmentation, we also aimed to

estimate the role of functional traits in mitigating their response. We collated data

from 32 large‐bodied lemur species ranges, consisting of species from the families

Lemuridae (five genera) and Indriidae (two genera). We fitted Generalized Linear

Models to determine the role of habitat fragmentation characteristics, for example,

forest cover, patch size, edge density, and landscape configuration, as well as the

protected area (PA) network, on the species relative probability of presence. We

then assessed how the influence of functional traits (dietary guild, home range size)

mitigate the response of species to these habitat metrics. Habitat area had a strong

positive effect for many species, and there were significantly negative effects of

fragmentation on the distribution of many lemur species. In addition, there was a

positive influence of PAs on many lemur species’ distribution. Functional trait

classifications showed that lemurs of all dietary guilds are negatively affected by

fragmentation; however, folivore‐frugivores show greater flexibility/variability in

terms of habitat area and landscape complexity compared to nearly exclusive foli-

vores and frugivores. Furthermore, species of all home range sizes showed a ne-

gative response to fragmentation, while habitat area had an increasingly positive

effect as home range increased in size. Overall, the general trends for the majority of

lemur species are dire and point to the need for immediate actions on a multitude of

fronts, most importantly landscape‐level reforestation efforts.
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1 | INTRODUCTION

Tropical forests hold the majority of global biodiversity, yet these

habitats are experiencing dramatic faunal declines due to continued

threats from humans, a process now termed as “defaunation” (Dirzo

et al., 2014; Galetti et al., 2017; Gibson et al., 2013). Among these

primary anthropogenic disturbances are habitat degradation and

fragmentation, which can ultimately lead to local and widespread

species extinctions via isolating small populations (Asner, Rudel, Aide,

Defries, & Emerson, 2009; Dirzo et al., 2014; Gibson et al., 2011,
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2013; Laurance et al., 2011; Tilman et al., 2017). Furthermore,

fragments remaining within these human‐modified landscapes are

often considered unsuitable habitat for the majority of forest species

(Laurance, Goosem, & Laurance, 2009). In fact, fragmentation results

in extended edge habitats, which compared to normal forest interiors

can be considered entirely distinct ecosystems (Laurance, Delamô-

nica, Laurance, Vasconcelos, & Lovejoy, 2000; Pfeifer et al., 2017).

Finally, forest fragmentation increases human accessibility to interior

habitat, therefore, increasing the risk of illegal hunting (Benítez‐
López, Santini, Schipper, Busana, & Huijbregts, 2019). Taken to-

gether, increasingly anthropogenic landscapes have significant con-

sequences on fauna populations (Ceballos, Ehrlich, & Dirzo, 2017;

Dirzo et al., 2014).

Considering all primate species, more than half (approximately

60%) are threatened with extinction, with roughly 75% of all primate

species experiencing declining population trends likely due to un-

sustainable human activities (Estrada et al., 2017). Madagascar is

considered to be a biodiversity hotspot due to its many endemic

species classified into the three IUCN Red List “threatened” cate-

gories, that is, critically endangered, endangered, and vulnerable

(Myers, Mittermeier, Mittermeier, Da Fonseca, & Kent, 2000). Out of

the 103 lemur species assessed by the IUCN in 2012, 20 were as-

sessed as vulnerable, 49 as endangered, and 24 as critically en-

dangered, making lemurs the most threatened vertebrate taxon

(Schwitzer et al., 2013, 2014). The issues surrounding the decline of

lemurs are myriad, with the reduction of lemur species richness

primarily due to habitat loss through cultivation and timber har-

vesting (Ganzhorn, Lowry, Schatz, & Sommer, 2001; Ganzhorn,

Wilmé, & Mercier, 2014; Hannah et al., 2008; Harper, Steininger,

Tucker, Juhn, & Hawkins, 2007; Irwin et al., 2010; Schwitzer et al.,

2014). Specifically, Madagascar's exponential population growth

(UNFPA, 2017; World Bank, 2018) paired with a majority of the

population living in extreme poverty in rural areas (World Bank,

2018), has increased pressure on the forests via human encroach-

ment (Estrada et al., 2018).

Data from 2007 indicated that more than 80% of forested area

in Madagascar falls within 1 km of the forest edge (Harper et al.,

2007), while data from 2014 showed that the mean distance to forest

edge on the island was approximately 300m (Vielledent et al., 2018).

This trend will likely worsen as the human population of Madagascar

continues to surge (UNFPA, 2017; World Bank, 2018). Fragmenta-

tion not only isolates populations by impeding animal dispersal and

potential rescue effects on declining population and gene flow, but

also worsens a number of additional threats (Fahrig, 2002). For ex-

ample, increasing contact zones between anthropogenic and natural

habitats contributes to increased zoonotic pathogen transmissions

(Chapman, Gillespie, & Goldberg, 2005; Gortazar et al., 2014) and

bushmeat hunting for subsistence (Golden, Bonds, Brashares,

Rasolofoniaina, & Kremen, 2014; Razafimanahaka et al., 2012). The

hunting of lemurs is illegal, but consumption of bushmeat in

Madagascar is widespread, with poor rural households often tar-

geting large diurnal lemur species (Borgerson, McKean, Sutherland, &

Godfrey, 2016; Golden, 2009; Jenkins et al., 2011). Additionally, the

illegal pet trade has also been suggested to play a significant role in

the reduction of wild populations (Reuter, Gilles, Wills, & Sewall,

2016), especially for some species, for example, Lemur catta (Gould &

Sauther, 2016; LaFleur, Clarke, Reuter, & Schaefer, 2019).

Previous studies predicted that a majority of lemur species will

experience massive range reductions, contracting the amount of

habitat available to them (Brown & Yoder, 2015). Given that nearly

all primate populations are declining due to anthropogenic dis-

turbances (Estrada et al., 2017; Galán‐Acedo, Arroyo‐Rodríguez,
Cudney‐Valenzuela, & Fahrig, 2019a), it is imperative to understand

specifically how lemurs are currently responding to habitat

degradation, fragmentation, and forest loss. Patch‐level approaches
have been commonly applied to understand primate species’ re-

sponses to habitat loss and fragmentation (Bodin & Norberg, 2007;

Boyle & Smith, 2010; da Silva, Ribeiro, Hasui, da Costa, & da

Cunha, 2015; Ganzhorn & Eisenbeiß, 2001; Schüßler, Radespiel,

Ratsimbazafy, & Mantilla‐Contreras, 2018; Steffens & Lehman,

2018), however, anthropogenic effects often occur at a landscape‐
level (Arroyo‐Rodríguez & Fahrig, 2014; Arroyo‐Rodríguez et al.,

2013; Galán‐Acedo, Arroyo‐Rodríguez, Estrada, & Ramos‐Fernández,
2019b; Galán‐Acedo et al., 2019a). Due to the need for a landscape‐
level approach, we sought to determine how a number of habitat

metrics influence the presence of all large‐bodied diurnal/cathemeral

primate species throughout Madagascar. We did not include noc-

turnal lemurs because (a) the taxonomy and distribution of nocturnal

lemur species is poorly understood, with many species only known

from a single location (e.g., see Hotaling et al., 2016; Lei et al., 2016),

and (b), it has been shown that relatively smaller‐bodied lemurs ex-

hibit a greater tolerance to habitat fragmentation and disturbance

compared to the larger‐bodied diurnal/cathemeral species (Godfrey

& Irwin, 2007). In fact, it has been shown that mammals of larger

body mass are more sensitive to fragmentation and edge effects

(Pfeifer et al., 2017). For these reasons, we modeled the role of

various habitat characteristics on the presence of large‐bodied
diurnal/cathemeral species to understand how certain populations

may be able to persist in the current landscape, including forest

fragments, edges, and complex matrices. Given the critical state of

human pressure on the remaining natural habitats of Madagascar, we

predicted that all the lemurs considered will be negatively affected

by anthropogenic disturbance.

It has been shown that species’ responses to gradual and sto-

chastic changes to environments may be mitigated by the species’

functional traits (e.g., activity pattern, body size, dietary guild, home

range size), and such an ability to expand niche breadth is vital to

withstanding anthropogenic risks (Boyle & Smith, 2010; Donati et al.,

2016; Eppley et al., 2017; Isaac & Cowlishaw, 2004; Lee, 2003;

Nowak & Lee, 2013; Wieczkowski, 2003). Unlike previous lemur‐
fragmentation studies that have only focused on site‐specific or re-

gional scales (e.g., Irwin et al., 2010; Kamilar & Tecot, 2016; Steffens

& Lehman, 2018), the goal of our study was to model the role of two

species functional traits (i.e., dietary guild, home range size) in de-

termining sensitivity to fragmentation throughout Madagascar for all

32 large‐bodied diurnal/cathemeral lemur species. As habitats
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disappear, it has been postulated that dietary/habitat specialists will

be affected more than dietary/habitat generalists, as high dietary

diversity may buffer against extinction (Nowak & Lee, 2013). Frugi-

vores are faced with a scattered spatial and temporal resource dis-

tribution, typically requiring extensive home ranges, potentially

limiting their ability to cope within altered landscapes (Boyle & Smith,

2010; Campera et al., 2014; Donati et al., 2011; Estrada & Coates‐
Estrada, 1996; Rode, Chapman, McDowell, & Stickler, 2006). By

comparison, folivores may be less affected by habitat degradation as

leaves in secondary growth are often of higher dietary quality com-

pared to those leaves available in mature forests (Chapman,

Chapman, Bjorndal, & Onderdonk, 2002; Eppley, Donati, & Ganzhorn,

2016; Ganzhorn, 1995; Plumptre & Reynolds, 1994), though foli-

vorous primates can be highly selective and potentially require

equally large home ranges (Snaith & Chapman, 2005).

Specifically, considering the large‐bodied lemurs, we made the

following three predictions:

(1) We expect lemur species with a high reliance on fruit resources

and need for larger home ranges, such as Varecia and most Eu-

lemur, to be severely affected by habitat availability and

fragmentation.

(2) We expect lemur species that are generalist folivores and utilize

relatively smaller home ranges, for example, Hapalemur, Prolemur,

Indri, and some Propithecus, to be least affected by habitat

availability and fragmentation.

(3) We expect that lemurs with folivore‐frugivore diets (e.g., L. catta,

some Eulemur and some Propithecus) to display intermediate

effects due to fragmentation metrics.

2 | METHODS

2.1 | Data collection

We obtained occurrence points for all diurnal and cathemeral lemur

species, totaling 32 taxa, from the data set collated by Tinsman

(2019). These include the genera Eulemur (12 species), L. catta, Hap-

alemur (four species), Prolemur simus, and Varecia (two species/three

subspecies) from the family Lemuridae, and Propithecus (nine species)

and Indri indri from the family Indriidae. We considered the three

Varecia variegata subspecies as separate taxa within our analyses as

they are geographically isolated from one another and inhabit re-

gions with differing degrees of pressure on the remaining forest

habitat. The only species from these genera to be excluded was

Hapalemur alaotrensis as it is only known from the marsh areas sur-

rounding Lac Alaotra (Rendigs, Reibelt, Ralainasolo, Ratsimbazafy, &

Waeber, 2015), thus we did not have enough distribution points to

allow for comprehensive modeling. Three types of sources were

utilized: (a) points collected in the field by coauthors, (b) online da-

tabases including the Global Biodiversity Information Facility,

Mammal Networked Information System, VertNet, Madagascar

Lemurs Portal, and Reseau de la Biodiversité de Madagascar

(ReBioMa), and (c) peer‐reviewed published sources. For this last

source, we searched all articles published in Lemur News, Madagascar

Conservation and Development, and Primate Conservation for GPS co-

ordinates, in addition to several Google Scholar searches using a

combination of various key terms. This yielded a total of 6,503 oc-

currence points across all forest types of various degrees of frag-

mentation in both protected and unprotected sites. Occurrence

points were then vetted in which localities >50 km outside the spe-

cies’ IUCN occurrence area, as well as undated localities for species

that have since been taxonomically split, were considered suspect

and thus removed from the data set. Further, we only retained one

occurrence point per 1‐km cell. We were left with a remainder of

3,024 reliable and unique occurrence points (Figure S1). Data are

available from the corresponding author upon request.

We obtained a 30‐m resolution forest density map for 2010 from

Vielledent et al. (2018) and binarized it at 75% of canopy coverage

(≥75% = 1; <75% = 0) consistently with what is done in Vielledent

et al. (2018). Most of our occurrence data come from protected areas

(PA) which are expected to be, on average, less fragmented and

degraded; therefore, to avoid potential biases due to more frequent

sampling in PAs, we also downloaded a spatial layer of the Mada-

gascar Protected Area Network, hereafter referred to as PA, from

the online database ReBioMa (Figure S2). Nearly all forests in Ma-

dagascar exhibit some relative degree of fragmentation (Vielledent

et al., 2018), thus PA include both fragmented and less fragmented

forests.

2.2 | Data preparation and fragmentation analysis

We used the binary forest maps (0 = nonforest; 1 = forest) to esti-

mate the level of forest fragmentation at 1‐km resolution. Many

fragmentation metrics exist, partly because they measure different

components of fragmentation, and partly because they measure

these components using different approximations. Here we con-

sidered 11 different metrics (Table S1) and then used a principal

component analysis (hereafter PCA) to reduce the factors considered

within our model analysis. We used varimax rotation to improve in-

terpretation of the PCA axes, and extracted the first three axes

covering 95% of the total variance (Table S2). The first axis mostly

accounted for the available habitat area (e.g., mean patch area, total

core area, mean patch core area and proportion of canopy cover); the

second axis mostly accounted for the actual fragmentation of the

habitat (e.g., edge density, patch density, and perimeter area fractal

dimension); and the third axis mostly accounted for landscape com-

plexity (e.g., mean shape index, landscape shape index), that is,

measuring the physical shape of the habitat (Tables 1 and S1). The

first two axes, “habitat area” and “fragmentation,” can be interpreted

as the amount of habitat area per cell and the density of patches/

edges per unit area, respectively. “Landscape complexity” can be in-

terpreted as a measure of the overall geometric complexity of the

landscape or of a focal class, in our case, forest. These indices are

based on the ratio between perimeter and area and measure if patch

EPPLEY ET AL. | 3 of 16
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shape tends to be simple and compact, or irregular and convoluted. It

can also be interpreted as a measure of landscape disaggregation,

where higher values indicate more dispersed patches in the land-

scape (McGarigal & Marks, 1995).

To test the influence of functional traits on species distribution,

we assigned species according to their dietary guild. Previous authors

have defined frugivore as an animal whose diet is composed of ≥50%

fruits (Donati et al., 2017; Fleming, Breitwisch, & Whitesides, 1987),

and while this approach offers an easy solution, it overlooks the

flexibility of some species that greatly shift their diet seasonally.

Thus, we identified folivore‐frugivores as species consuming between

≥35% to ≤65% fruit in their diet, with frugivores defined as >65% fruit

and folivores as <35% fruit. This classification, though also crude,

allows us to make meaningful comparisons between the three dietary

guilds (Kappeler & Heymann, 1996). The diets of all lemur species

were determined from a comprehensive literature survey using the

All The World's Primates’ (ATWP) database (Rowe & Myers, 2017). In

the case of multiple behavioral and feeding ecology studies on a

species, we calculated the mean percent of fruit consumed so as to

have a single value. Of the lemurs included in the analyses, 11 species

are considered folivores (Hapalemur spp., P. simus, some Propithecus

spp., and Indri), seven species are folivore‐frugivores (some Eulemur

spp., some Propithecus spp., and L. catta), while Varecia ssp. (four taxa)

and most Eulemur spp. (nine taxa) maintain a frugivorous diet (Table

S3). Additionally, we determined mean home range size (ha), here-

after referred to as “home range size,” for each species following the

same comprehensive literature survey via ATWP (Table S3; Rowe &

Myers, 2017).

2.3 | Modeling

We tested for the effect of fragmentation on the species prob-

ability of presence using a species distribution modeling ap-

proach. For each species, we sampled a number of background

(i.e., pseudo‐absence) data points equal to 10 times the number of

presences (Barbet‐Massin, Jiguet, Albert, & Thuiller, 2012).

Background points are used to contrast the available habitat with

the habitat where the species have been observed. When back-

ground points are used instead of real absences (i.e., presence‐
only models), the model estimates a relative probability of pre-

sence (Guillera‐Arroita et al., 2015). Background points are

commonly sampled randomly in areas potentially accessible to

the species, often based on estimates of dispersal distance from

occurrence points (e.g., Brown & Yoder, 2015; Thuiller,

Lafourcade, Engler, & Araújo, 2009). Therefore, we limited the

sampling of the randomly distributed background points within a

buffer whose radius corresponded to the estimated dispersal

distance of each species. Dispersal distance was estimated from

home range areas using the allometric relationships in Santini

et al. (2013). This ensured that we sampled background points

only in areas potentially accessible to the species (Araújo et al.,

2019). Background points falling in nonforested areas within the

buffer were assigned the highest fragmentation values in the

landscape. To control for the spatial bias and pseudo‐replication
of presence points, we only retained one presence point per

1‐km, which exceeds the radius of home range area of all species

in our sample (range = 0.06–0.65 km). To compare the strength of

the relationship of different predictors, we standardized all pre-

dictor variables to a mean of 0 and a standard deviation of 1.

Then, for each species we fitted a generalized linear model (GLM)

with a binomial family, using the presences (1 s) and background

points (0 s) as response variables, and the three fragmentation

and the PA variables as predictors (Table 1). Including PA sepa-

rately from the fragmentation axes allowed us to estimate the

relative contribution of fragmentation to the relative probability

of the presence of species while controlling for the confounding

effect of PA. We ran a model selection for each of the models

using AICc (Akaike Information Criterion corrected for small

samples) and retained models with the lowest AICc value. Here

we present the selected models and provide the full models

within Supporting Information materials.

TABLE 1 Predictor variables included in the analyses.

Interpretation Description

Habitat metrics

F1 Habitat area Amount of habitat area per cell. Positively related with the proportion of forest,

patch aggregation and mean patch area.

F2 Fragmentation Density of patches or edges per unit area. Positively related to patch density and edge

density.

F3 Landscape complexity Overall geometric complexity of the landscape. It measures if the

shapes of patches tend to be simple and compact, or irregular

and convoluted.

Positively related to landscape shape index and

mean shape index.

Protected areas

PA Used to control for the unbalanced sample of occurrence points

inside and outside protected areas which may bias the

estimated effect of fragmentation (generally higher outside PA).

Protected area network (1 = inside protected

area; 0 = outside protected area).

Abbreviations: PA, protected areas.

4 of 16 | EPPLEY ET AL.
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To test the effect of species traits on species sensitivity to

fragmentation, we ran a generalized linear mixed‐effect model

(GLMM) including all species. We used the same predictors used in

the single species GLM (F1, F2, F3, and PA) and the interaction be-

tween the three habitat metrics and the log10‐transformed values of

species average home range size and species dietary guild. We

treated species as a random effect. We checked whether there

was phylogenetic autocorrelation in the residuals and determined

it was not necessary to control for phylogeny (Pagel Lambda

= 0.300, p = .103).

All analyses were computed using R statistical software (R Core

Team, 2017). We used the R package “psych” (Revelle, 2018) for the

principal component analysis. We used the package “raster” (Hijmans

& van Etten, 2014) for all raster operations and the package “sf”

(Pebesma, 2018) for vector operations. We used “SDMTools” pack-

age (VanDerWal, Falconi, Januchowski, Shoo, & Storlie, 2014) to

compute the fragmentation metrics, and “GIStools” (Brundson &

Chen, 2014) to estimate the density kernel. This study adhered to the

American Society of Primatology's Principles for Ethical Treatment of

Non‐human Primates.

3 | RESULTS

In general, all habitat variables tested were important for most of the

species (Figure 1 and Table S4), though five species, that is Eulemur

mongoz, Eulemur macaco, Propithecus deckenii, Propithecus coronatus,

and Propithecus perrieri, were not included in the selected models. The

first habitat component (F1) accounting for habitat availability and

mean patch area was significant in explaining the distribution of 10

taxa (31.3% of lemurs modeled). This F1 component had a positive

effect on the distribution of these 10 species, mostly belonging to the

genera Eulemur and Propithecus. The second component (F2) ac-

counting for habitat fragmentation was significant in 14 taxa (43.8%

of lemurs modeled), always showing a negative effect, therefore, in-

dicating that for most species the probability of presence is lower

when the habitat is fragmented. These fragmentation (F2) results

equally affected at least some species of all genera, though I. indri was

not included in this selected model. The third component (F3) ac-

counting for landscape complexity was significant in 2 taxa (6.3% of

lemurs modeled), negatively affecting the distribution of

Hapalemur occidentalis and V. v. subcincta (Figure 1 and Table S4).

Protected areas showed a positive effect in 37.5% of taxa modeled

(Figure 1 and Table S4). Among species for which variables were not

retained during model selection (i.e., the only‐intercept model was

the best model), there is also a pattern of a consistent negative effect

of fragmentation (see Figure S3; Table S5 for full model results).

Considering the trait‐specific analysis, the effect of a dietary

guild on F1, all species regardless of diets were more likely to be

present in areas with greater habitat availability and mean patch area

(Figure 2a and Table S6). Regarding F2, all dietary guilds, that is,

folivores, frugivores, and folivore‐frugivores were negatively affected

by the patch and edge density (Figure 2b and Table S6). The negative

effect of F2 became more strongly negative with increased home

ranges of lemur species (Figure 3b and Table S6). Landscape

complexity (F3) negatively affected both folivores and frugivores,

while having a strong positive affect on folivore‐frugivores (Figure 2c

and Table S6). Finally, landscape complexity negatively affected

species of both small and medium home range sizes, though posi-

tively affected species with large home range sizes (Figure 3c and

Table S6).

4 | DISCUSSION

Among the three habitat variables considered (F1, F2, and F3), the

one accounting for habitat fragmentation (F2; highly correlated with

habitat patch and edge density) had the strongest overall negative

effect on species distribution, while both F1 (habitat area) and PAs

had strong positive effects on many species (Figure 1). On the con-

trary, landscape complexity does not appear to play a large role

F IGURE 1 Heatmap showing the directional influence of various
habitat metrics (F1: habitat area; F2: fragmentation; F3: landscape
complexity) and PA metrics on the occurrence of diurnal and
cathemeral lemur species belonging to the families Lemuridae and

Indriidae. Empty boxes indicate variables that have been excluded
after model selection. Species with no box are species for which the
only‐intercept model scored best. PA, protected area

EPPLEY ET AL. | 5 of 16
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affecting species distribution. Furthermore, as expected, species with

larger home range areas were more negatively affected by habitat

availability, but did not exhibit a higher sensitivity to fragmentation

than species with small home range areas. Considering general

trends, all dietary guilds were positively affected by F1 (habitat area)

and negatively affected by F2 (fragmentation).

4.1 | True lemurs: Eulemur spp

Our analyses seem to mirror previously reported effects on the di-

verse Eulemur clade (Balestri et al., 2014; Bayart & Simmen, 2005;

Brenneman et al., 2012; Campera et al., 2014; Donati et al., 2011;

Schwitzer, Randriatahina, Kaumanns, Hoffmeister, & Schwitzer,

2007; Tecot, 2013), with the distribution of many brown lemur

species trending or significantly influenced by “habitat area” (F1) and

“fragmentation” (F2). Habitat area positively affected the distribution

of four, mostly rainforest inhabitant, Eulemur spp., including Eulemur

albifrons, Eulemur fulvus, and Eulemur rubriventer . All three have large

species ranges, though Eulemur sanfordi has a significantly smaller

species range with less habitat available to it. Concerning F2, habitat

fragmentation negatively or strongly negatively affected the dis-

tribution of five dry forest species, while landscape complexity (F3)

provided no effects on Eulemur spp. distribution. In general terms, it

appears that Eulemur species inhabiting larger, continuous humid

forest tend to be more vulnerable to variations in canopy cover while

F IGURE 2 Partial responses by a dietary guild of the three habitat variables on the probability of lemur species occurrence. (a) F1: habitat

area; (b) F2: fragmentation; and (c) F3: landscape complexity

6 of 16 | EPPLEY ET AL.
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species coping with more discontinuous and open dry forest habitat

respond more to strict fragmentation and edge density. PAs showed

a positive effect on the distribution of seven Eulemur spp., yet

neither black lemurs (Eulemur macaco) nor mongoose lemurs (Eulemur

mongoz) showed any effects to PA or the fragmentation metrics.

Overall, Eulemur taxa occur across all habitat types in Mada-

gascar (Mittermeier et al., 2010). This genus consists of both frugi-

vores and folivore‐frugivores, and in addition to a relatively large

dietary flexibility (but see Sato et al., 2016), they exhibit a wide

variation in activity patterns (i.e., cathemerality), ranging pattern, and

social organization (e.g., pair‐living and multimale multifemale social

groups), and as such, many species within are considered ecologically

flexible primates (Donati, Bollen, Borgognini‐Tarli, & Ganzhorn, 2007;

Donati et al., 2011, 2016; Kappeler & Fichtel, 2016; Ossi & Kamilar,

2006; Overdorff, 1993a, 1993b; Sato et al., 2016). Smaller home‐
range requirements in western species compared to eastern species

(Curtis & Zaramody, 1998; Donati et al., 2011; Donati, Lunardini, &

Kappeler, 1999; Overdorff, 1993a; Sato et al., 2016; Schwitzer et al.,

2007) and perhaps better abilities to cross the matrix between the

forest fragments (Steffens & Lehman, 2018) may allow them to

persist despite the smaller available habitat area and reduced canopy

cover. However, highly fragmented areas with significant edge ef-

fects still cause a negative response on the probability of occurrence

of dry forest Eulemur suggesting a threshold of habitat degradation

beyond which these flexible species disappear. In support of these

negative effects of fragmentation, some Eulemur species living in

relatively degraded habitats show clear signs of increased levels of

stress (Balestri et al., 2014; Tecot, 2013).

4.2 | Ring‐tailed lemurs: L. catta

Similar to some of the dry forest brown lemurs, our analysis revealed

that ring‐tailed lemurs (L. catta) were significantly affected by frag-

mentation. Considering the behavioral ecology of L. catta, it is not

altogether surprising that the habitat and landscape complexity

variables were not significant predictors. This geographically wide-

spread species maintains a frugivorous‐folivorous diet and is

F IGURE 3 Partial responses of the three habitat variables on the probability of lemur species occurrence and their interaction with species

average home range size. (a) F1: habitat area; (b) F2: fragmentation; and (c) F3: landscape complexity

EPPLEY ET AL. | 7 of 16
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considered the most ecologically flexible lemur and they have, in fact,

been found in very small fragments, for example, <3 ha (Axel &

Maurer, 2011; Cameron & Gould, 2013; Donati, Santini,

Razafindramanana, Boitani, & Borgognini‐Tarli, 2013; Gabriel, 2013;
Goodman, Rakotoarisoa, & Wilmé, 2006; Gould, 2006; Gould &

Andrianomena, 2015; Jolly, Koyama, & Rasamimanana, 2006; Kelley,

2011; LaFleur & Gould, 2009; Sauther, Sussman, & Gould, 1999).

They are also semiterrestrial and known to exploit anthropogenic

landscapes (Gabriel, 2013; LaFleur & Gould, 2009; Sauther et al.,

2006), yet it is suggested that this species is sensitive to moderate

habitat disturbance as populations occurring in poor quality habitats

have lower densities (Gabriel, 2013; Kelley, 2011; Sussman, Green,

Porton, Andrianasolondraibe, & Ratsirarson, 2003). Thus, their flex-

ibility in being able to exploit areas outside of strict forest habitat at

least allows this species to remain within fragmented landscapes in

the short‐term (Anderson, Rowcliffe, & Cowlishaw, 2007; Bodin,

Tengö, Norman, Lundberg, & Elmqvist, 2006; Gabriel, 2013; Gould &

Andrianomena, 2015). However, it is difficult to be optimistic about

lemur persistence in increasingly fragmented and further isolated

landscapes, which may lead to future genetic health bottlenecks

(Parga, Sauther, Cuozzo, Jacky, & Lawler, 2012).

4.3 | Bamboo lemurs: Hapalemur spp. and Prolemur
simus

Fragmentation (F2) was more important than habitat availability (F1)

and landscape complexity (F3) in determining the probability of

presence of Hapalemur species/P. simus. Bamboo lemurs are folivor-

ous, and their ecological flexibility may allow bamboo lemurs to

persist in heavily altered environments, allowing them to use edge

habitat (Eppley et al., 2015, 2016, 2017; Grassi, 2006). Not all

bamboo lemurs, however, are able to cope with habitat fragmenta-

tion. Similar to Eulemur, bamboo lemurs inhabiting large continuous

areas (Hapalemur griseus) appear more sensitive to habitat area (F1),

while species inhabiting relatively smaller or more fragmented areas

(i.e., Hapalemur aureus and Hapalemur meridionalis) are more sensitive

to fragmentation (F2). In fact, H. griseus inhabits both humid and dry

deciduous forest habitats (Mittermeier et al., 2010), which may be

partially responsible for this contrast with other bamboo lemur

species. The greater bamboo lemur (P. simus) used to be one of the

most widespread lemur species (Godfrey, Jungers, Simons, Chatrath,

& Rakotosamimanana, 1999), but is now restricted to a handful of

sites within the eastern humid forests (Ravaloharimanitra et al.,

2011; Wright et al., 2008). A recent study showed that its dwindling

range was essentially the result of climate change altering botanical

diversity within dry deciduous habitats, and causing the lemur's main

food resource (giant bamboos) to go extinct locally (Eronen et al.,

2017). For the most part, these areas are not yet formally protected

by the government, but are being actively protected by both con-

servation research NGOs and local communities as they present an

economic benefit to the surrounding area. In addition to these for-

mally unprotected sites, the species is known to occur in Ranomafana

NP, while feeding remains have been observed in both Zahamena NP

to the north, and Midongy du Sud NP in the south (Rakotonirina

et al., 2011).

4.4 | Ruffed lemurs: Varecia rubra and
V. variegata ssp

The various habitat metrics provided similar results across ruffed

lemur taxa. Habitat area (F1) had a positive effect on V. rubra pre-

sence which inhabits the largest continuous humid forest remaining

in Madagascar (Masoala‐Makira) whereas fragmentation (F2) had a

strongly negative effect on both V. variegata editorum and V. v. var-

iegata. Taking into account the uneven distribution of this genus

throughout its range, these findings are expected. Members of this

genus are characterized by utilizing the largest relative food trees

and maintaining large home ranges (Ratsimbazafy, 2006; Rigamonti,

1993; Vasey, 2000), to a degree that species densities are sig-

nificantly lower and/or absent in anthropogenically impacted habitats

leading to the perception that they are sensitive to habitat dis-

turbance (Balko & Underwood, 2005; Herrera, Wright, Lauterbur,

Ratavonjanahary, & Taylor, 2011; White, Overdorff, Balko, & Wright,

1995). Though generally true, some ruffed lemurs are known to in-

habit less than ideal habitat, for example, shifting cultivation and

secondary forest (Hekkala, Rakotondratsima, & Vasey, 2007), forest

restoration zones (de Winter et al., 2018; Martinez & Razafin-

dratsima, 2014), and even in degraded fragments intermixed with

coffee plantations (Holmes et al., 2013), thus providing an explana-

tion as to why V. v. editorum differs from the other ruffed lemurs. To

build on this, however, it has been shown that patch size may influ-

ence how fast genetic diversity is lost after patch isolation (Holmes

et al., 2013), with signs of genetic bottleneck occurring in degraded

habitats (Razakamaharavo, McGuire, Vasey, Louis, & Brenneman,

2010). With the current distribution occurring at low densities across

fragmented populations (Baden et al., 2014; Holmes et al., 2013;

Louis et al., 2005; Vasey, 2004), this threat may become even more

dire following severe environmental disturbances, whether natural or

anthropogenic. In fact, over a 10‐year period (1991–2001), V. v.

editorum within the small fragmented PA of Manombo Special R

eserve failed to successfully reproduce (Ratsimbazafy, 2002), yet

populations occurring at other sites were successful, thus the geo-

graphic coastal locale led to speculation that stochastic weather

events resulted in low dietary quality foods (Dunham, Erhart, &

Wright, 2010; Louis et al., 2005).

4.5 | Sifaka and indri: Propithecus spp. and Indri indri

Similar to bamboo lemurs, both habitat availability (F1) and frag-

mentation (F2) were important in determining the probability of

presence of Propithecus spp. and I. indri. Sifaka (Propithecus spp.) are

relatively widespread throughout most Madagascar habitats, that is,

eastern humid, dry/humid deciduous, and spiny desert (Mittermeier

8 of 16 | EPPLEY ET AL.
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et al., 2010). For example, fragmentation had a strong negative effect

on the distribution of golden‐crowned sifaka (Propithecus tattersalli), a

species endemic to the Daraina region of northern Madagascar

(Quéméré, Amelot, Pierson, Crouau‐Roy, & Chikhi, 2012). Interest-

ingly, the distribution of Perrier's sifaka (Propithecus perrieri) a little

further north of P. tattersalli showed no effects from any of the

fragmentation metrics despite its current species range being quite

fragmented. It is noted, however, that this species was able to dis-

perse over large distances of open habitat within the recent past

(Salmona et al., 2015). Habitat area (F1) positively affected both

Propithecus coquereli and Propithecus candidus, two species whose

populations are heavily concentrated in relatively large forest blocks

in the west and east, respectively (Pichon et al., 2010; Salmona et al.,

2014). Despite the widespread distribution, all Propithecus spp. are

threatened by habitat loss from charcoal production and shifting

cultivation (Kun‐Rodrigues et al., 2014; Schwitzer et al., 2013).

Considering all nine sifaka species, both Propithecus diadema and

Propithecus verreauxi inhabit the largest geographic areas, the central‐
northeastern humid forest and the dry deciduous/spiny desert of the

southwest and far south, respectively (Mittermeier et al., 2010). The

geographic range for P. verreauxi is among the largest of all lemurs,

however, potentially four times larger than P. diadema (Mittermeier

et al., 2010). Despite their widespread distribution, fragmentation

(F2) negatively affected P. diadema, while habitat area (F1) positively

affected P. verreauxi. These results are similar to other congeners

(e.g., Eulemur) which inhabit distinctly different biomes, and is likely

due to the large geographic range of P. verreauxi. At Berenty in the far

south, P. verreauxi inhabits small degraded fragments that are asso-

ciated with an abundance of protein‐rich foods, potentially allowing

this species to maintain relatively high densities (Norscia & Palagi,

2008). It should be noted that while P. diadema inhabit some frag-

mented forests, the long‐term viability of these populations is un-

known as previous research has suggested that smaller habitats

can lead to morphometric signals of population decline (Irwin

et al., 2019).

Habitat area (F1) had a significant effect on the largest extant

lemur, indri (Junge, Barrett, & Yoder, 2011; Mittermeier et al., 2010).

This species is restricted to the central‐eastern humid forests

(Mittermeier et al., 2010), yet despite their overall population sizes

being reduced by habitat degradation, they display an ecological

plasticity allowing them to live in various sized forest fragments

(Glessner & Britt, 2005; Nunziata et al., 2016). However, this may be

partially due to the significantly positive effect of PA on indri presence.

4.6 | Trait‐specific sensitivity to fragmentation

Overall, lemurs’ functional traits appear to be most affected by ha-

bitat availability and fragmentation as expected. Our models showed

that greater habitat availability had a similar positive effect on both

folivores and frugivores, thus species with these more specialized

dietary preferences were more often distributed within larger habi-

tat areas. While it is suggested that frugivores often have larger

home ranges to cope with the scattered spatial and temporal

distribution of fruiting resources (Estrada & Coates‐Estrada, 1996),
folivores can be similarly highly selective of the leaves they consume

and thus require larger habitat area (Snaith & Chapman, 2005).

Considering folivore‐frugivores, habitat area (F1) also had a positive

effect though there appeared to be increased variability. It is possible

that their flexible diet allows these species, for example, Eulemur

rufus, L. catta, and P. tattersalli among others, to disproportionately

inhabit smaller habitat patches and/or more open forests (Donati

et al., 2011; Gould & Andrianomena, 2015; Irwin, 2008; Overdorff,

1993b). It is important to note that the diet of Propithecus is diverse

and species are classified as either folivores or folivore‐frugivores
(Hemingway, 1998; Irwin, 2008; Koch, Ganzhorn, Rothman,

Chapman, & Fichtel, 2017; Norscia, Carrai, & Borgognini‐Tarli, 2006;
Powzyk & Mowry, 2003; Sato et al., 2016), thus the folivore models

may be more strongly influenced by other ecologically specialized

lemurs, for example, bamboo lemurs and indri. Considering the mean

sizes of home ranges, the effect of habitat area transitioned from

negative to strongly positive as lemur home ranges increased,

indicating that lemurs with small home ranges may prefer smaller

habitat patches whereas species with large home range prefer large

intact habitat areas.

The fragmentation metric (F2) had negative affect on species of

all dietary guilds. This result was expected for frugivores which re-

quire larger habitat areas to meet their dietary demands, but it was

unexpected for both folivore‐frugivores and folivores which typically

display a level of ecological flexibility allowing them to cope well

within fragmented areas. In general, previous site‐specific research

has shown folivores to be less vulnerable to habitat disturbance and

edge effects (Eppley et al., 2015, 2017; Ganzhorn, 1995; Lehman,

Rajaonson, & Day, 2006), while frugivorous lemurs have been shown

to be adversely affected by anthropogenic, degraded habitat (Balko &

Underwood, 2005; Herrera et al., 2011; White et al., 1995). As fru-

givorous lemurs are important seed dispersers, they are essential for

the maintenance of forest diversity and play a fundamental role in

habitat regeneration (Federman et al., 2016; Ganzhorn, Fietz, Rako-

tovao, Schwab, & Zinner, 1999; Razafindratsima & Dunham, 2014;

Wright et al., 2011). Folivore‐frugivores, on the other hand, have

previously showed mixed responses to edge habitats, possibly due to

their wide dietary breadth across seasons, allowing some species to

persist in degraded and fragmented landscapes (de Winter et al.,

2018; Lehman et al., 2006; Sato et al., 2016). Yet, our overall results,

however, show that each of these dietary guilds are near equally

affected by fragmentation (F2). When considering lemur home range

size, the effect of fragmentation became more strongly negative as

home range size increased, as would be expected. Thus, species with

smaller home ranges (e.g., E. sanfordi, H. occidentalis) are able to better

cope with fragmentation compared to lemurs requiring large home

ranges (e.g., Varecia spp.).

For the third habitat metric, landscape complexity (F3) showed a

similar somewhat neutral effect on both folivores and frugivores. This

is an unexpected result for lemurs with a folivorous diet, which often

cope well within more fragmented habitat matrices (Boyle & Smith,

EPPLEY ET AL. | 9 of 16

 10982345, 2020, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ajp.23104 by C

N
R

 IB
A

F, W
iley O

nline L
ibrary on [05/06/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



2010; Eppley et al., 2015). It should be noted that as exceptions,

H. occidentalis (a folivore) and V. v. subcincta (a frugivore) showed

significantly negative effects of landscape complexity. On the other

hand, F3 displayed a strongly positive effect on folivore‐frugivores
meaning that their presence increased with landscape complexity.

Similar to previous explanations for lemur folivore‐frugivores, their
flexible dietary ability potentially allows for them to locate resources

in these habitats. Regardless of dietary guild, this habitat metric had

a negative effect on lemurs across small and medium home range

sizes, though a slightly positive effect on lemurs with large home

ranges

4.7 | Potential caveats

In this study we made a number of assumptions to estimate the

effect of habitat availability, fragmentation and complexity on the

probability of species’ presence. First, to apply fragmentation me-

trics, we had to binarize forest coverage, and used a threshold of 75%

of canopy cover. While this seemed to be a reasonable threshold for

most species (Vielledent et al., 2018), it may be too high for species

selecting more open forest habitats such as ring‐tailed lemurs. Sec-

ond, we assumed species’ presence to be an indication of habitat

quality (intended as amount of habitat and its level of fragmentation),

however this is a simplification as species may persist for a certain

amount of time in a fragmented habitat (Araújo & Guisan, 2006;

Chapman, Lawes, Naughton‐Treves, & Gillespie, 2003). Therefore it is

possible that the effects that we detected are diluted and thus, under

‐estimated. Third, we contrasted species’ occurrence points with

background points drawn randomly from the surrounding—

potentially accessible—areas. If occurrence points were preferentially

collected in more accessible areas (less dense and more fragmented

forests) compared to more intact forest areas, our models may have

estimated an inverse effect, as indicated with several Eulemur and

Hapalemur species within the full model (Table S5 and Figure S3).

Fourth, it is possible that the positive effect of PAs is a genuine effect

suggesting that species have a higher probability of occurrence in

PAs than in surrounding areas; however, this may simply reflect the

fact that most presence points are collected in PA. Finally, it is im-

portant to remember that while these models provide us with an

interpretation for the current distribution of large‐bodied lemurs

throughout Madagascar, these data do not take into account exo-

genous factors (e.g., additional anthropogenic pressures, climate, etc.)

that may be further impacting certain species and habitats. All in all,

our results meet most of the expectations and show a consistent

negative effect of fragmentation on species presence that is unlikely

to arise from any of the above assumptions.

4.8 | Implications for conservation

The general trends for the majority of lemur species are dire and

point to the need for immediate actions on a multitude of fronts.

These would require widespread implementation throughout Mada-

gascar by actors at all levels if we hope to curtail the impending

extinction of many lemur species. Among these actions are increasing

landscape‐level reforestation efforts. Implementing efforts to reduce

deforestation rates while increasing reforestation efforts would help

to prevent impending extinctions (Wearn, Reuman, & Ewers, 2012).

Intrinsically, it is imperative to understand the responses of flora and

fauna to natural and anthropogenic disturbance if we are to create

effective restoration programs that increase forest buffer zones and

corridors (Campera et al., 2014; Eppley et al., 2015, 2017; Hannah

et al., 2008; Irwin et al., 2010; Kremen et al., 2008), and so more

ground‐level lemur population research is needed. Effectively, in-

creasing fragment size may improve corridor connectivity potential

within landscapes, and ultimately assist in species dispersal from

source populations (Steffens & Lehman, 2018), thus increasing ge-

netic diversity.

Also, maintaining permanent presence at field sites may reduce

local anthropogenic pressures (e.g., hunting, timber harvesting) on spe-

cies' populations as a consequence of providing consistent employment/

direct benefits to local communities (Campera et al., 2019; Wrangham &

Ross, 2008; Wright et al., 2012). Regardless of whether or not PAs are a

legitimate predictor of species occurrence, a greater effort is needed to

maintain park boundaries. Unfortunately, many park borders are being

pushed farther back due to human encroachment from illegal timber

harvesting and shifting cultivation practices (Allnutt, Asner, Golden, &

Powell, 2013; Barrett, Brown, Morikawa, Labat, & Yoder, 2010). Even

just considering Madagascar forests in general, the mean distance to

edge has been estimated at 300m, a number that is continuing to

exponentially decrease (Vielledent et al., 2018).

While our results did show diverse responses by these lemur

species to various habitat fragmentation metrics, this variance was

likely dependent on species‐specific ecological traits. Overall, our

results support the critical need for further studies on dietary and

habitat preferences, as well as life histories to further our under-

standing of how lemur species may respond to climatic and anthro-

pogenic effects, especially forest loss and fragmentation.
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