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ABSTRACT
Encoding lists of integers in an efficient manner is key task
in many applications in different fields. Adjacency lists of
large graphs are usually encoded to save space and to im-
prove decoding speed. Inverted indexes of Information Re-
trieval systems keep the lists of postings usually compressed
to allow an optimal utilization of memory hierarchy. Sec-
ondary indexes of DBMS’s are stored similarly to inverted
indexes in IR systems. In this paper we propose a novel
class of encoders (called VSEncoding from Vector of Splits
Encoding) that, roughly speaking, work by partitioning an
list of integers into blocks which are efficiently compressed
by using simple encoders. Differently from previous work
where heuristics were applied during the partitioning step,
we carry out this important step via dynamic programming,
which leads to produce the optimal solution. Experiments
show that our class of encoders outperform all the existing
methods in literature by more than 10% (with the exception
of Binary Interpolative Coding with which they, roughly, tie)
still retaining very fast decompression.
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Data management systems such as: DBMSs, Information
Retrieval Systems, Search Engines and the alike, are contin-
uously facing the problem of the so called data deluge1. At
the petabyte scale we cannot think of data as something to
be viewed but, instead, something that need to be first ab-
stracted and then use this abstraction to extract knowledge
from new (possibly fresher) data. To compute any result
from (real) data it is necessary to store them on, some sort,
of storage and this does not come for free, especially at the
petabyte scale. Encoding data to save space is, therefore,
of utmost importance to enable the effective exploitation of
the very large datasets managed by today’s systems. Con-
sider that, even by changing scale, storage might be an issue.
Personal devices size is constantly shrinking. Increasing data
density in storage devices it is just not enough. We need to
design technique enabling the efficient store of (relatively)
large datasets in these devices. In these scenarios, data com-
pression seems mandatory because it may induce a twofold
advantage. On one hand, the obvious reduction in space oc-
cupancy allows more data to be stuffed within a single store
unit. On the other hand, compression allows both to fit
more data into faster memory levels and to reduce the size
of data to be transferred (thus saving time) from the slow
levels. This is a classic example of trading CPU cycles for de-
creased I/O latency and bandwidth. For example, given the
amount of computing power on a modern multi-core CPU
resources, transfer a compressed payload from the disk and
decompress its contents into memory is still far cheaper than
the time needed to just transfer the data in uncompressed
form. Not only data transfers from disk to memory benefit
from compression, also data transfers from memory to CPU
is also positively affected by compression as it is shown by
IBM Memory Expansion Technology [1]. This is a very well
know fact also in IR, where many scientific results on effi-
ciency build exploiting this trade-off [20, 19, 21]. There is
a whole body of literature devoted to the development and
analysis of integer compression methods [20, 14, 13].

In this paper we present VSEncoding, a novel class of en-
coders designed to efficiently represent lists of integers. Our
encoders are able to achieve very good compression perfor-
mance and outperform all the existing methods in literature
by more than 10% (with the exception of Binary Interpola-
tive Coding with which they, roughly, tie). In particular, we
report that our encoders are able to “beat the entropy” of
the distribution of values in the lists. We observe that this
possible due to the fact that our encoders are able to exploit

1http://glinden.blogspot.com/2006/10/
advantages-of-big-data-and-big.html



regularities in the lists that are not captured by the entropy.
Regarding decoding speed, we are faster than the state-of-
the-art PForDelta-like encoders [22, 21], VBytes [20], Simple9
[2] and Simple16 [21]. VSEncoding is, basically, a block-based
compression scheme, where the critical difference with re-
spect to previous block-based methods, e.g. P4D [22], is how
the blocks are chosen. Differently from previous work, where
heuristics were applied during the partitioning step [22, 3],
we carry out this important step via dynamic programming.
Using dynamic programming we globally optimize the size
of the compress by choosing different block sizes and com-
pression methods. The main innovative point of our method
is, in fact, represented by this global optimization technique,
which is able to discover the best possible block allocation
given the encoding method. In this paper blocks are en-
coded using a fixed binary representation, i.e. given a con-
stant value b we encode a number x using exactly b bits.
For example, given b = 3 and x = 4 we encode x with the
codeword 100 of length 3 bits. Obviously, we could have cho-
sen to represent blocks using a different method, this would
have, perhaps, increased the compression efficiency but also
the decoding time. We, thus, opted to allow a quick de-
coding of posting lists. We discuss the encoding layout in
greater details in the following.

The paper is organized as follows. Section 2 is used to fix
useful notation. In Section 3 we show and describe some of
the most popular encoding methods proposed in the litera-
ture. We will show techniques suitable for encoding single
integers, and techniques that can only be applied to lists of
integers. In Section 4 we define our new class of integer list
encoders that we call VSEncoding (Vector of Splits Encod-
ing) along with two of its instantiations that better exploit
the skewness of the list to be encoded. We also show how
to represent the compress in memory in order to achieve a
very fast decompression algorithm. Section 5 show empiri-
cal comparison among our solutions and the most popular
ones on three real datasets representing the posting lists of
inverted indexes of three different document collections. We
conclude the paper in Section 6 by presenting our plans for
future work.

2. NOTATION
Before getting into the main matter of the paper let us

introduce the notation we use throughout the paper. Let
L[1, n] denote a list of n strictly positive integers. For any
list L, L [i] denotes the i-th element, and L [i : j] is the con-
tiguous sublist of L ranging from position i to j, 0 < i ≤
j ≤ n. We say that L is sorted iff L[i] < L[i + 1], for any
0 < i < n. Given an integer L [i] we denote with bin(L [i])
the binary representation of L [i], and with | bin(L [i])| its
length in bits (namely, | bin(L [i])| = blog2(L [i])c+ 1).

For compression purposes we are particularly interested
in the distribution of integers in the lists. The skewness of a
list can be (informally) defined as the measure of the asym-
metry of the probability distribution of a random variable.
In particular, a “positively skewed” distribution is a distri-
bution where the mass of the distribution is concentrated on
the left, i.e. the r.v. rarely takes large values. It is worth
noticing that the integer distributions we are interested in
are, in practice, highly skewed.

Even if our encoders are able to compress any list of in-
tegers, in the experimental part of this paper we will apply
our solutions to lists of d-gaps [20] coming from inverted in-

dexes. Given a sorted list of integers L, a list of d-gaps D
is defined as follows: D[1] = L[1], D[i] = L[i] − L[i − 1],
i > 1. As an example, consider the list L = 〈1, 2, 12, 30, 32〉
we have the corresponding d-gap list D = 〈1, 1, 10, 18, 2〉.
D-gap lists are be made up of smaller values than the origi-
nal list2. Therefore, codes that represent small values with
shorter codewords will result in more compact encodings for
L. In particular, it has been shown that the distribution
of d-gaps in “real-world” integer lists follow a power-law [20,
16, 21], which is an extremely positively skewed distribution,
with a high fraction of values being a ’1’.

3. RELATED WORKS
The aim of section is that of introducing the most popular

encoders that will be compared in the experiments section
(Section 5). We divide known methods in two classes: In-
teger encoders and Integer List encoders. The former codes
assign a distinct codeword to each possible integer. Thus, a
list is compressed by replacing each integer with its corre-
sponding codeword. Encoders in the second class, instead,
are specifically designed to compress lists of integers and
may encode any of them considering also its neighbors in the
list. These methods are much more powerful than integer
encoders since they can exploit regularities (e.g., clusters of
almost equal integers) on the underlying list either to achieve
higher compression or to provide faster decompression. As
a consequence of this the latter methods may potentially be
able to beat the entropy of the distribution of values in the
underlying lists. Instead, it is very well-known that the com-
press size achievable by any of the former methods is lower
bounded by this quantity. Our methods belong to the class
of Integer List encoders and are able to beat the entropy
on the three tested datasets. Thus, we are sure that they
achieve better compression than any integer encoder even
without the need of an explicit experimental comparison.

3.1 Integer encoders
In modern computer architectures, integers are usually

represented (uncompressed) using 32 bits per integer. How-
ever, whenever the largest possible integer to be encoded, say
m = max

i∈[1,n]
L [i], is known, we can store each L [i] as L [i]− 1

using only dlog2me bits3. This representation may result in
a net saving of 32 − dlog2me bits per integer with respect
to the plain representation. This is the best compression we
can hope to achieve whenever the underlying distribution of
integers is uniform and m is an exact power of two. If m is
not a power of two we can resort to minimal binary codes.
Notice that, by assigning codewords of dlog2me bits, the

fixed representation above wastes 2dlog2me −m codewords.
This implies that 2dlog2me −m codewords can be shortened
by one bit without loss of unique“decodability”. This is done
by using in the code all the prefixes of numbers in a given
interval. If we use the regular binary numbers to encode
the first six integers as (000, 001, 010, 011, 100, 101), we will
miss ‘11’ as a prefix. On the other hand the first six integers
can be coded using a code (00, 01, 100, 101, 110, 111). Note
all possible prefixes of one bit (0, 1) and all possible prefixes

2Obviously, to recover L from D requires a second pass to
“prefix-sum” up the values to have the original list back.
3We recall that L values are strictly positive and we notice
that dlog2me bits suffices to represent a value from 0 to
m− 1.



of two bits (00, 01, 10, 11) appear in the code allowing the
saving of one bit when encoding 0 and 1.

Fixed representation and minimal binary codes could be
very inefficient for skewed distributions. This is the main
motivation on deal with Integer Encoders which assign to
each integers a variable length codeword. The strategy adopted
to assign the codewords is crucial. Usually, each method is
tuned to work (almost) perfectly on its “ideal” distribution
of values. However, whenever the real distribution differs
from the ideal one, the codewords lengths of various integers
could be not suitable, so that the method could waste even
a lot of space. It is important to notice that each encoding
is a prefix code: no valid codeword is prefix of another code-
word and thus can be instantly decoded as it is read [15].
As a consequence, none of these kind of codes can beat the
entropy of the underlying distribution of integers.
Unary (Unary). In the unary representation each integer
value x is represented using x − 1 bits equal to ‘1’ followed
by a ‘0’ that acts as a terminator [14]. Therefore, the length
of the encoding of an integer x is |Unary(x)| = x. As an
example, if x = 5 we have UN(5) = 11110.
Elias’ Gamma (γ). In γ, an integer x > 0 is encoded by
representing | bin(x)| (i.e. blog2 (x)c + 1) in unary followed
by bin (x) without its most significant bit [9]. Therefore,
|γ (x)| is equal to 2blog2 (x)c + 1. As an example, if x = 5
we have bin (x) = 101 and thus γ (5) is equal to 11001.
Elias’ Delta (δ). In δ, an integer x is encoded by rep-
resenting | bin(x)| by using γ followed by bin(x) without
its most significant bit [9]. The length of δ(x) is |δ(x)| =
blog2 xc+ 2blog2 log2(x)c+ 1. For instance, δ (5) = 10101.
Boldi&Vigna’s Zeta (ζk). In a recent paper, Boldi and Vi-
gna [4] propose a class of integer encoders that are suitable
for lists of numbers drawn from a power-law distribution4.
Given an positive integer parameter k, ζk encodes a posi-

tive integer x in the interval
h
2hk, 2(h+1)k − 1

i
by writing

UN (h+ 1) followed by a minimal binary code of x− 2hk in

the interval
h
0, 2(h+1)k − 2hk − 1

i
. Note that ζ1 is equiva-

lent to γ. As an example ζ2 (5) = 10001, ζ3 (5) = 0101, and
ζ4 (5) = 00101.
Others. In literature are known many other integer en-
coders [13]. Among them we recall Golomb [11] and its varia-
tion Rice. We do not enter in to details on these two methods
since it is well known that they are slower [21] than above
encoders and, since their space occupancy is bounded by the
entropy, they cannot beat our encoders in compression.

The previous encoders are said to be bit-oriented encod-
ings since their codewords may cross the boundary of a
computer word. During decoding, this results in additional
bitwise OR, mask, and shift operations slowing down the
decoding phase. Other encoders are said to be byte/word-
aligned codings since they try to find a workaround to this by
aligning each codeword to byte (or word) boundary. Thus,
usually they are faster but much less space efficient with
respect to bit-oriented encodings.
Variable-Bytes (VBytes). A non negative integer x is
represented in VBytes as a list of 7-bit entries. Each ele-
ment of the list is prefixed with 0 except for the last one,
which is prefixed with a 1 [13, 20]. The length in bits of

4Recall that a discrete random variable Z is distributed as
a power-law with parameter α whenever the probability of
the event Z = x is P ({Z = x}) = 1

ζ(α)xα .

VBytes(x) is given by |VBytes(x)| = 8d(blog2 xc+ 1)/7e bits
(or alternatively d(blog2 xc + 1)/7e bytes). As examples,
VBytes(5) = 10000101, VBytes(129) = 00000001 10000001.

3.2 Integer List Encoders
As we said before, the main limitation of Integer Encoders

is given by the fact that they encode each integer separately
without taking into consideration its neighbors in the list.
Instead, Integers list encoders may improve compression by,
for example, exploiting clusters of almost equal integers in
the underlying list. In the remaining part of this section we
briefly review some of them.
Binary Interpolative Coding (Interpolative). A more so-
phisticated way of encoding a list of sorted integers is using
the Binary Interpolative Coding of Moffat and Stuiver [12].
Starting from the assumption that in highly-skewed distri-
butions integers usually appear clustered [5] within a list,
Interpolative works by recursively splitting the interval of
integers contained within a list and encoding the central el-
ement via minimal binary code. By doing this, whenever a
(sub)list of consecutive numbers is found it is encoded using
“zero” bits. Experiments performed throughout these years
have shown how good Interpolative is at compressing highly
skewed lists of integers [20, 16, 21]. The major drawback
of Interpolative is its very inefficient in decoding algorithm.
Moreover, it is always forced to decompress the whole list
even if it is required just a small prefix of the list.
Simple9 (Simple9). Simple9 encodes groups of integers within
a single 32-bit word. Basically, in Simple9 there are nine
possible ways of encoding a list of positive integers: 28 1-bit
integers, 14 2-bit integers, 9 3-bit integers (one bit unused),
7 4-bit integers, 5 5-bit integers (three bits unused), 4 7-bit
integers, 3 9-bit integers (one bit unused), 2 14-bit integers,
or 1 28-bit integer. The remaining four bits to complete
the 32-bit word are used as status bits to represent which
of the nine cases is used. Decompression is done by read-
ing the status bits and, depending on its value, by applying
fixed bit-mask to extract all the integers in the codeword [2].
Simple9 wastes bits when encoding some combinations of in-
tegers. For instance, encoding 5 5-bit integers we have three
unused bits. Hao et al. have, instead, designed a different
encoding schema for fitting sixteen different combinations of
integers [21] within a word. Experiments showed that Sim-
ple16 is more compact than Simple9 (from which it inspired).
Another variant of Simple9 that reduces the wastage of bits
is slide [3], which allows better compression effectiveness
of Simple9 at a cost of a higher decoding complexity. Given
that we are mainly concerned with decoding speed, we do
not include slide in our experiments.
PForDelta (P4D) P4D encodes together blocks of k con-
secutive integers (e.g. k = 128 integers). The method firstly
finds the smallest b such that most (e.g. 90%) of the inte-
gers in the block are non greater than 2b. Then, it performs
the encoding by storing each integer as a b-bit entry. Each
entry is then packed within a list of dk · be bits. The param-
eter k is usually chosen to be a multiple of 32. This implies
that the k · b bits list is always word aligned regardless of
the value of b. Those integers not fitting within b bits are
treated as exceptions and stored differently [22]. We will
actually refer to a different representation of P4D by Hao
et al. [21] (called OPT-P4D). In this variant the number of
exceptions is not forced to be smaller that 10% of the block
length but it is chosen to minimize the space occupancy.



Moreover, exceptions are stored in a separate array that is
merged to the original sequence of codewords during the
decoding phase. Accordingly to [21], this representation is
much more space compact and not significantly slower with
respect to the original P4D.

4. VSENCODING: A CLASS OF INTEGER
LIST ENCODERS

State-of-the-art integer list encoders use predefined schemes
for partitioning a list into blocks and encoding each block
separately. For example, P4D and its variations divide the
list in to blocks of fixed length, and, then encode each block
with b-bit codewords possibly generating exceptions for in-
tegers greater than 2b. Instead, Simple9 and its variations
greedily partition the list into blocks of variable length and
encode each of them accordingly to predefined possibilities.
Finally, Interpolative represents the the middle value of the
list encodes the remaining part recursively by dividing the
list in two almost equal parts. These methods have inef-
ficiencies either in achieved compression or decompression
speed. By fixing the block length, P4D-based encoders are
not allowed to adapt them self to regularities present in the
lists. For example, the block length should be smaller for
some portion of the list and larger for the others. Excep-
tions serve to attenuate the effect of wrongly putting in the
same block integers of different magnitude. However, we pay
their effort at a cost of introducing significant complications
in the decompression algorithm that affect decompression
speed. Simple9, instead, is too limited in possible choices
which inevitably let him to miss some regularities in the
list. For example, grouping a run of 1s into a single block
and encoding each of them with one bit, is possible only if
the run has length larger that 28. Finally, the Interpolative
strategy is very effective in term of compression but slow.
Moreover, it is forced to decompress the whole list at once.
Thus, during the decompression, it requires an array large
at least as the list. This is source of other inefficiencies
with respect to other methods. For example, since the ele-
ments of the list are usually scanned from left to right, other
methods are required to keep in memory just most recently
decompressed value.

In what follows we present our class of integer list en-
coders that overcome the above limitations. Our class of
encoders is similar in the spirit to P4D and Simple9 but par-
titioning and encoding steps are done in a more principled
way in order to maximize the achieved compression still re-
taining very simple and fast decompression algorithm. Our
encoders (called, VSEncoding) are parametric with respect
two given integer encoders M1 and M2. Informally, the
general scheme works as follow. We partition each list into
blocks of variable length, and we encode the integers inside
of each blocks with the number of bits, say b, required to
encode the largest integer in the block. Finally, we encode
the above value of b with M1 and the length of the block
withM2. Obviously, the partition step is crucial for achiev-
ing high compression. On one hand, if a block is too large,
we may waste a lot of space by encoding all its elements
with b bits. On the other hand, if the block is too small, we
may waste too much space in writing the value of b and the
block length. Our solution uses a Dynamic Programming
approach to find the optimal partition (i.e., the one that
maximizes compression) with respect to M1 and M2. The

partition step is discussed in Subsection 4.1, for the moment,
let us define more formally our class of encoders assuming
that any partition is given.

Let L be the list of n positive integers that we have to
compress and S be the list of m < n integers (called Vector
of Splits), with S[1] = 1, and S[m] = n + 1, that induces
the given partition of L: each two consecutive elements S[i]
and S[i + 1] induce a block, namely si = L[S[i] : S[i +
1] − 1]. For any block si, let bi be the minimum number
of bits required to represent any integer in the block si,
namely d(log2 max(a ∈ si)e), and let ki be the number of
elements in si, i.e. ki = S[i + 1] − S[i]. Given the two
integer encoders M1 and M2, VSEncoding5 encodes each
block si by encoding

1. value bi + 1 with M1;

2. value ki with M2;

3. elements of si using bi bits each.
Let us make an example to show how VSEncoding works.

Let L = 〈8, 1, 1, 8, 1, 1〉 be the list to encode, S = 〈1, 3, 5, 7〉
be the given vectors of splits,M1 be γ,M2 be Unary. From
S we can devise the following partition: s1 = L [1 : 2] =
〈8, 1〉, s2 = L [3 : 4] = 〈1, 8〉, and s3 = L [5 : 7] = 〈1, 1〉. The
three blocks are encoded as:

1. γ(b1 + 1 = 4) = 11000, Unary(k1 = 2) = 10, 101 000;

2. γ(b2 + 1 = 4) = 11000, Unary(k2 = 2) = 10, 000 101;

3. γ(b3 + 1 = 1) = 1, Unary(k3 = 2) = 10.
Notice that the encoding of elements of third block re-

quires no bits, since we can infer that they are all 1s by
knowing the value of b3.

Given a list L and a vector of splits S, we can easily com-
pute the number of bits required by VSEncoding to encode
L using the partition induced by S (which is denoted by
|VSEncoding (L, S)|). This quantity can be computed by
summing up the costs of encoding all the blocks as follows:

|VSEncoding (L, S)| =
m−1X
i=1

c(S[i], S[i+ 1]− 1) (1)

where c(S[i], S[i+ 1]−1) = |M1(bi+ 1)|+ |M2(ki)|+kibi
is the cost (in bits) required to encode the i-th block6.

In the previous example we have that |VSEncoding (L, S)| =
c(S[1], S[2]−1)+c(S[2], S[3]−1)+c(S[3], S[4]−1) = 2(|γ(3)|+
|Unary(2)|+ 2 · 3) + |γ(1)|+ |Unary(2)|+ 2 · 0 = 29 bits.

As we said before, the choice of correct partition is crucial
to achieve high compression. To make a concrete example
consider the partition induced by S′ = 〈1, 2, 4, 5, 7〉 on the
same list. The compress obtained with the same choices of
M1 and M2 has size |VSEncoding (L, S′)| = 22 bits, which
is more than 30% better than the previous one. In the next
subsection we show how to efficiently compute the optimal
vector of splits for a list L fixedM1 andM2, that is, among
all the possible vector of splits, we select one that achieves
the best compression.

4.1 Finding an optimal vector of splits
5Actually, since VSEncoding is a class of encoders parametric
in M1 and M2, it should be denoted as VSEncodingM1,M2
to make more explicit this dependence. Since in the follow-
ing it will be always clear the role ofM1 andM2, we decide
to drop this more precise notation in favor of legibility.
6Notice that the cost depends on the choices ofM1 andM2.



Algorithm Optimizer(L[1, n],M1,M2, maxK)
1. E[1] = 0; P [1] = 1;

2. for(i = 2; i <= n + 1; i = i + 1)

3. b = 0; E[i] = +∞;

4. for(j = i− 1; j >= max(0, i−maxK); j = j − 1)

5. if(b < dlog2(L[j])e b = dlog2 L[j]e;
6. c(j, i) = (i− j)b + |M1(b + 1)|+ |M2(i− j)|
7. if(E[j] + c(j, i) < E[i])

8. E[i] = E[j] + c(j, i);

9. P [i] = j;

Figure 1: The algorithm to find the optimal parti-
tion of a list L[1, n] using encoders M1 and M2 to
encode values of b and block length respectively and
allowing only blocks of length at most maxK.

The problem of finding the optimal encoding for a list L
is formulated as the problem of finding the vector of splits
S∗ that minimizes |VSEncoding (L, S) | defined in Equation 1
among all the possible 2n vectors of splits S. More formally,
S∗ is such that

S∗ = arg min
S∈S

|VSEncoding (L, S)|

Since it will be useful for the choices of M2s used in the
experiments, we consider the case in which one can also
fix the maximum length of the blocks by specifying a value
maxK. Notice that this is actually a generalization of the
problem above: to have no limits on blocks lengths, it is
enough to set maxK equal to the length of the list.

It is easy to prove that this problem can be solved via
Dynamic Programming paradigm using the following recur-
rence:

E[i] = min
max(0,j−maxK)<=j<i

(E[j] + c(j, i)) (2)

where

• E[j] is the already computed optimal cost for encoding
list up to its j − 1-th element;

• c(j, i) is called cost function and, as we said before, ac-
counts for the cost of encoding the sublist L[j : i−1] as
a single block (recall that c(j, i) = |M1(dlog2max(L[j :
i− 1])e+ 1)|)|+ |M2(i− j)|+ (i− j) · dlog2(max(L[j :
i− 1]))e) as defined in the previous section).

To start the recurrence we set E[1] = 0, since it corre-
sponds to the cost of encoding an empty list. Once we have
solved Recurrence 2, the value of E[n + 1] tells us the cost
of the optimal partition of L.

The above recurrence can be solved in O(n ·maxK) by re-
sorting to the classic algorithm for this type of recurrences
[7] (see Algorithm 1). In this algorithm we start by setting
E[1] = 1, then we compute entries of E from left to right
(Steps 2–9 in Algorithm 1). At the generic step, we compute
E[i] by identifying an index j∗ < i among the ones having
the minimum value of E[j∗]+ c(j∗, i). This index j∗ is iden-
tified by simply trying all indexes j between i − maxK and
i − 1 (Steps 4–9) with the only wariness of doing this from
the largest index to the smallest one. In this way, we are

able to compute the value b of sublist L[j : i−1] knowing the
value of b of sublist L[j−1 : i−1] in constant time (Step 5).
During the execution of the algorithm, we also take track
of above index j∗ in the array P (Step 9), so that, at the
end of the computation, we will be able to reconstruct the
vector of splits inducing the optimal partition by jumping
back from n + 1 through values of P (namely, P [n + 1],
P [P [n+ 1]], P [P [P [n+ 1]]], and so on). In our tools we im-
plemented this simple algorithm mainly due to the fact that
experimental evidences show that a good values of maxK
are small constants between 16 and 64 for our choices of en-
coders M1 and M2. For completeness, we point out that
faster algorithms are possible by adapting known solutions
(see [10] and references therein). For example, by resorting
to result in [10], we can compute an (1 + ε) approximate
solution of Recurrence 2 in time O(n log1+ε n), where ε is
an arbitrary positive value. Moreover, we are able to extend
this result to compute the exact solution of Recurrence 2 in
time O(n log2 maxK) whenever the encodersM1 andM2 are
chosen among most of integer encoders described in Section
3.

4.2 Experimented instantiations
We can obtain a valid instantiation of our encoders by

choosing any possible combination of integer encoders among
the ones described in Section 3.1 or the myriad introduced in
literature [13]. We tried many of them in our experimental
investigation but we report here only the two most promis-
ing in term of space achieved and decompression speed. It
should not surprise that, since we take particular care on
decompression speed, they are quite simple.

In the first instantiation (referred as VSE in the experi-
ments) we use two simple encoders. Given the list L to be
encoded, we firstly compute the maximum value M of its
elements, then M1 simply encodes possible values of b us-
ing fixed codewords of length blog2dlog2Mec + 1 bits. As
far as M2 is concerned, we still use a fixed representation
which encodes values among {1, 2, 4, 6, 8, 12, 16, 32} using 3
bits each. Any other value is considered non valid for the
length of a block.

The second instantiation (referred as VSE-R in the exper-
iments) uses similar encoders forM1 andM2 but performs
a further step. Firstly, from the original list L we produce
a new list L′ such that L′[i] = blog2 L[i]c + 1 (i.e., L′[i] is
equal to the number of bits needed to represent value L[i]).
Then, we encode each value L[i] by writing bin(L[i]) with-
out its most significant bit. Notice that if L[i] = 1, no bit
is emitted. Finally, we apply a variant of VSE to encode
the list L′7. Clearly, the value of L[i] can be reconstructed
once we know the value of L′[i]. VSE-R is designed to reduce
the space wasted by encoding a sub-block of integers using
a fixed amount of bits. In fact, of the kb bits used to en-
code k integers within b bits a certain number of bits will be
left unused (in particular those wasted in encoding numbers
smaller than 2b).

For a running example consider again the list in the ex-
ample above (i.e., L = 〈8, 1, 1, 8, 1, 1〉). The list L′ is then
L′ = 〈4, 1, 1, 4, 1, 1〉. We use VSEncoding on L′ using the
same S as before obtaining the following8

1. γ(b1 + 1 = 3) = 101, Unary(k1 = 2) = 10, 11 00;

7We change M2 so that it encodes using 3 bits only values
among {1, 2, 4, 8, 12, 16, 32, 64}
8Here we use again γ and Unary
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Figure 2: The Figure shows a running example of
our layout. Assume that the list L has been parti-
tioned in three blocks. First of all, we group inte-
gers of L into two groups G1 and G2 that contains,
respectively, integers whose corresponding b are 1
and 2. Integers in the same group are written con-
secutively in the compress. The arrows show how to
permute the integers in the groups to obtain back
the original list L. Notice that this permutation can
be easily derived since values of b and k are written
in the correct order.

2. γ(b2 + 1 = 3) = 101, Unary(k2 = 2) = 10, 00 11;

3. γ(b3 + 1 = 1) = 1, Unary(k3 = 2) = 10;

Finally, we emit bits corresponding to L’s elements as
000 000, notice that 1s in L are not encoded at all in this
final step. The final compress of the method on this list has
size 26 bits.

As we will see in Section 5, VSE is faster in decompression
than VSE-R since it does not require the two steps of decod-
ing while it is worse in compression. The better compression
achieved by VSE-R is intuitively given by the fact that we
encode a list of logarithmic values instead of plain values as
in VSE. It is easy to show that in the case of highly skewed
integer distributions, e.g. a power-law distributions with
parameters α > 1, with high probability the number of bits
wasted by VSE-R is less than those wasted by VSE on the
same vector of splits S. Roughly, it is sufficient to compute
the number of bits wasted by the two methods with respect
to the ideal case where each integer x requires blog2 (x)c+ 1
bits. We defer a formal proof of this in an extended version
of the paper.

As a final reminder, we want to point out that the major
gain is attained by doing a careful partitioning of the data.
Given that we look for the optimal partitioning we do not
compare neither VSE nor VSE-R with any simpler heuristics
of data splitting (e.g., taking simple fixed-length blocks of k
elements at a time): either the simpler heuristics or the most
sophisticated ones will never be able to beat our optimum
partitioning.

4.3 Compress layout and decompression algo-
rithm

In order to achieve a very fast decompression algorithm for

VSE and VSE-R we have to carefully organize information
on the compress file. A trivial layout in memory for VSE
and VSE-R has been briefly described in Section 4.2: We
encode each block separately by simply writing its values
of b and k followed by the k integers encoded by using b
bits each. In this way, the decompressor is very simple but,
unfortunately, slower than the fastest known methods like
Simple9, Simple16 and P4D. The reason is mainly given by
the fact that blocks representations are not word aligned.
This forces us to perform at least a conditional jump for
every decompressed value9. It is well-known that conditional
jumps are very expensive, so that a very fast decompressor
should avoid them as much as possible. For example, in
Simple9 or Simple16 a single conditional jump followed by
a call to an appropriate ad hoc function suffices to decode
each encoded word. The parameter k in P4D is chosen so
that the encoded representation of a block is word aligned.
This implies that the k integers in a block can be decoded by
resorting to very effective ad hoc functions that completely
avoid conditional jumps. To be more precise, we have a
function for each possible value of b that simply perform
the correct operations required to decode k integers encoded
with b bits each. Figure 3 shows the function used in P4D
to decode a block of k = 32 integers encoded by using b = 8
bits each. The decompression with these kind of functions
is very fast. However, we recall that the decompression of
blocks P4D has also to manage exceptions. This second step,
in turn, significantly reduces its speed.

The layout that we used for VSE and VSE-R is more in-
volved with respect to the trivial one but allows a faster
decompression algorithm. The idea is to organize the infor-
mation so that the number of conditional jumps is consid-
erably reduced. In the explanation we concentrate on VSE,
since the layout for VSE-R is similar. Assume that the list
we have to compress has been partitioned into l blocks by
the partitioning step and that the obtained values of b and
k are b1, b2, . . . , bl and k1, k2, . . . , kl respectively. Firstly, we
group the integers of the list accordingly to the number of
bits that we have to use to represent them. Then, we write
separately the values in each group: first the values that
have to be represented with 1 bit, then with 2 bits, and so
on. If necessary, we pad the representation of each group so
that it becomes word aligned. Finally, we write values of b
and k in their order (i.e., b1k1, b2k2, . . . , blkl). Decompres-
sion is done in the following way. We decompress each group
by resorting to the same fast functions of P4D (e.g., the one
in Figure 3). This is possible since groups representations
are word aligned. At this point we obtained groups of orig-
inal integers that are out of order. In order to reconstruct
the original list we appropriately permute these integers by
exploiting the fact that values of b and k has been stored in
the correct order. See Figure 2 for a simple example.

This algorithm, combined with the fact that we do not
have to perform any conditional branch, allows for fast de-
compression speed as experiments in the next Section show.

5. EXPERIMENTS
In our experiments we use three collections to cover dif-

ferent possible sizes: gov2, wbr and wt10g. gov2 and wt10g
9Notice that, in order to read values from a non-word aligned
sequence of bits, we have to keep in memory a buffer of bits
and check if it contains a sufficient number of bits before
any read.



Decode8(decoded, encoded)
1. decoded[0] = *encoded >> 24 ;

2. decoded[1] = (*encoded >> 16) & 255;

3. decoded[2] = (*encoded >> 8) & 255;

4. decoded[3] = *encoded++ & 255;

5. decoded[4] = *encoded >> 24 ;

6. decoded[5] = (*encoded >> 16) & 255;

7. decoded[6] = (*encoded >> 8) & 255;

8. decoded[7] = *encoded++ & 255;

9. decoded[8] = *encoded >> 24 ;

10. decoded[9] = (*encoded >> 16) & 255;

11. decoded[10 = (*encoded >> 8) & 255;

12. decoded[11] = *encoded++ & 255;

13. decoded[12] = *encoded >> 24 ;

14. decoded[13] = (*encoded >> 16) & 255;

15. decoded[14] = (*encoded >> 8) & 255;

16. decoded[15] = *encoded++ & 255;

17. decoded[16] = *encoded >> 24 ;

18. decoded[17] = (*encoded >> 16) & 255;

19. decoded[18] = (*encoded >> 8) & 255;

20. decoded[19] = *encoded++ & 255;

21. decoded[20] = *encoded >> 24 ;

22. decoded[21] = (*encoded >> 16) & 255;

23. decoded[22] = (*encoded >> 8) & 255;

24. decoded[23] = *encoded++ & 255;

25. decoded[24] = *encoded >> 24 ;

26. decoded[25] = (*encoded >> 16) & 255;

27. decoded[26] = (*encoded >> 8) & 255;

28. decoded[27] = *encoded++ & 255;

29. decoded[28] = *encoded >> 24 ;

30. decoded[29] = (*encoded >> 16) & 255;

31. decoded[30] = (*encoded >> 8) & 255;

32. decoded[31] = *encoded++ & 255;

Figure 3: The ad-hoc C function used in P4D to
decode k = 32 integers represented by using b = 8
bits each.

are TREC test collections for use in the Terabyte Track.
The former is a crawl of 25, 205, 170 .gov sites (as they were
in early 2004) with documents truncated to 256 kb. wt10g
is made up of 1, 692, 096 documents crawled in early 2000.
wbr is made up of 5, 939, 061 web pages, representing a snap-
shot of the Brazilian web (domains .br) as spidered by the
crawler of the TodoBR search engine in 1999. More informa-
tion about this three collections are shown in Table 1 which
reports basic statistics such as the size of plain collection
in Mbytes, the number of documents, the number of terms
(i.e., the number of lists), the number of encoded integers,
the length of the longest list, and the average lists length.

We tested the different methods on a PC with an Intel
Xeon Quad-Core Processor equipped with 8GBytes RAM
and SATA hard disks. The operating system is a 64-bit
version of Linux 2.6.31-20. All our code is written in C and
is available at Anon URL .

In the experiments we restricted our attention on com-
pressing lists larger than 16 elements. The reason of this
choice is given by the fact that we want to limit the over-
head of function calls when we measure the decompression
speed of the different methods. We experimentally observed
that this choice does not affect the comparison among the

gov2 wbr wt10g

Size plain (Mbytes) 21, 052.89 3, 542.26 1, 507.89
# Documents 25, 205, 170 5, 939, 061 1, 692, 096
# Terms 2, 093, 442 748, 281 392, 956
# Encoded Integers 5, 413, 133, 900 915, 962, 369 371, 589, 409
Max list length 20, 436, 598 3, 683, 860 1, 444, 829
Avg list length 2, 585.76 1, 224.09 945.62

Table 1: The table reports some basic statistics on
the collections we use in our experiments.
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Figure 4: Distribution of the first 10 d-gaps for our
collections before (.orig) and after (.sort) the reassig-
ment of document Ids.

different methods with respect to achieved compression.
We also restrict our attention on lists in which document

Ids are assigned by sorting the corresponding URI lexico-
graphically. In this way we obtain lists that are much more
compressible as well documented in many preceding works
(see for example [18, 16, 21] and references therein). This
phenomenon finds its explanation in the fact that documents
in the same domain are likely to be similar (i.e., they con-
tain almost the same set of terms). Thus, the reassignment
above assigns close Ids to documents that belong to the same
domain, so that it is likely to obtain very small d-gaps in the
lists. By this reason, the resulting collections are much more
compressible. The Figure 4 shows the distribution of the
first 10 smallest d-gaps in our collections after and before
the above reassignment.

In Table 2 we show the gain in compression achievable
with Interpolative and δ on our datasets. The gain is im-
pressive: the compression is better for a factor 1.21 up to a
factor 2.10. Notice that the gain of the reordering largely
compensates the negligible cost (few Mbs) of writing down
in an array the inverse assignments which may be necessary
for some reasons. Thus, the reassignment is a very profitable
choice even whenever a different document Ids assignment
is necessary. In the following we restrict our attention on
compressing our datasets in which document Ids are sorted
in this way.
Compression performance. In our experiment we tried
different compressors as reported in Table 3. In particular,
OPT-P4D refers to the OPT-PforDelta described in [21] with



Method Interpolative δ

gov2.orig 6.689 8.234
gov2.sorted 3.229 3.930
Gain 2.07 2.10

wbr.orig 8.761 10.948
wbr.sorted 6.342 6.973
Gain factor 1.38 1.570

wt10G.orig 6.798 8.115
wt10G.sorted 6.636 6.389
Gain factor 1.21 1.27

Table 2: The table compares the compression
achieved on original and sorted version of our
datasets with Interpolative and δ. The compression
is expressed in bits per integer. The Gain factor
tells the improvement in compression obtainable by
reassigning document Ids.

blocks of size 128 values. We choose this parameter after
experimental evaluations. The smaller the block length, the
better the achieved compression, but slower is the decom-
pression. With blocks larger than 128 we obtain compression
performance which are significantly worse while the decom-
pression is just slightly faster. With smaller blocks, i.e., 32
or 64, the decompression speed is up to four times slower.
We remark that we tested our implementation of OPT-P4D
whose performance has been validated against the original
implementation kindly provided by the authors of [21].

We point out that only our methods, together with In-
terpolative, are able to beat the entropy of the lists on the
datasets. This quasi-paradoxical effect is, indeed, present
because entropy does not consider context information. En-
tropy, or to use a notation commonly used in text compres-
sion, zeroth-order entropy, does not take into account pat-
terns (i.e. the context) that can be present in lists of blocks
of integers. By grouping together blocks of integers, in fact,
we are able to assign codewords to more than a single value
at a time. Therefore, it appears obvious that we can beat
the entropy in the case of VSE, VSE-R and Interpolative. Es-
sentially, this is possible since we exploit regularities on the
lists on these very skewed d-gaps lists (e.g., small values close
to each other or quite long runs of 1s). We remark that beat
the entropy is not possible with any prefix code (e.g., sta-
tistical compressors like Arithmetic and Huffman or integer
encoders like γ, δ, ζ’s, Golomb, and so on). Therefore, our
methods is certainly better in compression than any of these
kind of methods without the need of any comparison. Any-
way, for the sake of completeness, we report those results as
well in Table 3.

To resume, our experiments show incontrovertibly that
our methods achieve compression performance comparable
(and in the case of wbr better) to those achieved by the
state-of-the-art (in terms of space) compression method, i.e.
Interpolative. As we are going to show, decoding speed is
an issue in the case of Interpolative while our methods are
instead very fast.
Decompression speed. In Table 4 we report results on the
decoding speed, in terms of millions of integers per second, of
the different methods we tested. We report the performance
computed over different postings lists and we indicate the
average decoding speed along with its standard deviation.

Compression gov2 wbr wt10g
Method bpi loss % bpi loss % bpi loss %

Interpolative 3.227 0.000 6.301 0.196 5.630 0.000
VSE-R 3.321 2.912 6.289 0.000 5.738 1.922
VSE 3.626 12.360 6.758 7.740 6.007 6.696
Entropy 3.768 16.764 6.578 4.593 6.048 7.418
OPT-P4D 4.232 31.143 7.373 17.220 6.314 12.149
δ 3.929 21.751 6.928 10.161 6.382 13.358
ζ3 4.117 27.564 7.648 21.608 6.814 21.029
γ 4.820 49.360 7.013 11.517 6.449 14.550
Simple9 4.561 41.338 8.267 31.451 7.181 21.549
Simple16 4.441 37.620 7.923 25.981 6.839 21.474
VBytes 8.665 168.473 9.817 56.106 9.331 65.722

Table 3: Compression achieved by the various en-
coders on our datasets expressed in bits per inte-
gers (bpi). In bold we report the best compressor.
For each compressor we also report its increase (in
percentage) with respect to the best compressor.

Method mis

Interpolative 75± 5
VSE-R 450± 20
VSE 835± 35
OPT-P4D 460± 20
δ 130± 10
ζ3 140± 10
γ 120± 10
Simple9 630± 30
Simple16 630± 30
VBytes 260± 10

Table 4: Average decompression speed on the vari-
ous compression methods on our datasets expressed
in millions of integers per second (mis). The value
after ± indicates how much the speed of various ex-
ecutions are different from the reported value.

All the values have been rounded to the nearest ten.
As expected, Interpolative is the slowest as opposed to VSE

which tops others with more than 800 millions of integers
per second. Our methods, VSE and VSE-R, are among the
fastest in decoding with a number of mis (millions of integers
per second) decoded ranging from 450 of VSE-R to 835 of
VSE both of them measured using the gov2 collection. It
is interesting to observe the better performance in terms
of decoding speed of VSE with respect to others, and in
particular with respect to OPT-P4D, Simple9 and Simple16
which are considered state-of-the-art as far as decompression
speed is concerned.

We would like to point the attention on the quite good
decompression performance of γ, δ and ζ3. In our imple-
mentations their decoders have been particularly optimized
for decoding speed using table lookups to quickly decode se-
quences of bits. We have measured the effect of such a table
and we observe that, by only using 216 = 65, 536 entries,
a single table lookup suffices to decode the codeword for
about 90% of the integers, so that only remaining integers
are decoded with the classic and slow algorithm.

From the experiments, Interpolative, VSE, and VSE-R, as
Figure 5 shows, dominate all the others we tested. In par-
ticular, what can be highlighted from the plot in Figure 5
is that our two methods optimize both decoding speed and
compression space at the same time. Obviously, in envi-
ronments like those typical of web search engines, where
one should aim at being both fast and space efficient, our
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Figure 5: A graphical comparison of the different en-
coders showing the trade-offs in time and space. On
the x-axis is represented the compress size (normal-
ized between −1 and 1), on the y-axis is represented
the decoding speed (normalized between −1 and 1,
as well.)

methods VSE and VSE-R result to be those of choice with a
preference for VSE if one care more about speed than space.
Encoders statistics. We report in this paragraph some
statistics on our encoders, VSE and VSE-R, that help in
understanding the correlation between the skewness of a
dataset and, the number of bits and length of blocks pro-
duced by the two methods.

As it can be observed in Figure 6 (above), using VSE
we have do not observe a large variation in terms of block
lengths. This means that VSE is able to adapt, correctly, to
the underlying distribution of integers. In addition, another
important aspect to point out is the large fraction of blocks
encoding their members using 0 bits. This can be seen in
Figure 6 (below), where it is shown the distribution of num-
ber of bits used to encode elements in each block using VSE.
Interesting to notice that still a large fraction of elements
need more that 8 bits to be encoded, this is due, again, to
the high skewness of our datasets characterized by long runs
of 1s are spaced out by large integers.

The two bar charts in Figure 7, instead show the empirical
explanation to the reason why VSE-R appears to perform
better, in practice, than VSE for skewed datasets. First of
all, as in the previous case runs of ’1’s are frequent and
from this we have a large fraction of blocks encoded using 0
bits. The main difference, though, is observed in the case of
the number of blocks having a relatively large size. Blocks of
length 8 and 16 are the most frequent (with a total frequency
that is around the 40%). It is quite likely, then, that a large
fraction of long blocks can be encoded using 0 bits. This
is, again empirically, confirmed by the experiments shown
above.

6. CONCLUSION AND FUTURE WORK
We have described VSEncoding, a class of encoders that

through a dynamic programming algorithm are able to en-
code lists of integers beating the entropy of the gaps dis-
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Figure 6: Distribution of lengths of the blocks
(above) and the number of bits used to encode ele-
ments in the blocks (below) in VSE over our datasets.

tribution. The assignment of codewords is done with the
goal of optimizing both the space taken by the codewords
themselves and the time needed to decode. We have shown,
through extensive experiments, that our methods constantly
outperform the others in terms of both space and time and,
in our opinion, should be the methods of choice for data
management systems (e.g. web search engines) aiming at
very high performance and low space consumption.

Even if our methods are already among the fastest state-
of-the-art fast-encoders (e.g. those of the PForDelta family
or Simple9 like), we would like to more extensively experi-
ment other variations of our methods that could be obtained
by varying encodersM1 andM2 in order to further improve
either compression rate or decompression speed. Ideally, one
would like to have a scheme that has decompression speed
of VSE achieving compression rate of VSE-R.

We defer to a future work the study of the impact of list
skipping [6] on the effectiveness of our method. Apart from
the straightforward approach consisting in partitioning each
list according to the strategy by Chierichetti et al. [6]. The
challenge, anyway, is to find an optimal way of partitioning
the lists of integers also in light of how skips are placed.
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Figure 7: Distribution of lengths of the blocks
(above) and the number of bits used to encode
elements in the blocks (below) in VSE-R over our
datasets.

As it has been shown in the discussion of the data lay-
out, the impact of the architecture is of fundamental im-
portance to the efficiency of the decoding method. We are
currently developing a very fast, and ad-hoc, VSE encod-
ing like method for GPUs [8]. Preliminary experiments are
very encouraging showing a sharp improvement in decoding
speed.

Finally, we are aware that in Web Search Engines not all
the lists are accessed with the same frequency. We are cur-
rently studying strategies for the optimal encoding of post-
ing lists also considering access patterns. We are using infor-
mation available from query logs [17] to extract lists access
patterns.
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