
Epistemic Foundation of the Stable Model
Semantics

YANN LOYER

Laboratoire PRiSM, Université de Versailles Saint Quentin, Versailles, France

and

UMBERTO STRACCIA

Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo”, Pisa, Italy

The stable model semantics has become a dominating approach for the management of negation in

logic programming and close relationships to important non-monotonic formalisms for knowledge

representation have been established. It relies mainly on the closed world assumption to complete
the available knowledge and its formulation has its founding root in the so-called Gelfond-Lifschitz

transform.
The primary goal of this work is to present an intuitive and epistemic based characterisation of

the stable model semantics, as an alternative to the Gelfond-Lifschitz transform. In particular, we

show that the stable model semantics can be defined entirely as an extension of the Kripke-Kleene
semantics and, thus, does rely on the classical management of negation and does not require any
program transformation. Indeed, we show that the closed world assumption can be seen as an
additional source for ‘falsehood’ to be added cumulatively to the Kripke-Kleene semantics. Our

approach is purely algebraic and can abstract from the particular formalism of choice. It is based
on monotone operators (under the knowledge order) over bilattices only and, thus, has a wide
range of applicability.

Categories and Subject Descriptors: F.4.1 [Mathematical Logic and Formal Languages]:
Mathematical Logic—Logic and constraint programming; I.2.3 [Artificial Intelligence]: Deduc-
tion and Theorem Proving—Logic programming

General Terms: Theory

Additional Key Words and Phrases: Bilattices, Fixed-point semantics, Logic programs, Stable
model semantics, Non-monotonic reasoning

1. INTRODUCTION

The stable model semantics [Gelfond and Lifschitz 1988; 1991; Przymusinski 1990a]
is likely the most widely studied and most commonly accepted approach to give
meaning to logic programs (with negation). Informally, it consists in relying on
the Closed World Assumption (CWA) to complete the available knowledge –the

Authors’ addresses: Yann Loyer, Laboratoire PRiSM, Université de Versailles Saint Quentin, 45
Avenue des Etats-Unis, 78035 Versailles FRANCE. e-mail: Yann.Loyer@prism.uvsq.fr. Umberto
Straccia, Istituto di Scienza e Tecnologie dell’Informazione, Area della Ricerca CNR, Via G.

Moruzzi,1 I-56124 Pisa (PI) ITALY. e-mail: straccia@iei.pi.cnr.it.
Permission to make digital/hard copy of all or part of this material without fee for personal

or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,

to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 0000-0000/20YY/0000-0001 $5.00

ACM Journal Name, Vol. V, No. N, Month 20YY, Pages 1–0??.

2 · Y. Loyer and U. Straccia

CWA assumes that all atoms not entailed by a program are false, see [Reiter 1978],
and is motivated by the fact that explicit representation of negative information
in logic programs is not feasible since the addition of explicit negative information
could overwhelm a system. Defining default rules which allow implicit inference of
negated facts from positive information encoded in a logic program has been an
attractive alternative to the explicit representation approach.

The stable model semantics defines a whole family of models of (or ‘answers to’)
a logic program and, remarkably, one among these stable models, the minimal one
according to the ‘knowledge or information ordering’, is considered as the favourite
one and is one-to-one related with the so-called well-founded semantics [Denecker
1998; Denecker et al. 2001; Przymusinski 1990c; van Gelder 1989; van Gelder et al.
1991]. It is not unusual that, rather than to compute the well-founded semantics
only (as, e.g. in [Rao et al. 1997]), the whole set of stable models, like in answer set
programming [Gelfond and Lifschitz 1991; Lifschitz 2002; Marek and Truszczyński
1999; Niemelä 1999] is considered as especially interesting.

In its original formulation, the stable model semantics was classical, two-valued,
over the set of truth-values {f, t}. But, under this setting, some programs have
no stable model. To overcome this problem, later on, Przymusinski [1990c; 1990a;
1990b] extended the notion of stable model semantics to allow three-valued, or
partial, stable model semantics. Remarkably, three-valued semantics has been con-
sidered independently for logic programs as well, as in e.g. [Fitting 1985; Kunen
1987], yielding the well-known Kripke-Kleene semantics of logic programs. In three-
valued semantics, the set of truth values is {f, t,⊥}, where ⊥ stands for unknown.
Przymusinski showed that every program has at least a partial stable model and
that the well-founded model is the smallest among them, according to the knowl-
edge ordering. It was then a small step to move from a three-valued semantics,
allowing the representation of incomplete information, to a four-valued semantics,
allowing the representation of inconsistency (denoted >) as well. The resulting
semantics is based on the well-known set of truth-values FOUR = {f, t,⊥,>}, in-
troduced by Belnap [1977] to model a kind of ‘relevance logic’ (there should be some
‘syntactical’ connections between the antecedent and the consequent of a logical en-
tailment relation α |= β, –see also [Anderson and Belnap 1975; Dunn 1976; 1986;
Levesque 1984; 1988]). This process of enlarging the set of truth-values culminated
with Fitting’s progressive work [1985; 1991; 1992; 1993; 2002] on giving meaning to
logic programs by relying on bilattices [Ginsberg 1988]. Bilattices, where FOUR is
the simplest non-trivial one, play an important role in logic programming, and in
knowledge representation in general. Indeed, Arieli and Avron show [1996; 1998]
that the use of four values is preferable to the use of three values even for tasks
that can in principle be handled using only three values. Moreover, Fitting ex-
plains clearly in [1991] why FOUR can be thought as the ‘home’ of classical logic
programming. Interestingly, the algebraic work of Fitting’s fixed-point characteri-
sation of stable model semantics on bilattices [Fitting 1993; 2002] has been the root
of the work carried out by Denecker, Marek and Truszczyński [1999; 2002; 2003],
who extended Fitting’s work to a more abstract context of fixed-points operators
on lattices, by relying on interval bilattices (these bilattices are obtained in a stan-
dard way as product of a lattice by itself –see, for instance [Fitting 1992; 1993]).
ACM Journal Name, Vol. V, No. N, Month 20YY.

Epistemic Foundation of the Stable Model Semantics · 3

Denecker, Marek and Truszczyński showed ([1999; 2003]) interesting connections
between (two-valued and four-valued) Kripke-Kleene [Fitting 1985], well-founded
and stable model semantics, as well as to Moore’s autoepistemic logic [1984] and
Reiter’s default logic [1980]. Other well-established applications of bilattices and/or
Kripke-Kleene, well-founded and stable models semantics to give semantics to logic
programs can be found in the context of reasoning under paraconsistency and uncer-
tainty (see,e.g. [Damásio and Pereira 1998; 2001; Alcantâra et al. 2002; Arieli 2002;
Blair and Subrahmanian 1989; Loyer and Straccia 2002b; 2002a; 2003a; 2003b;
Lukasiewicz 2001; Ng and Subrahmanian 1991]).

Technically, classical two-valued stable models of logic programs are defined in
terms of fixed-points of the so-called Gelfond-Lifschitz operator, GL(I), for a two-
valued interpretation I. This operator has then be generalised to bilattices by
Fitting [1993], by means of the Ψ′

P(I) operator, where this time I is an interpre-
tation over bilattices. Informally, the main principle of these operators is based on
the separation of the role of positive and negative information. That is, given a two-
valued interpretation I, GL(I) is obtained by first evaluating negative literals in a
logic program P by means of I, determining the reduct PI of P, and then, as PI is
now a positive program, to compute the minimal Herbrand model of PI by means
of the usual Van Emden-Kowalski’s immediate consequence operator TP [Emden
and Kowalski 1976; Lloyd 1987]. The computation of Ψ′

P(I) for bilattices is simi-
lar. As a consequence, this separation avoids the natural management of classical
negation (i.e. the evaluation of a negative literal ¬A is given by the negation of the
evaluation of A), which is a major feature of the Kripke-Kleene semantics [Fitting
1985; 1991] of logic programs with negation.

The primary goal of this study is to show, in the quite general setting of bilat-
tices as space of truth-values, that neither this separation of positive and negative
information is necessary nor any program transformation is required to character-
ize epistemologically the stable model semantics. Indeed, we show that the stable
model semantics can be defined as a simple, natural and epistemic extension of the
Kripke-Kleene semantics. Informally, we view the CWA as an additional source of
information to be used for information completion, or more precisely, as a carrier
for falsehood, to be considered cumulatively to the Kripke-Kleene semantics. This
allows us to view the stable model semantics from a different, not yet investigated
perspective. In particular, we will show that stable models can be defined in terms
of an operator managing negation classically, i.e. the ΦP operator, which has been
used to define the Kripke-Kleene semantics. Therefore, we propose an alternative
characterisation of stable model semantics to the well-known, widely applied and
long studied technique based on the separation of positive and negative information
in the Gelfond-Lifschitz transformation, by reverting to the classical interpretation
of negation, i.e. we characterize negation-as-failure as standard negation. While
the Gelfond-Lifschitz transformation treats negation-as-failure in a special way and
unlike other connectives, our approach is an attempt to relate the semantics of
logic programs to a standard model-theoretic account of rules. We emphasize the
possibility to analyze logic programs using standard logical means as the notion
of interpretation and information ordering, i.e. knowledge ordering. Therefore, our
approach in principle does not depend on the presence of any specific connective,

ACM Journal Name, Vol. V, No. N, Month 20YY.

4 · Y. Loyer and U. Straccia

such as negation-as-failure, nor on any specific syntax of rules (towards this di-
rection, worth mentioning is the work carried out by Herre and Wagner [1997],
even if it differs slightly from the usual stable model semantics [Gelfond and Lif-
schitz 1991] and the semantics is given in the context of the classical, two-valued
truth-space). Due to the generality and the purely algebraic nature of our results,
as just monotone operators over bilattices are postulated, the epistemic charac-
terisation of stable models given in this study can be applied in other, like the
above mentioned, contexts as well (e.g. uncertainty and/or paraconsistency in logic
programming, and nonmonotonic logics like default and autoepistemic logics), and
may contribute likely to comprehension, to formalization and to methods of proofs
in the context of stable model semantics.

The remaining of the paper is organised as follows. In order to make the paper
self-contained, in the next section, we will briefly recall definitions and properties
of bilattices and logic programs. Section 3 is the main part of this work, where we
present our novel characterisation of the stable model semantics, while Section 4
concludes.

2. PRELIMINARIES

We start with some well-known basic definitions and properties of lattices, bilattices
and logic programs.

2.1 Lattices

A lattice is a partially ordered set 〈L,�〉 such that every two element set {x, y} ⊆ L
has a least upper bound, lub�(x, y) (called the join of x and y), and a greatest lower
bound, glb�(x, y) (called the meet of x and y). For ease, we will write x ≺ y if x � y
and x 6= y. A lattice 〈L,�〉 is complete if every subset of L has both least upper
and greatest lower bounds. Consequently, a complete lattice has a least element,
⊥, and a greatest element >. For ease, throughout the paper, given a complete
lattice 〈L,�〉 and a subset of elements S ⊆ L, with �-least and �-greatest we will
always mean glb�(S) and lub�(S), respectively. With min�(S) we denote the set
of minimal elements in S w.r.t. �, i.e. min�(S) = {x ∈ S: 6 ∃y ∈ S s.t. y ≺ x}. Note
that while glb�(S) is unique, |min�(S)| > 1 may hold. If min�(S) is a singleton
{x}, for convenience we may also write x = min�(S) in place of {x} = min�(S).
An operator on a lattice 〈L,�〉 is a function from L to L, f :L→ L. An operator f
on L is monotone, if for every pair of elements x, y ∈ L, x � y implies f(x) � f(y),
while f is antitone if x � y implies f(y) � f(x). Clearly, the composition of two
antitone operators is monotone and operators that are both monotone and antitone
are constant. A fixed-point of f is an element x ∈ L such that f(x) = x.

The basic tool for studying fixed-points of operators on lattices is the well-known
Knaster-Tarski theorem [1955].

Theorem 2.1 (Knaster-Tarski fixed-point theorem [1955]). Let f be a
monotone operator on a complete lattice 〈L,�〉. Then f has a fixed-point, the set of
fixed-points of f is a complete lattice and, thus, f has a �-least and a �-greatest
fixed-point. The �-least (respectively, �-greatest) fixed-point can be obtained by
iterating f over ⊥ (respectively, >), i.e. is the limit of the non-decreasing (respec-
tively, non-increasing) sequence x0, . . . , xi, xi+1, . . . , xω, . . ., where for a successor
ACM Journal Name, Vol. V, No. N, Month 20YY.

Epistemic Foundation of the Stable Model Semantics · 5

ordinal i ≥ 0,

x0 = ⊥,

xi+1 = f(xi)

(respectively, x0 = >), while for a limit ordinal ω,

xω = lub�{xi: i < ω} (respectively, xω = glb�{xi: i < ω}) . (1)

a

We denote the �-least and the �-greatest fixed-point by lfp�(f) and gfp�(f),
respectively.

Often, throughout the paper, we will define monotone operators, whose sets of
fixed-points define certain classes of models of a logic program. As a consequence,
please note that this will also mean that a least model always exists for such classes.
Additionally, for ease, for the monotone operators defined in this study, we will spec-
ify the initial condition x0 and the next iteration step xi+1 only, while Equation 1
is always considered as implicit.

2.2 Bilattices

The simplest non-trivial bilattice, called FOUR, is due to Belnap [1977] (see
also [Arieli and Avron 1998; Avron 1996]), who introduced a logic intended to
deal with incomplete and/or inconsistent information. FOUR already illustrates
many of the basic properties concerning bilattices. Essentially, FOUR extends the
classical truth set {f, t} to its power set {{f}, {t}, ∅, {f, t}}, where we can think
that each set indicates the amount of information we have in terms of truth: so,
{f} stands for false, {t} for true and, quite naturally, ∅ for lack of information
or unknown, and {f, t} for inconsistent information (for ease, we use f for {f}, t
for {t}, ⊥ for ∅ and > for {f, t}). The set of truth values {f, t,⊥,>} has two
quite intuitive and natural ‘orthogonal’ orderings, �k and �t (see Figure 1), each
giving to FOUR the structure of a complete lattice. One is the so-called knowledge

-

6

�t

�k

s

s
s s

⊥

>

f t

�
�

�

�
�

�
@

@
@

@
@

@

Fig. 1. The logic FOUR.

ordering, denoted �k, and is based on the subset relation, that is, if x ⊆ y then
x represents ‘more information’ than y (e.g. ⊥ = ∅ ⊆ {t} = t, i.e. ⊥ �k t). The
other ordering is the so-called truth ordering, denoted �t. Here x �t y means that

ACM Journal Name, Vol. V, No. N, Month 20YY.

6 · Y. Loyer and U. Straccia

x is ‘at least as false as y is, and y is at least as true as x is’, i.e. x∩ {t} ⊆ y ∩ {t}
and y ∩ {f} ⊆ x ∩ {f} (e.g. ⊥ �t t).

The general notion of bilattice we will rely on in this paper is defined as fol-
lows [Ginsberg 1988; Fitting 2002]. A bilattice is a structure 〈B,�t,�k〉 where B is
a non-empty set and �t and �k are both partial orderings giving B the structure of
a complete lattice with a top and bottom element. Meet and join under �t, denoted
∧ and ∨, correspond to extensions of classical conjunction and disjunction. On the
other hand, meet and join under �k are denoted ⊗ and ⊕. x ⊗ y corresponds to
the maximal information x and y can agree on, while x ⊕ y simply combines the
information represented by x with that represented by y. Top and bottom under
�t are denoted t and f, and top and bottom under �k are denoted > and ⊥, re-
spectively. We will assume that bilattices are infinitary distributive bilattices in
which all distributive laws connecting ∧,∨,⊗ and ⊕ hold. We also assume that
every bilattice satisfies the infinitary interlacing conditions, i.e. each of the lattice
operations ∧,∨,⊗ and ⊕ is monotone w.r.t. both orderings. An example of inter-
lacing condition is: x �t y and x′ �t y′ implies x⊗x′ �t y⊗ y′. Finally, we assume
that each bilattice has a negation, i.e. an operator ¬ that reverses the �t ordering,
leaves unchanged the �k ordering, and verifies ¬¬x = x1.

Below, we give some properties about bilattices that will be used in this study.
Figure 2 illustrates intuitively some of the following lemmas.

-

6

�t

�k

s

s

s s

⊥

>

f t

�
�

�
�

�
�

�
�

�
�

�
�
@

@
@

@
@

@

@
@

@
@

@
@

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@ s

s

s
sss s

s s
x zy

x⊗ z

x⊕ z

x⊗ f

y ⊗ f

x′ ⊗ f

y ⊕ f

x′

Fig. 2. Some points mentioned in Lemmas 2.2–2.7.

1The dual operation to negation is conflation, i.e. an operator ∼ that reverses the �k ordering,
leaves unchanged the �t ordering, and ∼∼ x = x. If a bilattice has both, they commute if
∼ ¬x = ¬ ∼ x for all x. We will not deal with conflation in this paper.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Epistemic Foundation of the Stable Model Semantics · 7

Lemma 2.2 [Fitting 1993].

(1) If x �t y �t z then x⊗ z �k y and y �k x⊕ z;
(2) If x �k y �k z then x ∧ z �t y and y �t x ∨ z. a

Lemma 2.3. If x �t y then x �t x⊗ y �t y and x �t x⊕ y �t y. a

Proof. Straightforward using the interlacing conditions.

Lemma 2.4.

(1) If x �t y then f⊗ x �t y;
(2) If x �k y then f⊗ y �t x. a

Proof. If x �t y then from f �t x and by Lemma 2.3, f �t f⊗ x �t x �t y. If
x �k y then, from f �t x, we have f⊗ y �t x⊗ y = x.

Lemma 2.5. If x⊕ z �t y then z �k y ⊕ f. a

Proof. By Lemma 2.2, f �t x⊕ z �t y implies z �k x⊕ z �k y ⊕ f.

Lemma 2.6. If f⊗ y �k x �k f⊕ y then x �t y. a

Proof. By Lemma 2.2, f ⊗ y �k x �k f ⊕ y implies x �t (f ⊗ y) ∨ (f ⊕ y).
Therefore, x �t (f⊗ y)⊕ ((f⊗ y) ∨ y) and, thus, x �t (f⊗ y)⊕ y = y.

Lemma 2.7. If x �k y and x �t y then x⊗ f = y ⊗ f. a

Proof. By Lemma 2.4, f ⊗ y �t x and, thus, f ⊗ y �t x ⊗ f follows. From
x �t y, f⊗ x �t y ⊗ f holds. Therefore, x⊗ f = y ⊗ f.

2.2.1 Bilattice construction. Bilattices come up in natural ways. Indeed, there
are two general, but different, construction methods, which allow to build a bilattice
from a lattice and are widely used. We just sketch them here in order to give a
feeling of their application (see also [Ginsberg 1988; Fitting 1993]).

The first bilattice construction method comes from [Ginsberg 1988]. Suppose we
have two complete distributive lattices 〈L1,�1〉 and 〈L2,�2〉. Think of L1 as a
lattice of values we use when we measure the degree of belief, while think of L2

as the lattice we use when we measure the degree of doubt. Now, we define the
structure L1 � L2 as follows. The structure is 〈L1 × L2,�t,�k〉, where

— 〈x1, x2〉 �t 〈y1, y2〉 if x1 �1 y1 and y2 �2 x2;
— 〈x1, x2〉 �k 〈y1, y2〉 if x1 �1 y1 and x2 �2 y2.

In L1�L2 the idea is: knowledge goes up if both degree of belief and degree of doubt
go up; truth goes up if the degree of belief goes up, while the degree of doubt goes
down. It is easily verified that L1�L2 is a bilattice. Furthermore, if L1 = L2 = L,
i.e. we are measuring belief and doubt in the same way (e.g. L = {f, t}), then
negation can be defined as ¬〈x, y〉 = 〈y, x〉, i.e. negation switches the roles of belief
and doubt. Applications of this method can be found, for instance, in [Herre and
Wagner 1997; Ginsberg 1988; Alcantâra et al. 2002].

The second construction method has been sketched in [Ginsberg 1988] and ad-
dressed in more details in [Fitting 1992], and is probably the more used one. Sup-
pose we have a complete distributive lattice of truth values 〈L,�〉. Think of these

ACM Journal Name, Vol. V, No. N, Month 20YY.

8 · Y. Loyer and U. Straccia

values as the ‘real’ values we are interested in, but due to lack of knowledge we are
able just to ‘approximate’ the exact values. That is, rather than considering a pair
〈x, y〉 ∈ L×L as indicator for degree of belief and doubt, 〈x, y〉 is interpreted as the
set of elements z ∈ L such that x � z � y. That is, a pair 〈x, y〉 is interpreted as an
interval. An interval 〈x, y〉 may be seen as an approximation of an exact value. For
instance, in reasoning under uncertainty (see, e.g. [Loyer and Straccia 2002b; 2003a;
2003b]), L is the unit interval [0, 1] with standard ordering, L×L is interpreted as
the set of (closed) intervals in [0, 1], and the pair 〈x, y〉 is interpreted as a lower and
an upper bound of the exact value of the certainty value. A similar interpretation
is given in [Denecker et al. 1999; Denecker et al. 2002; Denecker et al. 2003], but
this time L is the set of two-valued interpretations, and a pair 〈J−I , J+

I 〉 ∈ L × L
is interpreted as a lower and upper bound approximation of the application of a
monotone (immediate consequence) operator O:L→ L to an interpretation I.

Formally, given the lattice 〈L,�〉, the bilattice of intervals is 〈L × L,�t,�k〉,
where:

— 〈x1, x2〉 �t 〈y1, y2〉 if x1 � y1 and x2 � y2;
— 〈x1, x2〉 �k 〈y1, y2〉 if x1 � y1 and y2 � x2.

The intuition of those orders is that truth increases if the interval contains greater
values, whereas the knowledge increases when the interval becomes more precise.
Negation can be defined as ¬〈x, y〉 = 〈¬y,¬x〉, where ¬ is a negation operator on
L. Note that, if L = {f, t}, and if we assign f = 〈f, f〉, t = 〈t, t〉, ⊥ = 〈f, t〉 and
> = 〈t, f〉, then we obtain a structure isomorphic to the bilattice FOUR.

2.3 Logic programs, interpretations, models and program k-completions

We recall here the definitions given in [Fitting 1993]. This setting is as general as
possible, so that the results proved in this paper will be widely applicable.

Classical logic programming has the set {f, t} as its truth space, but as stated by
Fitting [1993], “FOUR can be thought as the ‘home’ of ordinary logic programming
and its natural extension is to bilattices other than FOUR: the more general the
setting the more general the results”. We will consider bilattices as the truth space
of logic programs as well.

2.3.1 Logic programs. A logic program is defined as follows. A formula is an
expression built up from the literals and the members of B using ∧,∨,⊗,⊕,∃ and ∀.
A rule is of the form P (x1, . . . , xn)← ϕ(x1, . . . , xn), where P is an n-ary predicate
symbol and the xis are variables. The atomic formula P (x1, . . . , xn) is called the
head, and the formula ϕ(x1, . . . , xn) is called the body. It is assumed that the
free variables of the body are among x1, . . . , xn. Free variables are thought of as
universally quantified. A logic program, denoted with P, is a finite set of rules.

Definition 2.8 (P∗). Given a logic program P, the associated set P∗ is con-
structed as follows;

(1) put in P∗ all ground instances of members of P (over the Herbrand base);
(2) if a ground atom A is not head of any rule in P∗, then add the rule A← f to
P∗;2

2It is a standard practice in logic programming to consider such atoms as false. We incorporate

ACM Journal Name, Vol. V, No. N, Month 20YY.

Epistemic Foundation of the Stable Model Semantics · 9

(3) replace several ground rules in P∗ having same head, A← ϕ1, A← ϕ2, . . . with
A← ϕ1 ∨ϕ2 ∨ As there could be infinitely many grounded rules with same
head, we may end with a countable disjunction, but the semantics behaviour
is unproblematic.

Note that in P∗, each ground atom appears in the head of exactly one rule.
A classical logic program is one which does not involve ⊗,⊕,∀,∃,> and ⊥ and

whose underlying truth space is FOUR.

2.3.2 Interpretations. Let 〈B,�t,�k〉 be a bilattice. By interpretation of a logic
program on the bilattice we mean a mapping I from ground atoms to members of
B. An interpretation I is extended from atoms to formulae as follows:

(1) for b ∈ B, I(b) = b;
(2) for formulae ϕ and ϕ′, I(ϕ ∧ ϕ′) = I(ϕ) ∧ I(ϕ′), and similarly for ∨,⊗,⊕ and
¬; and

(3) I(∃xϕ(x)) =
∨
{I(ϕ(t)): t ground term}, and similarly for universal quantifica-

tion3.

The family of all interpretations is denoted by I(B). The truth and knowledge
orderings are extended from B to I(B) as follows:

— I1 �t I2 iff I1(A) �t I2(A), for every ground atom A; and
— I1 �k I2 iff I1(A) �k I2(A), for every ground atom A.

Given two interpretations I, J , we define (I ∧ J)(ϕ) = I(ϕ) ∧ J(ϕ), and similarly
for the other operations. With If and It we will denote the bottom and top
interpretations under �t (they map any atom into f and t, respectively). With I⊥
and I> we will denote the bottom and top interpretations under �k (they map any
atom into ⊥ and >, respectively). It is easy to see that the space of interpretations
〈I(B),�t,�k〉 is an infinitary interlaced and distributive bilattice as well.

2.3.3 Models. An interpretation I is a model of a logic program P, denoted by
I |= P, if and only if for each rule A ← ϕ in P∗, I(ϕ) �t I(A). With mod(P) we
identify the set of models of P. Note that assuming that a model I of P satisfies
I(ϕ) �t I(A), guarantees that the meaning of P can be given by means of P∗,
e.g. {A← ϕ1, A← ϕ2} is ‘equivalent’ to {A← ϕ1 ∨ ϕ2}. This is the classical view
of interpretation of a set of rules. An alternative is also to rely on �k, i.e. to impose
I(ϕ) �k I(A) to models of P, but under this view we interpret {A← ϕ1, A← ϕ2}
as ‘equivalent’ to {A ← ϕ1 ⊕ ϕ2}. We will rely on the former classical view and
deserve the discussion about the later possibility to future work.

Among all models of a logic program P, Fitting [1993; 2002] identifies a subset,
which obeys the so-called Clark-completion procedure [Clark 1978]. Essentially,
we replace in P∗ each occurrence of ← with ↔: an interpretation I is a Clark-
completion model, cl-model for short, of a logic program P, denoted by I |=cl P, if
and only if for each rule A ← ϕ in P∗, I(A) = I(ϕ). With modcl(P) we identify
the set of cl-models of P. Of course modcl(P) ⊆ mod(P) holds.

this by explicitly adding A← f to P∗.
3The bilattice is complete w.r.t. �t, so existential and universal quantification are well-defined.

ACM Journal Name, Vol. V, No. N, Month 20YY.

10 · Y. Loyer and U. Straccia

Example 2.9. Consider the following logic program

P = {(A← ¬A), (A← α)} ,

where α is a value of a bilattice such that α �t ¬α and A is a ground atom. Then
P∗ is

P∗ = {A← ¬A ∨ α} .

Consider Figure 3. The set of models of P, mod(P), is the set of interpretations

-

6

�t

�k

t

t

t t

⊥

>

f t

�
�

�
�

�
��

�
�

�
�

�
��
@

@
@

@
@

@@

@
@

@
@

@
@@

�
�

�
�

�
��

�
�

�
�

�
��

�
�

�
�

�
��

@
@

@
@

@
@@

@
@

@
@

@
@@

@
@

@
@

@
@@ t

t

t
t

t

t
α ¬α

α⊗ ¬α

α⊕ ¬α

α⊗ t

α⊕ t

��

@@�
�

�
�

�

@
@

@
@

@

M

Fig. 3. Models and cl-models.

assigning to A a value in the area (M -area in Figure 3) delimited by the extremal
points, α ⊗ ¬α, α ⊕ ¬α, α ⊕ t, t and α ⊗ t. The �k-least element I of mod(P) is
such that I(A) = α⊗ t.

The set of cl-models of P, modcl(P), is the set of interpretations assigning to A a
value on the vertical line, in between the extremal points α⊗¬α and α⊕¬α and are
all truth minimal. The �k-least element I ′ of modcl(P) is such that I ′(A) = α⊗¬α.
Note that I is not a cl-model of P and, thus, modcl(P) ⊂ mod(P). �

Clark-completion models have also an alternative characterisation.

Definition 2.10 (general reduct). Let P and I be a logic program and an in-
terpretation, respectively. The general reduct of P w.r.t. I, denoted P[I] is the
program obtained from P∗ in which each (ground) rule A ← ϕ ∈ P∗ is replaced
with A← I(ϕ).

Note that any model J of P[I] is such that for all rules A← ϕ ∈ P∗, I(ϕ) �t J(A).
But, in P∗ each ground atom appears in the head of exactly one rule. Therefore,
ACM Journal Name, Vol. V, No. N, Month 20YY.

Epistemic Foundation of the Stable Model Semantics · 11

it is easily verified that any �t-minimal model J of P[I] is such that J(A) = I(ϕ)
and there can be just one such model, i.e. J = min�t

{J ′: J ′ |= P[I]}.
We have the following theorem, which allows us to express the cl-models of a

logic program in terms of models of it.

Theorem 2.11. Let P and I be a logic program and an interpretation, respec-
tively. Then I |=cl P iff I = min�t{J : J |= P[I]}. a

Proof. I |=cl P iff for all A ← ϕ ∈ P∗, I(A) = I(ϕ) holds iff (as noted above)
I = min�t

{J : J |= P[I]}.

The above theorem establishes, thus, that Clark-completion models are fixed-points
of the operator ΓP : I(B)→ I(B), defined as

ΓP(I) = min
�t

{J : J |= P[I]} , (2)

i.e. I |=cl P iff I = ΓP(I).

2.3.4 Program k-completions. Finally, given an interpretation I, we introduce
the notion of program knowledge completion, or simply, k-completion with I, de-
noted P ⊕ I. The idea is to enforce any model (and cl-model) J of P ⊕ I to contain
at least the knowledge determined by P and I. That is, the program k-completion
of P with I, is the program obtained by replacing any rule of the form A← ϕ ∈ P
by A← ϕ⊕ I(A).

Note that J |= P ⊕ I does not imply J |= P. For instance, given P = {A ←
A⊗¬A} and I = J = If, then P ⊕ I = {A← (A⊗¬A)⊕ f} and J |= P ⊕ I, while
J 6|= P.

2.3.5 Additional remarks. Please note that the use of the negation, ¬, in literals
has to be understood as classical negation. The expression not L (where L is a
literal) appearing quite often as syntactical construct in logic programs, indicating
‘L is not provable’, is not part of our language. This choice is intentional, as we
want to stress the fact in this study that the CWA will be considered as an addi-
tional source of (or carrier of) falsehood in an abstract sense and to be considered
as a ‘cumulative’ information source with the classical semantics (Kripke-Kleene
semantics). In this sense our approach is an attempt to relate the stable model
semantics of logic programs to a standard model-theoretic account of rules, relying
on standard logical means as the notion of interpretation and knowledge ordering.

2.4 Semantics of logic programs

In logic programming, usually the semantics of a program P is determined by
selecting a particular interpretation, or a set of interpretations, of P in the set
of models of P. We consider three semantics, which are likely the most popular
and widely studied semantics for logic programs with negation, namely the Kripke-
Kleene semantics, the well-founded semantics and the stable model semantics, in
increasing order of knowledge [Fitting 1985; 1993; 2002; Gelfond and Lifschitz 1988;
van Gelder et al. 1991].

2.4.1 The Kripke-Kleene semantics. The Kripke-Kleene semantics [Fitting 1985]
has a simple, intuitive and epistemic characterization, as it corresponds to the

ACM Journal Name, Vol. V, No. N, Month 20YY.

12 · Y. Loyer and U. Straccia

least cl-model of a logic program under the knowledge order �k. The Kripke-
Kleene semantics is essentially a generalisation of the least model characterization
of classical programs without negation over the truth space {f, t} (see [Emden and
Kowalski 1976; Lloyd 1987]) to logic programs with classical negation evaluated
over bilattices under Clark’s program completion. More formally,

Definition 2.12 (Kripke-Kleene semantics). The Kripke-Kleene model of a logic
program P is the �k-least cl-model of P, i.e.

KK(P) = min
�k

({I: I |=cl P}) . (3)

For instance, by referring to Example 2.9, the value of A w.r.t. the Kripke-Kleene
semantics of P is KK(P)(A) = α⊗ ¬α.

Note that by Theorem 2.11 and by Equation 2 we have also

KK(P) = lfp�k
(ΓP) . (4)

The Kripke-Kleene semantics has also an alternative, and better known, fixed-point
characterization, by relying on the well-known ΦP immediate consequence opera-
tor. ΦP is a generalisation of the Van Emden-Kowalski’s immediate consequence
operator TP [Emden and Kowalski 1976; Lloyd 1987] to bilattices under Clark’s
program completion. Interesting properties of ΦP are that (i) ΦP relies on the
classical evaluation of negation, i.e. the evaluation of a negative literal ¬A is given
by the negation of the evaluation of A; and (ii) ΦP is monotone with respect to
the knowledge ordering and, thus, has a �k-least fixed-point, which coincides with
the Kripke-Kleene semantics of P. Formally,

Definition 2.13 (immediate consequence operator ΦP). Consider a logic program
P. The immediate consequence operator ΦP : I(B) → I(B) is defined as follows.
For I ∈ I(B), ΦP(I) is the interpretation, which for any ground atom A such that
A← ϕ occurs in P∗, satisfies ΦP(I)(A) = I(ϕ).

It can easily be shown that

Theorem 2.14 ([Fitting 1993]). In the space of interpretations, the operator
ΦP is monotone under �k, the set of fixed-points of ΦP is a complete lattice under
�k and, thus, ΦP has a �k-least fixed-point. Furthermore, I is a cl-model of a
program P iff I is a fixed-point of ΦP . Therefore, the Kripke-Kleene model of P
coincides with ΦP ’s least fixed-point under �k. a

For instance, by referring to Example 2.9, the set of fixed-points of ΦP coincides
with the set of interpretations assigning to A a value on the vertical line, in between
the extremal points α⊗ ¬α and α⊕ ¬α.

The above theorem relates the model theoretical and epistemic characterization
of the Kripke-Kleene semantics to a least fixed-point characterization. By relying
on ΦP we know also how to effectively compute KK(P) as given by the Knaster-
Tarski Theorem 2.1.

Please, note that by Theorem 2.11 and Equation 2, it follows immediately that
ACM Journal Name, Vol. V, No. N, Month 20YY.

Epistemic Foundation of the Stable Model Semantics · 13

Corollary 2.15. Let P and I be a logic program and an interpretation, respec-
tively. Then ΦP(I) = ΓP(I). a

Proof. Let I ′ = ΓP(I) = min�t({J : J |= P[I]}). Then we have that for any
ground atom A, ΓP(I)(A) = I ′(A) = I(ϕ) = ΦP(I)(A), i.e. ΦP(I) = ΓP(I).

As a consequence, all definitions and properties given in this paper in terms of ΦP
and/or cl-models may be given in terms of ΓP and/or models as well. As ΦP is a
well-known operator, for ease of presentation we will continue to rely on it.

We conclude this section with the following simple lemma, which will be of use
in this paper.

Lemma 2.16. Let P be a logic program and let J and I be interpretations. Then
ΦP⊕I(J) = ΦP(J)⊕ I. In particular, J |=cl P ⊕ I iff J = ΦP(J)⊕ I. a

2.4.2 Stable model and well-founded semantics. A commonly accepted approach
to provide a stronger semantics or a more informative semantics to logic programs
than the Kripke-Kleene semantics, consists in relying on the CWA to complete the
available knowledge. Among the various approaches to the management of negation
in logic programming, the stable model semantics approach, introduced by Gelfond
and Lifschitz [1988] with respect to the classical two valued truth space {f, t} has
become one of the most widely studied and most commonly accepted proposal.
Informally, a set of ground atoms I is a stable model of a classical logic program
P if I = I ′, where I ′ is computed according to the so-called Gelfond-Lifschitz
transformation:

(1) substitute (fix) in P∗ the negative literals by their evaluation with respect to
I. Let PI be the resulting positive program, called reduct of P w.r.t. I;

(2) let I ′ be the minimal Herbrand (truth-minimal) model of PI .

This approach defines a whole family of models and the minimal one according to
the knowledge ordering corresponds to the well-founded semantics [Przymusinski
1990c; van Gelder et al. 1991].

The extension of the notions of stable model and well-founded semantics to the
context of bilattices is due to Fitting [1993]. He proposes a generalization of the
Gelfond-Lifschitz transformation to bilattices by means of the binary immediate
consequence operator ΨP . The basic principle of ΨP , similarly to that of the
Gelfond-Lifschitz transformation, is to separate the roles of positive and negative
information. Informally, ΨP accepts two input interpretations over a bilattice, the
first one is used to assign meanings to positive literals, while the second one is used
to assign meanings to negative literals. ΨP is monotone in both arguments in the
knowledge ordering �k. But, with respect to the truth ordering �t, ΨP is monotone
in the first argument, while it is antitone in the second argument (indeed, as the
truth of a positive literal increases, the truth of its negation decreases). Computa-
tionally, he follows the idea of the Gelfond-Lifschitz transformation we have seen
above: the idea is to fix an interpretation for negative information and to compute
the �t-least model of the resulting positive program. To this end, Fitting [1993]
additionally introduced the Ψ′

P operator, which for a given interpretation I of
negative literals, computes the �t-least model, Ψ′

P(I) = lfp�t
(λx.ΨP(x, I)). The

ACM Journal Name, Vol. V, No. N, Month 20YY.

14 · Y. Loyer and U. Straccia

fixed-points of Ψ′
P are the stable models, while the least fixed-point of Ψ′

P under
�k is the well-founded semantics of P.

Formally, let I and J be two interpretations in the bilattice 〈I(B),�t,�k〉. The
notion of pseudo-interpretation I4J over the bilattice is defined as follows (I gives
meaning to positive literals, while J gives meaning to negative literals): for a pure
ground atom A:

(I 4 J)(A) = I(A)
(I 4 J)(¬A) = ¬J(A) .

Pseudo-interpretations are extended to non-literals in the obvious way. We can now
define ΨP as follows.

Definition 2.17 (immediate consequence operator ΨP). The immediate consequence
operator ΨP : I(B)× I(B)→ I(B) is defined as follows. For I, J ∈ I(B), ΨP(I, J)
is the interpretation, which for any ground atom A such that A← ϕ occurs in P∗,
satisfies ΨP(I, J)(A) = (I 4 J)(ϕ).

Note that ΦP is a special case of ΨP , as by construction ΦP(I) = ΨP(I, I).
The following theorem can be shown.

Theorem 2.18 ([Fitting 1993]). In the space of interpretations the operator
ΨP is monotone in both arguments under �k, and under the ordering �t it is
monotone in its first argument and antitone in its second argument. a
We are ready now to define the Ψ′

P operator.

Definition 2.19 (stability operator Ψ′
P). The stability operator of ΨP is the sin-

gle input operator Ψ′
P given by: Ψ′

P(I) is the �t-least fixed-point of the operator
λx.ΨP(x, I), i.e. Ψ′

P(I) = lfp�t
(λx.ΨP(x, I)).

By Theorem 2.18, Ψ′
P is well defined and can be computed in the usual way: let I

be an interpretation. Consider the following sequence: for i ≥ 0,

vI
0 = If ,

vI
i+1 = ΨP(vI

i , I) .

Then the vI
i sequence is monotone non-decreasing under �t and converges to Ψ′

P(I).
In the following, with vI

i we will always indicate the i-th iteration of the computation
of Ψ′

P(I).
The following theorem holds.

Theorem 2.20 ([Fitting 1993]). The operator Ψ′
P is monotone in the �k or-

dering, and antitone in the �t ordering. Furthermore, every fixed-point of Ψ′
P is

also a fixed-point of ΦP , i.e. a cl-model of P. a
Finally, following Fitting’s formulation,

Definition 2.21 (stable model). A stable model for a logic program P is a fixed-
point of Ψ′

P . With stable(P) we indicate the set of stable models of P.

Note that it turns out immediately from the definition of Ψ′
P that

Ψ′
P(I) = min

�t

(mod(P I))4

4As PI is positive, it has an unique truth-minimal model.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Epistemic Foundation of the Stable Model Semantics · 15

and, thus,

I ∈ stable(P) iff I ∈ min
�t

(mod(P I)) . (5)

By Theorem 2.20 and the Knaster-Tarski Theorem 2.1, the set of fixed-points of
Ψ′
P , i.e. the set of stable models of P, is a complete lattice under �k and, thus,

Ψ′
P has a �k-least fixed-point, which is denoted WF (P). WF (P) is known as

the well-founded model of P and, by definition coincides with the �k-least stable
model, i.e.

WF (P) = min
�k

({I: I stable model of P}) . (6)

The characterization of the well-founded model in terms of least fixed-point of Ψ′
P

gives us also a way to effectively compute it.
We add here to Fitting’s analysis that stable models are incomparable each other

with respect to the truth order �t.

Theorem 2.22. Let I and J be two stable models such that I 6= J . Then I 6�t J
and J 6�t I. a

Proof. Assume to the contrary that either I �t J or J �t I holds. Without loss
of generality, assume I �t J . By Theorem 2.20, Ψ′

P is antitone in the �t ordering.
Therefore, from I �t J it follows that J = Ψ′

P(J) �t Ψ′
P(I) = I holds and, thus,

I = J , a contradiction to the hypothesis.

3. STABLE MODEL SEMANTICS REVISITED

In the previous sections we have seen that, while for the Kripke-Kleene semantics
there is an intuitive epistemic and model theory-based characterization, for the
stable model semantics on bilattices this is likely not the case. In this latter case,
stable models are characterized as fixed-points of the operator Ψ′

P only, which relies
on a separation of negative and positive information.

In the following, we show primarily that:

— there is an epistemic characterization of stable models over bilattices; and
— we define a new operator, Φ′P , which depends on ΦP only, whose fixed-points

coincide with the set of stable models.

We contribute, thus, to an alternative view of stable model semantics over bi-
lattices, to the well-known and long studied separation of positive and negative
information in the Gelfond-Lifschitz transformation. Interestingly, as we rely on
ΦP only, we can revert to the classical interpretation of negation. Additionally, we
obtain an alternative epistemic characterization of the well-founded semantics and
a new method to compute it (as �k-least fixed-point of Φ′P).

The outline of how we address the above items in the following sub-sections is
as follows. In the next section, we introduce the notion of support, denoted sP(I),
with respect to a given logic program P and interpretation I. Intuitively, we regard
I as what we already know about an intended model of P. On the basis of both
the current knowledge I and the information expressed by the rules of P, we want
to complete our available knowledge I, by using the CWA. We regard the CWA as

ACM Journal Name, Vol. V, No. N, Month 20YY.

16 · Y. Loyer and U. Straccia

an additional source of information for falsehood to be used to complete I. The
support sP(I) of P w.r.t. I determines in a principled way the amount of falsehood
provided by the CWA that can be joined to I.

Any model I of P containing its support, i.e. sP(I) �k I, tells us that we have
reached the point where the additional source for falsehood provided by the CWA
can not contribute further to improve our knowledge about the program P. We call
such models supported models of P, which will be discussed in Section 3.2. Sup-
ported models have interesting properties. It can be shown that stable models are
supported models and that the �k-least supported model is the well-founded model
of P. But, supported models are not specific enough to completely characterize
stable models.

In Section 3.3, we further refine the class of supported models, by introducing
the class of stable supported models. This class requires supported models to satisfy
some minimality condition with respect to the knowledge order �k. Indeed, a
stable supported model I has to be deductively closed according to the Kripke-
Kleene semantics of the program k-completed with its support, i.e.

I = KK(P ⊕ sP(I)). (7)

We will show (in Section 3.4) that any such interpretation I is a stable model of
P and vice-versa, which is quite suggestive. The above equation dictates thus that
stable models can be characterized as those models that contain their support and
are deductively closed under the Kripke-Kleene semantics. As such, we can identify
the support as the added-value (in terms of knowledge), which is brought into by
the stable model semantics with respect to the standard Kripke-Kleene semantics
of P. Indeed, an interpretation I is a stable model of P iff for any rule A← ϕ ∈ P∗
we have that I(A) = I(ϕ) ⊕ sP(I)(A), meaning that the information about A is
given by the information provided by ϕ joined together with the maximal amount
of falsehood provided by the CWA to A.

Finally, stable models can thus be defined in terms of fixed-points of the oper-
ator KK(P ⊕ sP(·)), which relies on a, though intuitive, program transformation
P ⊕ sP(·). We further introduce a new operator Φ′P , which we show to have the
property that Φ′P(I) = KK(P ⊕ sP(I)), but which does depend on ΦP only. As a
consequence, no program transformation is required, which completes our analysis.

In what follows, we will rely on the following running example to illustrate the
concepts we will introduce in the next sections.

Example 3.1 (running example). Consider the following logic program P with
the following rules.

p← p
q ← ¬r
r ← ¬q ∧ ¬p

In Table I we report the cl-models Ii, the Kripke-Kleene, the well-founded and the
stable models of P, marked by bullets. Note that according to Theorem 2.22, stable
models are incomparable each other under �t, while under the knowledge order, I3

is the least informative model (i.e. the well-founded model), while I6 is the most
informative one (I4 and I5 are incomparable under �k). �

ACM Journal Name, Vol. V, No. N, Month 20YY.

Epistemic Foundation of the Stable Model Semantics · 17

Ii |=cl P p q r KK(P) WF (P) stable models

I1 ⊥ ⊥ ⊥ •
I2 ⊥ t f

I3 f ⊥ ⊥ • •
I4 f f t •
I5 f t f •
I6 f > > •
I7 t t f

I8 > t f

I9 > > >

Table I. Models, Kripke-Kleene, well-founded and stable models of P.

3.1 Support

The main notion we introduce here is that of support of a logic program P with
respect to a given interpretation I. If I represents what we already know about an
intended model of P, the support represents the �k-greatest amount of falsehood
provided by the CWA that can be joined to I in order to complete I. Falsehood is
always represented in terms of an interpretation, which we call a safe interpretation.

Definition 3.2 (safe interpretation). Let P and I be a logic program and an
interpretation, respectively. An interpretation J is safe w.r.t. P and I iff:

(1) J �k If;
(2) J �k ΦP(I ⊕ J).

In the above definition, the first item dictates that any safe interpretation is a carrier
of falsehood. If J = If, then every ground atom is false. But, given I and P, not
necessarily all atoms can be considered as false (e.g., some atoms may be inferred
true from the program) and we have to consider some weaker assumption J �k If
of falsehood. The second item dictates that a safe interpretation is cumulative,
i.e. as we proceed in deriving more precise approximations of an intended model of
P, the accumulated falsehood should be preserved.

The following example illustrates the concept.

Example 3.3 (running example cont.). Let us consider I2. I2 dictates that p is
unknown, q is true and that r is false. Consider the interpretations Ji defined as
follows:

Ji p q r
J1 ⊥ ⊥ ⊥
J2 f ⊥ ⊥
J3 ⊥ ⊥ f
J4 f ⊥ f

It is easy to verify that Ji �k If and Ji �k ΦP(I2 ⊕ Ji). Therefore, all the Jis are
safe. The�k-least safe interpretation is J1, while the�k-greatest safe interpretation
is J4 = J1 ⊕ J2 ⊕ J3. J4 dictates that under I2, we can ‘safely’ assume that both p
and r are false. Note that if we join J4 to I2 we obtain the stable model I5, where
I2 �k I5. So, J4 improves the knowledge expressed by I2.

ACM Journal Name, Vol. V, No. N, Month 20YY.

18 · Y. Loyer and U. Straccia

Ii sP (Ii) stable

Ii |=cl P p q r p q r KK(P) WF (P) models

I1 ⊥ ⊥ ⊥ f ⊥ ⊥ •
I2 ⊥ t f f ⊥ f

I3 f ⊥ ⊥ f ⊥ ⊥ • •
I4 f f t f f ⊥ •
I5 f t f f ⊥ f •
I6 f > > f f f •
I7 t t f f ⊥ f

I8 > t f f ⊥ f

I9 > > > f f f

Table II. Running example cont.: support of P w.r.t. Ii.

One might wonder why we do not consider q false as well. Indeed, if we consider
p, q and r false, after joining to I and applying ΦP , we have that q becomes true,
which is knowledge-incompatible with q’s previous knowledge status (q is false). So,
q’s falsehood is not preserved, i.e. cumulative. �

Among all possible safe interpretations w.r.t. P and I, we are interested in the
maximal one under �k, which is unique. The �k-greatest safe interpretation will
be called the support provided by the CWA to P w.r.t. I.

Definition 3.4 (support). Let P and I be a logic program and an interpretation,
respectively. The support provided by the CWA to P w.r.t. I, or simply support of
P w.r.t. I, denoted sP(I), is the �k-greatest safe interpretation w.r.t. P and I, and
is given by

sP(I) =
⊕
{J : J is safe w.r.t. P and I} .

It is easy to show that the support is a well-defined concept. Given two safe in-
terpretations J and J ′, then J ⊕ J ′ �k If and, from the monotonicity of ΦP
under �k, J ⊕ J ′ �k ΦP(I ⊕ J ⊕ J ′) and, thus, J ⊕ J ′ is safe. Therefore,⊕
{J : J is safe w.r.t. P and I} is the �k-greatest safe interpretation w.r.t. P and

I.

Example 3.5 (running example cont.). Table II extends Table I, by including the
supports sP(Ii) as well. �

Having defined the support model-theoretically, as next, we show how the support
can effectively be computed as the iterated fixed-point of a function, σI

P , that
depends on ΦP only.

Definition 3.6 (support function). Let P and I be a logic program and an in-
terpretation, respectively. The support function, denoted σI

P , w.r.t. P and I is the
function mapping interpretations into interpretations defined as follows: for any
interpretation J ,

σI
P(J) = If ⊗ ΦP(I ⊕ J) .

ACM Journal Name, Vol. V, No. N, Month 20YY.

Epistemic Foundation of the Stable Model Semantics · 19

It is easy to verify that σI
P is monotone w.r.t. �k. The following theorem determines

how to compute the support.

Theorem 3.7. Let P and I be a logic program and an interpretation, respec-
tively. Consider the iterated sequence of interpretations F I

i defined as follows: for
any i ≥ 0,

F I
0 = If ,

F I
i+1 = σI

P(F I
i) .

The sequence F I
i is

(1) monotone non-increasing under �k and, thus, reaches a fixed-point F I
ω , for a

limit ordinal ω; and
(2) is monotone non-decreasing under �t.

Furthermore, sP(I) = F I
ω holds. a

Proof. Concerning Point 1., F I
1 �k F I

0 and σI
P is monotone under �k, so the

sequence is non-increasing under �k. Therefore, the sequence has a fixed-point
at the limit, say F I

ω . Concerning Point 2., from F I
i+1 �k F I

i , by Lemma 2.4,
F I

i = F I
i ⊗ If �t F I

i+1.
Let us show that F I

ω is safe and �k-greatest. F I
ω = σI

P(F I
ω) = If ⊗ ΦP(I ⊕ F I

ω).
Therefore, F I

ω �k If and F I
ω �k ΦP(I ⊕ F I

ω), so F I
ω is safe w.r.t. P and I.

Consider any X safe w.r.t. P and I. We show by induction on i that X �k F I
i

and, thus, at the limit X �k F I
ω , so F I

ω is �k-greatest.
(i) Case i = 0. By definition, X �k If = F I

0 .
(ii) Induction step: suppose X �k F I

i . Since X is safe, we have X �k X⊗X �k

If ⊗ ΦP(I ⊕X). By induction, X �k If ⊗ ΦP(I ⊕ F I
i) = F I

i+1.

In the following, with F I
i we will always indicate the i-th iteration of the computa-

tion of the support of P w.r.t. I, according to Theorem 3.7.
Note that by construction

sP(I) = If ⊗ ΦP(I ⊕ sP(I)) , (8)

which establishes also that the support is deductively closed in terms of falsehood.
Indeed, if we join all we know about the atom’s falsehood to the current interpre-
tation I, we do not infer more about the atom’s falsehood than we knew before.

The support sP(I) can be seen as an operator over the space of interpretations.
The following theorem asserts that the support is monotone w.r.t. �k.

Theorem 3.8. Let P be a logic program. The support operator sP is monotone
w.r.t. �k. a

Proof. Consider two interpretations I and J , where I �k J . Consider the two
sequences F I

i and F J
i . We show by induction on i that F I

i �k F J
i and, thus, at the

limit sP(I) �k sP(J).
(i) Case i = 0. By definition, F I

0 = If �k If = F J
0 .

(ii) Induction step: suppose F I
i �k F J

i . By monotonicity under �k of ΦP and
the induction hypothesis, F I

i+1 = If ⊗ ΦP(I ⊕ F I
i) �k If ⊗ ΦP(J ⊕ F J

i) = F J
i+1,

which concludes.
ACM Journal Name, Vol. V, No. N, Month 20YY.

20 · Y. Loyer and U. Straccia

The following corollary follows directly from Lemma 2.4.

Corollary 3.9. Let P be a logic program and consider two interpretations I
and J such that I �k J . Then sP(J) �t sP(I). a

Theorem 3.8 and Corollary 3.9 have an intuitive reading: they state that the more
knowledge we have about a ground atom A, the more we know (the more precise and
informative we are) about A’s falsehood, i.e. the more falsehood can be provided
by the CWA to A.

3.2 Supported models

Among all possible models of a program P, we are especially interested in those
models I, which already integrate their own support, i.e. that could not be com-
pleted anymore by the CWA.

Definition 3.10 (supported model). Consider a logic program P. An interpreta-
tion I is a supported model of P iff I |=cl P and sP(I) �k I.

Supported models have interesting properties, as stated below.

Theorem 3.11. Let P and I be a logic program and an interpretation, respec-
tively. The following statements are equivalent:

(1) I is a supported model of P;
(2) I = ΦP(I)⊕ sP(I);
(3) I |=cl P ⊕ sP(I);
(4) I = ΦP(I ⊕ sP(I)). a

Proof. Assume Point 1. holds, i.e. I |=cl P and sP(I) �k I. Then, I = ΦP(I) =
ΦP(I)⊕ sP(I), so Point 2. holds.

Assume Point 2. holds. Then, by Lemma 2.16, I = ΦP(I)⊕sP(I) = ΦP⊕sP(I)(I),
i.e. I |=cl P ⊕ sP(I), so Point 3. holds.

Assume Point 3. holds. So, sP(I) �k I and from the safeness of sP(I), it follows
that sP(I) �k ΦP(I ⊕ sP(I)) = ΦP(I) and, thus, I = ΦP⊕sP(I)(I) = ΦP(I) ⊕
sP(I) = ΦP(I). Therefore, ΦP(I ⊕ sP(I)) = ΦP(I) = I, so Point 4. holds.

Finally, assume Point 4. holds. From the safeness of sP(I), it follows that
sP(I) �k ΦP(I ⊕ sP(I)) = I. Therefore, I = ΦP(I ⊕ sP(I)) = ΦP(I) and, thus I
is a supported model of P. So, Point 1. holds, which concludes the proof.

The above theorem states in different ways the same concept: supported models
contain the amount of knowledge expressed by the program and their support.

Example 3.12 (running example cont.). Table III extends Table II, by including
supported models as well. Note that while both I8 and I9 are models of P including
their support, they are not stable models. Note also that sP(I8) = sP(I5) and
sP(I9) = sP(I6). That is, I8 and I9, which are not stable models, have the same
support of some stable model. �

From a fixed-point characterization point of view, from Theorem 3.11 it follows
that the set of supported models can be identified by the fixed-points of the �k-
ACM Journal Name, Vol. V, No. N, Month 20YY.

Epistemic Foundation of the Stable Model Semantics · 21

Ii sP (Ii) stable supported

Ii |=cl P p q r p q r KK(P) WF (P) models models

I1 ⊥ ⊥ ⊥ f ⊥ ⊥ •
I2 ⊥ t f f ⊥ f

I3 f ⊥ ⊥ f ⊥ ⊥ • • •
I4 f f t f f ⊥ • •
I5 f t f f ⊥ f • •
I6 f > > f f f • •
I7 t t f f ⊥ f

I8 > t f f ⊥ f •
I9 > > > f f f •

Table III. Running example cont.: supported models of P.

monotone immediate consequence operator ΠP defined as5

ΠP(I) = ΦP(I ⊕ sP(I)) . (9)

It follows immediately that

Theorem 3.13. Let P be a logic program. Then ΠP is monotone under �k.
Furthermore, an interpretation I is a supported model iff I = ΠP(I) and, thus, the
set of supported models is a complete lattice under �k. a

This operator has a quite interesting property. It has been defined first in [Loyer
and Straccia 2003c], without recognizing it to characterize supported models. But,
it has been shown in [Loyer and Straccia 2003c] that its least fixed-point under �k

coincides with the well-founded semantics, i.e. in our context, the �k-least supported
model of P is the well-founded semantics of P.

Theorem 3.14 ([Loyer and Straccia 2003c]). Consider a logic program P.
Then WF (P) = lfp�k

(ΠP) and stable models are fixed-points of ΠP . a

Note that therefore WF (P) can be computed by iterations of ΠP starting from
I⊥. Apart obtaining an epistemic characterization and an alternative computation
method of the well-founded semantics to Ψ′

P , the above theorem already highlights
the fact that neither a separation of positive and negative information is necessary,
nor any program transformation is required, at least for defining and computing
the well-founded semantics.

Example 3.15 (running example cont.). Consider Table III. Note that stable
models are supported models, i.e. fixed-points of ΠP , and that the �k-least sup-
ported model coincides with the well-founded model. Additionally, I8 and I9 are
fixed-points of ΠP not being stable models. So, stable models are a proper subset
of supported models. �

3.3 Stable supported models

As highlighted in the above Examples 3.12 and 3.15, while quite intuitive and sim-
ple, supported models are not specific enough to completely identify stable models:

5An equivalent definition, in terms of fixed-points, is ΠP (I) = ΦP (I)⊕ sP (I).

ACM Journal Name, Vol. V, No. N, Month 20YY.

22 · Y. Loyer and U. Straccia

we have further to refine the notion of supported models. Example 3.12 gives us a
hint. For instance, consider the supported model I8. As already noted, the support
of I8 coincides with that of I5, but for that given support, i.e. sP(I5), I5 is the
�k-least informative cl-model, i.e. I5 �k I8. Similarly, for support sP(I6), I6 is the
�k-least informative cl-model, i.e. I6 �k I9. This may suggest us to partition sup-
ported models into sets of cl-models having a given support and then take the least
informative one. Formally, for a given interpretation I, we will consider the class
of all cl-models of P ⊕ sP(I), i.e. cl-models which contain the knowledge entailed
by P and the support sP(I), and then take the �k-least.

Definition 3.16 (support compliant interpretation). Let P and I be a logic pro-
gram and an interpretation, respectively. An interpretation J is support compliant
w.r.t. P and I iff J = ΦP(J)⊕ sP(I). The set of support compliant interpretations
w.r.t. P and I is denoted by [[sP(I)]].

By Lemma 2.16, the set of support compliant interpretations is equivalent to

[[sP(I)]] = {J : J |=cl P ⊕ sP(I)} . (10)

Note that while a support compliant interpretation J is a cl-model of P ⊕ sP(I)
and, thus, sP(I) �k J , this does not guarantee that J is a cl-model of P. That is,
a supported model is a support compliant interpretation, but not vice-versa.

We accomplish the above requirement by considering only interpretations I,
which coincides with the �k-least cl-model of P ⊕ sP(I).

Definition 3.17 (stable supported model). Let P and I be a logic program and
an interpretation, respectively. Then I is a stable supported model of P iff I =
min�k

([[sP(I)]]).

Therefore, if I is a stable supported model then I = ΦP(I) ⊕ sP(I), i.e. I |=cl

P⊕sP(I). Therefore, by Theorem 3.11, any stable supported model is a supported
model as well, i.e. I |=cl P and sP(I) �k I.

Interestingly, by relying on the equivalence given in Equation 10, stable supported
models have also a different, equivalent and quite suggestive characterization, which
relies on k-completing a program P with the support. In fact, from Equation 10 it
follows immediately that

min
�k

([[sP(I)]]) = min
�k

({J : J = ΦP(J)⊕ sP(I)}) (11)

= min
�k

({J : J |=cl P ⊕ sP(I)})

= KK(P ⊕ sP(I)) .

It then follows from Equation 11 and from the definition of stable supported models
that

Theorem 3.18. Let P and I be a logic program and an interpretation, respec-
tively. Then I is a stable supported model of P iff I = KK(P ⊕ sP(I)). a

That is, given an interpretation I and logic program P, among all cl-models of
P, we are looking for the �k-least cl-models deductively closed under support k-
completion.
ACM Journal Name, Vol. V, No. N, Month 20YY.

Epistemic Foundation of the Stable Model Semantics · 23

Ii sP (Ii) stable supported stable

Ii |=cl P p q r p q r KK(P) WF (P) models models supported models

I1 ⊥ ⊥ ⊥ f ⊥ ⊥ •
I2 ⊥ t f f ⊥ f

I3 f ⊥ ⊥ f ⊥ ⊥ • • • •
I4 f f t f f ⊥ • • •
I5 f t f f ⊥ f • • •
I6 f > > f f f • • •
I7 t t f f ⊥ f

I8 > t f f ⊥ f •
I9 > > > f f f •

Table IV. Running example cont.: stable supported models of P.

Example 3.19 (running example cont.). Table IV extends Table III, by includ-
ing stable supported models. Note that now both I8 and I9 have been ruled out, as
they are not minimal with respect to a given support, i.e. I8 6= min�k

([[sP(I8)]]) =
min�k

([[sP(I5)]]) = KK(P ⊕ sP(I5)) = I5 and I9 6= KK(P ⊕ sP(I9)) = KK(P ⊕
sP(I6)) = I6. �
Finally, we may note that an immediate consequence operator characterizing stable
supported models can be derived immediately from Theorem 3.18, i.e. by relying on
the operator KK(P ⊕ sP(·)). In the following we present the operator Φ′P , which
coincides with KK(P ⊕ sP(·)), i.e. Φ′P(I) = KK(P ⊕ sP(I)) for any interpretation
I, but does not require any, even intuitive, program transformation like P ⊕ sP(·).
Therefore, the set of stable supported models coincides with the set of fixed-points
of Φ′P , which will be defined in terms of ΦP only.

Informally, given an interpretation I, Φ′P computes all the knowledge that can
be inferred from the rules and the support of P w.r.t. I. Formally,

Definition 3.20 (immediate consequence operator Φ′P). Consider a logic program
P and an interpretation I. The operator Φ′P maps interpretations into interpre-
tations and is defined as the limit of the sequence of interpretations JI

i defined as
follows: for any i ≥ 0,

JI
0 = sP(I) ,

JI
i+1 = ΦP(JI

i)⊕ JI
i .

In the following, with JI
i we will always indicate the i-th iteration of the immediate

consequence operator Φ′P , according to Definition 3.20.
Essentially, given the current knowledge expressed by I about an intended model

of P, we compute first the support, sP(I), and then cumulate all the implicit
knowledge that can be inferred from P, by starting from the support.

It is easy to note that the sequence JI
i is monotone non-decreasing under �k

and, thus has a limit. The following theorem follows directly from Theorems 2.14
and 3.8, and from the Knaster-Tarski theorem.

Theorem 3.21. Φ′P is monotone w.r.t. �k. Therefore, Φ′P has a least (and a
greatest) fixed-point under �k.

ACM Journal Name, Vol. V, No. N, Month 20YY.

24 · Y. Loyer and U. Straccia

Finally, note that

— by definition Φ′P(I) = ΦP(Φ′P(I)) ⊕ Φ′P(I), and thus ΦP(Φ′P(I)) �k Φ′P(I);
and

— for fixed-points of Φ′P we have that I = ΦP(I)⊕ I and, thus, ΦP(I) �k I.

Before proving the main theorem of this section, we need the following lemma.

Lemma 3.22. Let P be a logic program and let I and K be interpretations. If
K |=cl P ⊕ sP(I) then Φ′P(I) �k K. a

Proof. Assume K |=cl P ⊕ sP(I), i.e. by Lemma 2.16, K = ΦP⊕sP(I)(K) =
ΦP(K)⊕ sP(I). Therefore, sP(I) �k K. We show by induction on i that JI

i �k K
and, thus, at the limit Φ′P(I) �k K.

(i) Case i = 0. By definition, JI
0 = sP(I) �k K.

(ii) Induction step: suppose JI
i �k K. Then by assumption and by induction

we have that JI
i+1 = ΦP(JI

i) ⊕ JI
i �k ΦP(K) ⊕K = ΦP(K) ⊕ ΦP(K) ⊕ sP(I) =

ΦP(K)⊕ sP(I) = K, which concludes.

The following concluding theorem characterizes the set of stable supported models
in terms of fixed-points of Φ′P .

Theorem 3.23. Let P and I be a logic program and an interpretation, respec-
tively. Then Φ′P(I) = KK(P ⊕ sP(I)).

Proof. The Kripke-Kleene model (for easy denoted K) of P ⊕ sP(I) under �k,
is the limit of the sequence

K0 = I⊥ ,

Ki+1 = ΦP⊕sP(I)(Ki) .

As K |=cl P⊕sP(I), by Lemma 3.22, Φ′P(I) �k K. Now we show that K �k Φ′P(I),
by proving by induction on i that Ki �k Φ′P(I) and, thus, at the limit K �k Φ′P(I).

(i) Case i = 0. We have K0 = I⊥ �k Φ′P(I).
(ii) Induction step: suppose Ki �k Φ′P(I). Then, by induction we have Ki+1 =

ΦP⊕sP(I)(Ki) �k ΦP⊕sP(I)(Φ′P(I)). As sP(I) �k Φ′P(I), by Lemma 2.16 it follows
that Ki+1 �k ΦP⊕sP(I)(Φ′P(I)) = ΦP(Φ′P(I)) ⊕ sP(I) �k ΦP(Φ′P(I)) ⊕ Φ′P(I) =
Φ′P(I), which concludes.

It follows immediately that

Corollary 3.24. An interpretation I is a stable supported model of P iff I is
a fixed-point of Φ′P . a

3.4 Equivalence between stable supported models and stable models

In this section, we state that the set of stable models coincides with the set of stable
supported models. It implies that our approach leads to an epistemic characteriza-
tion of the family of stable models. It gives also a new fixed-point characterization
of that family. Our fixed-point characterization is based on ΦP only and neither
requires any program transformation nor separation of positive and negative liter-
als/information. The proof of the following stable model characterization theorem
can be found in the appendix.
ACM Journal Name, Vol. V, No. N, Month 20YY.

Epistemic Foundation of the Stable Model Semantics · 25

Theorem 3.25 (stable model characterization). Let P and I be a logic
program and an interpretation, respectively. The following statements are equiva-
lent:

(1) I is a stable model of P;

(2) I is a stable supported model of P;

(3) I = Φ′P(I);

(4) I = KK(P ⊕ sP(I)). a

Finally it is well-known that the least stable model of P w.r.t. �k coincides with P’s
well-founded semantics. Therefore, our approach provides new characterizations of
the well-founded semantics of logic programs over bilattices as well. Together with
Theorem 3.14, we have

Corollary 3.26. Let P be a logic program. The following are equivalent:

(1) I is the well-founded semantics of P;

(2) I is the �k-least supported model of P, i.e. the �k-least fixed-point of ΠP ;

(3) I is the �k-least stable supported model of P, i.e. the �k-least fixed-point of
Φ′P . a

Therefore, the well-founded semantics can be characterized by means of the notion
of supported models only. Additionally, we now also know why ΠP characterizes
the well-founded model, while fails in characterizing stable models. Indeed, from
I = ΠP(I) it follows that I is a model of P ⊕ sP(I), which does not guarantee that
I is the �k-least cl-model of P ⊕ sP(I) (see Example 3.19, so, I does not satisfy
Theorem 3.18). If I is the �k-least fixed-point of ΠP , then I is both a cl-model of
P ⊕ sP(I) and �k-least as well. Therefore, the �k-least supported model is always
a stable supported model as well and, thus a stable model.

The following concluding example shows the various ways of computing the well-
founded semantics, according to the operators discussed in this study: Ψ′

P ,ΠP and
Φ′P . But, rather than to rely on FOUR as space of truth, as we did until now, we
consider the bilattice of intervals over the unit [0, 1], used frequently for reasoning
under uncertainty.

Example 3.27. Let us consider the lattice 〈L,�〉, where L is the unit inter-
val [0, 1] and � is the natural linear order ≤. The negation operator on L we
consider is defined as ¬x = 1 − x. We further build the bilattice of intervals
〈[0, 1]× [0, 1],�t,�k〉 in the standard way. An interval 〈x, y〉 may be understood
as an approximation of the certainty of an atom.

Let us note that for x, x′, y, y′ ∈ L,

— 〈x, y〉 ∧ 〈x′, y′〉 = 〈min(x, x′),min(y, y′)〉;
— 〈x, y〉 ∨ 〈x′, y′〉 = 〈max(x, x′),max(y, y′)〉;
— 〈x, y〉 ⊗ 〈x′, y′〉 = 〈min(x, x′),max(y, y′)〉; and

— 〈x, y〉 ⊕ 〈x′, y′〉 = 〈max(x, x′),min(y, y′)〉.
ACM Journal Name, Vol. V, No. N, Month 20YY.

26 · Y. Loyer and U. Straccia

Consider the following logic program P,

A ← A ∨B
B ← (¬C ∧A) ∨ 〈0.3, 0.5〉
C ← ¬B ∨ 〈0.2, 0.4〉

The table below shows the computation of the Kripke-Kleene semantics of P,
KK(P), as �k-least fixed-point of ΦP .

A B C Ki

〈0, 1〉 〈0, 1〉 〈0, 1〉 K0

〈0, 1〉 〈0.3, 1〉 〈0.2, 1〉 K1

〈0.3, 1〉 〈0.3, 0.8〉 〈0.2, 0.7〉 K2

〈0.3, 1〉 〈0.3, 0.8〉 〈0.2, 0.7〉 K3 = K2 = KK(P)

Note that knowledge increases during the computation as the intervals becomes
more precise, i.e. Ki �k Ki+1.

The following table shows us the computation of the well-founded semantics of
P, WF (P), as �k-least fixed-point of Ψ′

P .

v
Wj

i A B C A B C Wj

vW0
0 〈0, 0〉 〈0, 0〉 〈0, 0〉 〈0, 1〉 〈0, 1〉 〈0, 1〉 W0

vW0
1 〈0, 0〉 〈0.3, 0.5〉 〈0, 1〉

vW0
2 〈0.3, 0.5〉 〈0.3, 0.5〉 〈0, 1〉

vW0
3 〈0.3, 0.5〉 〈0.3, 0.5〉 〈0, 1〉

vW1
0 〈0, 0〉 〈0, 0〉 〈0, 0〉 〈0.3, 0.5〉 〈0.3, 0.5〉 〈0, 1〉 W1

vW1
1 〈0, 0〉 〈0.3, 0.5〉 〈0.5, 0.7〉

vW1
2 〈0.3, 0.5〉 〈0.3, 0.5〉 〈0.5, 0.7〉

vW1
3 〈0.3, 0.5〉 〈0.3, 0.5〉 〈0.5, 0.7〉

vW2
0 〈0, 0〉 〈0, 0〉 〈0, 0〉 〈0.3, 0.5〉 〈0.3, 0.5〉 〈0.5, 0.7〉 W2

vW2
1 〈0, 0〉 〈0.3, 0.5〉 〈0.5, 0.7〉

vW2
2 〈0.3, 0.5〉 〈0.3, 0.5〉 〈0.5, 0.7〉

vW2
3 〈0.3, 0.5〉 〈0.3, 0.5〉 〈0.5, 0.7〉

〈0.3, 0.5〉 〈0.3, 0.5〉 〈0.5, 0.7〉 W3 = W2 = WF (P)

Notice that Wi �k Wi+1 and KK(P) �k WF (P), as expected.
The following table shows us the computation of the well-founded semantics of

ACM Journal Name, Vol. V, No. N, Month 20YY.

Epistemic Foundation of the Stable Model Semantics · 27

P, as �k-least fixed-point of ΠP .

F In
i A B C A B C In

F I0
0 〈0, 0〉 〈0, 0〉 〈0, 0〉 〈0, 1〉 〈0, 1〉 〈0, 1〉 I0

F I0
1 〈0, 0〉 〈0, 0.5〉 〈0, 1〉

F I0
2 〈0, 0.5〉 〈0, 0.5〉 〈0, 1〉

F I0
3 〈0, 0.5〉 〈0, 0.5〉 〈0, 1〉 〈0, 0.5〉 〈0, 0.5〉 〈0, 1〉 sP(I0)

F I1
0 〈0, 0〉 〈0, 0〉 〈0, 0〉 〈0, 0.5〉 〈0.3, 0.5〉 〈0.5, 1〉 I1

F I1
1 〈0, 0〉 〈0, 0.5〉 〈0, 0.7〉

F I1
2 〈0, 0.5〉 〈0, 0.5〉 〈0, 0.7〉

F I1
3 〈0, 0.5〉 〈0, 0.5〉 〈0, 0.7〉 〈0, 0.5〉 〈0, 0.5〉 〈0, 0.7〉 sP(I1)

F I2
0 〈0, 0〉 〈0, 0〉 〈0, 0〉 〈0.3, 0.5〉 〈0.3, 0.5〉 〈0.5, 0.7〉 I2

F I2
1 〈0, 0〉 〈0, 0.5〉 〈0, 0.7〉

F I2
2 〈0, 0.5〉 〈0, 0.5〉 〈0, 0.7〉

F I2
3 〈0, 0.5〉 〈0, 0.5〉 〈0, 0.7〉 〈0, 0.5〉 〈0, 0.5〉 〈0, 0.7〉 sP(I2)

〈0.3, 0.5〉 〈0.3, 0.5〉 〈0.5, 0.7〉 I3 = I2 = WF (P)

Note how the knowledge about falsehood increases as our approximation to the in-
tended model increases, i.e. sP(Ii) �k sP(Ii+1), while the degree of truth decreases
(sP(Ii+1) �t sP(Ii)). Furthermore, note that WF (P) |=cl P and sP(WF (P)) �k

WF (P), i.e. WF (P) is a supported model of P, compliant to Corollary 3.26.
We conclude this example by showing the computation of the well-founded se-

mantics of P, as �k-least fixed-point of Φ′P .

F In
i A B C A B C In/JIn

j

F I0
0 〈0, 0〉 〈0, 0〉 〈0, 0〉 〈0, 1〉 〈0, 1〉 〈0, 1〉 I0

F I0
1 〈0, 0〉 〈0, 0.5〉 〈0, 1〉

F I0
2 〈0, 0.5〉 〈0, 0.5〉 〈0, 1〉

F I0
3 〈0, 0.5〉 〈0, 0.5〉 〈0, 1〉

〈0, 0.5〉 〈0, 0.5〉 〈0, 1〉 JI0
0 = sP(I0)

〈0, 0.5〉 〈0.3, 0.5〉 〈0.5, 1〉 JI0
1

〈0.3, 0.5〉 〈0.3, 0.5〉 〈0.5, 0.7〉 JI0
2

〈0.3, 0.5〉 〈0.3, 0.5〉 〈0.5, 0.7〉 JI0
3

F I1
0 〈0, 0〉 〈0, 0〉 〈0, 0〉 〈0.3, 0.5〉 〈0.3, 0.5〉 〈0.5, 0.7〉 I1

F I2
1 〈0, 0〉 〈0, 0.5〉 〈0, 0.7〉

F I2
2 〈0, 0.5〉 〈0, 0.5〉 〈0, 0.7〉

F I2
3 〈0, 0.5〉 〈0, 0.5〉 〈0, 0.7〉

〈0, 0.5〉 〈0, 0.5〉 〈0, 0.7〉 JI1
0 = sP(I1)

〈0, 0.5〉 〈0.3, 0.5〉 〈0.5, 0.7〉 JI1
1

〈0.3, 0.5〉 〈0.3, 0.5〉 〈0.5, 0.7〉 JI1
2

〈0.3, 0.5〉 〈0.3, 0.5〉 〈0.5, 0.7〉 JI1
3

〈0.3, 0.5〉 〈0.3, 0.5〉 〈0.5, 0.7〉 I2 = I1 = WF (P)

�

4. CONCLUSIONS

The stable model semantics has become a well-established and accepted approach
to the management of (non-monotonic) negation in logic programs. In this study we

ACM Journal Name, Vol. V, No. N, Month 20YY.

28 · Y. Loyer and U. Straccia

have presented an alternative formulation to the Gelfond-Lifschitz transform, which
has widely been used to formulate the stable model semantics. Our approach is
purely based on algebraic and semantical aspects of informative monotone operators
over bilattices. In this sense, we talk about epistemological foundation of the stable
model semantics. The main concept we rely on is based on the fact that we regard
the closed world assumption as an additional source for falsehood and identify with
the support the amount of falsehood carried on by the closed world assumption. The
support is then used to complete the well-known Kripke-Kleene semantics of logic
programs. We have shown that I ∈ stable(P) iff I = KK(P ⊕ sP(I)) = Φ′P(I),
indicating that the support may be seen as the added-value to the Kripke-Kleene
semantics and lights the role of the CWA in the stable model semantics. It also
shows that neither a separation of positive and negative information is necessary
(as required by the Gelfond-Lifschitz transform), nor any program transformation
is required.

As our approach is rather general and abstracts from the underlying logical for-
malism (in our case logic programs), it may be applied to other contexts as well.

A. APPENDIX - PROOF OF THEOREM 3.25

This part is devoted to the proof of Theorem 3.25. It relies on the following inter-
mediary results. We start by providing lemmas to show that fixed-points of Φ′P are
stable models.

Lemma A.1. If I �t J and J �k I, then If ⊗ ΨP(x, I) = If ⊗ ΨP(x, J), for
any interpretation x. a

Proof. Using the antimonotonicity of ΨP w.r.t. �t for its second argument, we
have If �t ΨP(x, J) �t ΨP(x, I). From Lemma 2.2, we have If ⊗ ΨP(x, I) �k

ΨP(x, J). Using the interlacing conditions, we have If⊗ΨP(x, I) �k If⊗ΨP(x, J).
Now, using the monotonicity of ΨP w.r.t. �k and the interlacing conditions, we have
If⊗ΨP(x, J) �k If⊗ΨP(x, I). It results that If⊗ΨP(x, I) = If⊗ΨP(x, J).

Similarly, we have

Lemma A.2. If J �t I and J �k I, then If ⊗ ΨP(I, x) = If ⊗ ΨP(J, x), for
any interpretation x. a

Proof. Using the monotonicity of ΨP w.r.t. �t for its first argument, we have
If �t ΨP(J, x) �t ΨP(I, x). From Lemma 2.2, we have If⊗ΨP(I, x) �k ΨP(J, x).
Using the interlacing conditions, we have If ⊗ ΨP(I, x) �k If ⊗ ΨP(J, x). Now,
using the monotonicity of ΨP w.r.t. �k and the interlacing conditions, we have
If⊗ΨP(J, x) �k If⊗ΨP(I, x). It results that If⊗ΨP(I, x) = If⊗ΨP(J, x).

Lemma A.3. If I = ΦP(I) then F I
i �t sP(I) �t I, for all i. a

Proof. By Theorem 3.7, the sequence F I
i is monotone non-decreasing under �t

and F I
i �t sP(I). Now, we show by induction on i that F I

i �t I and, thus, at the
limit sP(I) �t I.

(i) Case i = 0. F I
0 = If �t I.

(ii) Induction step: let us assume that F I
i �t I holds. By Lemma 2.3, F I

i �t

F I
i ⊕ I �t I follows. We also have I �k F I

i ⊕ I and F I
i �k F I

i ⊕ I. It follows from
ACM Journal Name, Vol. V, No. N, Month 20YY.

Epistemic Foundation of the Stable Model Semantics · 29

Lemma A.1 and Lemma A.2 that F I
i+1 = If⊗ΨP(F I

i ⊕I, F I
i ⊕I) = If⊗ΨP(F I

i , I).
By induction F I

i �t I, so from I = ΦP(I), F I
i+1 = If⊗ΨP(F I

i , I) �t ΨP(F I
i , I) �t

ΨP(I, I) = ΦP(I) = I follows.

Lemma A.4. If I = ΦP(I) then for any i, sP(I) �k F I
i �k vI

i and, thus, at the
limit sP(I) �k Ψ′

P(I). a

Proof. By Theorem 3.7, sP(I) �k F I
i , for all i. We know that vI

i converges
to Ψ′

P(I). We show by induction on i that F I
i �k vI

i . Therefore, at the limit
sP(I) �k Ψ′

P(I).
(i) Case i = 0. F I

0 = If �k If = vI
0 .

(ii) Induction step: assume that F I
i �k vI

i . By definition, F I
i+1 = If ⊗ ΦP(I ⊕

F I
i) = If ⊗ΨP(I ⊕ F I

i , I ⊕ F I
i). By Lemma A.3, F I

i �t I. By Lemma 2.3, F I
i �t

F I
i ⊕ I �t I follows. We also have I �k F I

i ⊕ I and F I
i �k F I

i ⊕ I. It follows from
Lemma A.1 and Lemma A.2 that F I

i+1 = If⊗ΨP(F I
i ⊕I, F I

i ⊕I) = If⊗ΨP(F I
i , I).

By the induction hypothesis we know that F I
i �k vI

i for any n. Therefore, F I
i+1 �k

If ⊗ΨP(vI
i , I) �k ΨP(vI

i , I) = vI
i+1 follows, which concludes.

Lemma A.5. Let P and I be a logic program and an interpretation, respectively.
Then if I is a supported model then sP(I) = If ⊗ I. a

Proof. By Equation 8 and Theorem 3.11, sP(I) = If ⊗ ΦP(I ⊕ sP(I)) =
If ⊗ I.

Lemma A.6. If I = Φ′P(I) then we have:

(1) sP(I) �t Ψ′
P(I) �t I; and

(2) sP(I) �k Ψ′
P(I) �k I.

Proof. By Corollary 3.24 and by Lemma A.5, sP(I) = If ⊗ I and I = ΦP(I).
From Lemma A.4, sP(I) �k Ψ′

P(I). By definition of Ψ′
P , Ψ′

P(I) = lfp�t
(λx.ΨP(x, I)).

But, I = ΦP(I) = ΨP(I, I), thus Ψ′
P(I) �t I.

Now we show by induction on i, that F I
i �t vI

i . Therefore, at the limit, sP(I) �t

Ψ′
P(I) and, thus, sP(I) �t Ψ′

P(I) �t I hold.
(i) Case i = 0. F I

0 = If �t If = vI
0 .

(ii) Induction step: let us assume that F I
i �t vI

i holds. From Lemma A.3, we
have F I

i �t I and, thus, by Lemma 2.3, F I
i �t F I

i ⊕ I �t I follows. We also
have I �k F I

i ⊕ I and F I
i �k F I

i ⊕ I. Then, from Lemma A.1 and Lemma A.2,
F I

i+1 = If ⊗ ΨP(F I
i ⊕ I, F I

i ⊕ I) = If ⊗ ΨP(F I
i , I). By induction F I

i �t vI
i , so

by Lemma 2.4 we have F I
i+1 = If ⊗ΨP(F I

i , I) �t ΨP(F I
i , I) �t ΨP(vI

i , I) = vI
i+1,

which concludes.
Finally, from sP(I) �t Ψ′

P(I) �t I and by Lemma 2.2 we have Ψ′
P(I) �k I ⊕

sP(I) = I, so sP(I) �k Ψ′
P(I) �k I.

Now we are ready to show that fixed-points of Φ′P are stable models.

Theorem A.7. Every fixed-point of Φ′P is a stable model of P. a

Proof. Assume I = Φ′P(I). Let us show that I = Ψ′
P(I). From Lemma A.6,

we know that Ψ′
P(I) �k I. Now, let us show by induction on i that JI

i �k Ψ′
P(I).

Therefore, at the limit I = Φ′P(I) �k Ψ′
P(I) and, thus, I = Ψ′

P(I).
(i) Case i = 0. JI

0 = sP(I) �k Ψ′
P(I), by Lemma A.6.

ACM Journal Name, Vol. V, No. N, Month 20YY.

30 · Y. Loyer and U. Straccia

(ii) Induction step: let us assume that JI
i �k Ψ′

P(I) holds. By definition,
JI

i+1 = ΦP(JI
i)⊕JI

i . By induction JI
i �k Ψ′

P(I). Therefore, JI
i+1 �k ΦP(Ψ′

P(I))⊕
Ψ′
P(I). But, by Lemma A.6, Ψ′

P(I) �k I, so ΦP(Ψ′
P(I)) = ΨP(Ψ′

P(I), Ψ′
P(I)) �k

ΨP(Ψ′
P(I), I) = Ψ′

P(I). Therefore, JI
i+1 �k Ψ′

P(I).

The next lemmas are needed to show the converse, i.e. that stable models are
fixed-points of Φ′P .

Lemma A.8. If I = Ψ′
P(I) then we have:

(1) sP(I) �k I;
(2) Φ′P(I) �k I;
(3) Φ′P(I) �t I.

Proof. Assume I = Ψ′
P(I). By Theorem 2.20, I = ΦP(I). By Lemma A.4,

sP(I) �k Ψ′
P(I) = I, which completes Point 1..

Now, we show by induction on i that, JI
i �k I and JI

i �t I and, thus, at the
limit Φ′P(I) �k I and Φ′P(I) �t I hold.

(i) Case i = 0. By Point 1., JI
0 = sP(I) �k I, while JI

0 = sP(I) �t I, by
Lemma A.3.

(ii) Induction step: let us assume that JI
i �k I and JI

i �t I hold. By definition,
JI

i+1 = ΦP(JI
i) ⊕ JI

i . By induction JI
i �k I, thus JI

i+1 �k ΦP(I) ⊕ I = I ⊕
I = I, which completes Point 2. From JI

i �k I, ΦP(JI
i) �k ΦP(I) = I follows.

By induction we have JI
i �t I, thus JI

i+1 �t ΦP(JI
i) ⊕ I = I, which completes

Point 3.

Lemma A.9. If I = Ψ′
P(I) then I �t Φ′P(I).

Proof. Assume I = Ψ′
P(I). By Theorem 2.20, I = ΦP(I). By Lemma A.3 and

Lemma A.8, sP(I) �k I and sP(I) �t I, so by Lemma 2.7, sP(I) = sP(I)⊗ If =
I ⊗ If.

Now, we show by induction on i, that vI
i �t Φ′P(I). Therefore, at the limit,

I = Ψ′
P(I) �t Φ′P(I).

(i) Case i = 0. vI
0 = If �t Φ′P(I).

(ii) Induction step: let us assume that vI
i �t Φ′P(I) holds. By definition and

by the induction hypothesis, vI
i+1 = ΨP(vI

i , I) �t ΨP(Φ′P(I), I). By Lemma A.8,
Φ′P(I) �t I. Therefore, since ΨP is antitone in the second argument under �t,
vI

i+1 �t ΨP(Φ′P(I),Φ′P(I)) = ΦP(Φ′P(I)). It follows that vI
i ⊕vI

i+1 �t ΦP(Φ′P(I))⊕
Φ′P(I) = Φ′P(I). By Lemma 2.5, (by assuming, x = vI

i , z = vI
i+1, y = Φ′P(I)),

vI
i+1 �k Φ′P(I) ⊕ If follows. By Lemma A.8, both Φ′P(I) �t I and Φ′P(I) �k I

hold. Therefore, by Lemma 2.7, Φ′P(I)⊗ If = I ⊗ If = sP(I). From Lemma A.4,
Φ′P(I) ⊗ If = sP(I) �k vI

i+1 �k Φ′P(I) ⊕ If. Therefore, by Lemma 2.6, it follows
that vI

i+1 �t Φ′P(I), which concludes the proof.

We can now prove that every stable model is indeed a fixed-point of Φ′P , which
concludes the characterization of stable models on bilattices.

Theorem A.10. Every stable model of P is a fixed-point of Φ′P . a

Proof. Assume I = Ψ′
P(I). By Lemma A.8, Φ′P(I) �t I, while by Lemma A.9,

I �t Φ′P(I). So I = Φ′P(I).
ACM Journal Name, Vol. V, No. N, Month 20YY.

Epistemic Foundation of the Stable Model Semantics · 31

Finally, Theorem 3.25 follows directly from Theorems A.7, A.10, 3.18 and Corol-
lary 3.24.

REFERENCES

Alcantâra, J., Damásio, C. V., and Pereira, L. M. 2002. Paraconsistent logic programs. In

Proc. of the 8th European Conference on Logics in Artificial Intelligence (JELIA-02). Number
2424 in Lecture Notes in Computer Science. Springer-Verlag, Cosenza, Italy, 345–356.

Anderson, A. R. and Belnap, N. D. 1975. Entailment - the logic of relevance and necessity.
Princeton University Press, Princeton, NJ.

Arieli, O. 2002. Paraconsistent declarative semantics for extended logic programs. Annals of

Mathematics and Artificial Intelligence 36, 4, 381–417.

Arieli, O. and Avron, A. 1996. Reasoning with logical bilattices. Journal of Logic, Language

and Information 5, 1, 25–63.

Arieli, O. and Avron, A. 1998. The value of the four values. Artificial Intelligence Jour-

nal 102, 1, 97–141.

Avron, A. 1996. The structure of interlaced bilattices. Journal of Mathematical Structures in
Computer Science 6, 287–299.

Belnap, N. D. 1977. A useful four-valued logic. In Modern uses of multiple-valued logic, G. Ep-

stein and J. M. Dunn, Eds. Reidel, Dordrecht, NL, 5–37.

Blair, H. and Subrahmanian, V. S. 1989. Paraconsistent logic programming. Theoretical
Computer Science 68, 135–154.

Clark, K. 1978. Negation as failure. In Logic and data bases, H. Gallaire and J. Minker, Eds.
Plenum Press, New York, NY, 293–322.

Damásio, C. V. and Pereira, L. M. 1998. A survey of paraconsistent semantics for logic pro-
grams. In Handbook of Defeasible Reasoning and Uncertainty Management Systems, D. Gabbay

and P. Smets, Eds. Kluwer, 241–320.

Damásio, C. V. and Pereira, L. M. 2001. Antitonic logic programs. In Proceedings of the
6th European Conference on logic programming and Nonmonotonic Reasoning (LPNMR-01).

Number 2173 in Lecture Notes in Computer Science. Springer-Verlag.

Denecker, M. 1998. The well-founded semantics is the principle of inductive definition. In

Logics in Artificial Intelligence, Proceedings of JELIA-98, J. Dix, L. Farinos del Cerro, and

U. Furbach, Eds. Number 1489 in Lecture Notes in Artificial Intelligence. Springer-Verlag, 1–16.

Denecker, M., Bruynooghe, M., and Marek, V. 2001. Logic programming revisited: logic

programs as inductive definitions. ACM Transactions on Computational Logic (TOCL) 2, 4,
623–654.

Denecker, M., Marek, V., and Truszczynski, M. 1999. Approximating operators, stable op-
erators, well-founded fixpoints and applications in nonmonotonic reasoning. In NFS-workshop

on Logic-based Artificial Intelligence, J. Minker, Ed. 1–26.

Denecker, M., Marek, V. W., and Truszczyński, M. 2003. Uniform semantic treatment of
default and autoepistemic logics. Artificial Intelligence Journal 143, 79–122.

Denecker, M., Truszczynski, M., and Marek, V. 2002. Ultimate approximations in nonmono-
tonic knowledge representation systems. In Principles of Knowledge Representation and Rea-

soning: Proceedings of the 8th International Conference, D. Fensel, F. Giunchiglia, D. McGuin-

ness, and M. Williams, Eds. Morgan Kaufmann, 177–188.

Dunn, J. M. 1976. Intuitive semantics for first-degree entailments and coupled trees. Philosophical

Studies 29, 149–168.

Dunn, J. M. 1986. Relevance logic and entailment. In Handbook of Philosophical Logic, D. M.

Gabbay and F. Guenthner, Eds. Vol. 3. Reidel, Dordrecht, NL, 117–224.

Emden, M. H. V. and Kowalski, R. A. 1976. The semantics of predicate logic as a programming

language. Journal of the ACM (JACM) 23, 4, 733–742.

Fitting, M. 1985. A Kripke-Kleene-semantics for general logic programs. Journal of Logic

Programming 2, 295–312.

ACM Journal Name, Vol. V, No. N, Month 20YY.

32 · Y. Loyer and U. Straccia

Fitting, M. 1991. Bilattices and the semantics of logic programming. Journal of Logic Program-

ming 11, 91–116.

Fitting, M. 1992. Kleene’s logic, generalized. Journal of Logic and Computation 1, 6, 797–810.

Fitting, M. C. 1993. The family of stable models. Journal of Logic Programming 17, 197–225.

Fitting, M. C. 2002. Fixpoint semantics for logic programming - a survey. Theoretical Computer
Science 21, 3, 25–51.

Gelfond, M. and Lifschitz, V. 1988. The stable model semantics for logic programming. In
Proceedings of the 5th International Conference on Logic Programming, R. A. Kowalski and

K. Bowen, Eds. The MIT Press, Cambridge, Massachusetts, 1070–1080.

Gelfond, M. and Lifschitz, V. 1991. Classical negation in logic programs and disjunctive

databases. New Generation Computing 9, 3/4, 365–386.

Ginsberg, M. L., Ed. 1987. Readings in nonmonotonic reasoning. Morgan Kaufmann, Los Altos,

CA.

Ginsberg, M. L. 1988. Multi-valued logics: a uniform approach to reasoning in artificial intelli-

gence. Computational Intelligence 4, 265–316.

Herre, H. and Wagner, G. 1997. Stable models are generated by a stable chain. Journal of

Logic Programming 30, 2.

Kunen, K. 1987. Negation in logic programming. Journal of Logic Programming 4, 4, 289–308.

Levesque, H. J. 1984. A logic of implicit and explicit belief. In Proc. of the 3th Nat. Conf. on

Artificial Intelligence (AAAI-84). Austin, TX, 198–202.

Levesque, H. J. 1988. Logic and the complexity of reasoning. Journal of Philosophical Logic 17,

355–389.

Lifschitz, V. 2002. Answer set programming and plan generation. Artificial Intelligence 138, 1-2,

39–54.

Lloyd, J. W. 1987. Foundations of Logic Programming. Springer, Heidelberg, RG.

Loyer, Y. and Straccia, U. 2002a. Uncertainty and partial non-uniform assumptions in para-

metric deductive databases. In Proc. of the 8th European Conference on Logics in Artificial

Intelligence (JELIA-02). Number 2424 in Lecture Notes in Computer Science. Springer-Verlag,
Cosenza, Italy, 271–282.

Loyer, Y. and Straccia, U. 2002b. The well-founded semantics in normal logic programs with
uncertainty. In Proc. of the 6th International Symposium on Functional and Logic Program-

ming (FLOPS-2002). Number 2441 in Lecture Notes in Computer Science. Springer-Verlag,
Aizu, Japan, 152–166.

Loyer, Y. and Straccia, U. 2003a. The approximate well-founded semantics for logic programs
with uncertainty. In 28th International Symposium on Mathematical Foundations of Computer

Science (MFCS-2003). Number 2747 in Lecture Notes in Computer Science. Springer-Verlag,

Bratislava, Slovak Republic, 541–550.

Loyer, Y. and Straccia, U. 2003b. Default knowledge in logic programs with uncertainty. In

Proc. of the 19th Int. Conf. on Logic Programming (ICLP-03). Lecture Notes in Computer
Science. Springer-Verlag, Mumbai, India.

Loyer, Y. and Straccia, U. 2003c. The well-founded semantics of logic programs over bilat-
tices: an alternative characterisation. Technical Report ISTI-2003-TR-05, Istituto di Scienza e

Tecnologie dell’Informazione, Consiglio Nazionale delle Ricerche, Pisa, Italy. Submitted.

Lukasiewicz, T. 2001. Fixpoint characterizations for many-valued disjunctive logic programs

with probabilistic semantics. In In Proceedings of the 6th International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR-01). Number 2173 in Lecture Notes in

Artificial Intelligence. Springer-Verlag, 336–350.

Marek, V. W. and Truszczyński, M. 1999. Stable models and an alternative logic programming

paradigm. In The Logic Programming Paradigm: a 25-Year Perspective, K. Apt, V. W. Marek,

M. Truszczyński, and D. Warren, Eds. Springer-Verlag, 375–398.

Moore, R. C. 1984. Possible-world semantics for autoepistemic logic. In Proceedings of the 1st

International Workshop on Nonmonotonic Reasoning. New Paltz, NY, 344–354. [a] Appears
also in [Ginsberg 1987], pp. 137–142.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Epistemic Foundation of the Stable Model Semantics · 33

Ng, R. and Subrahmanian, V. 1991. Stable model semantics for probabilistic deductive

databases. In Proc. of the 6th Int. Sym. on Methodologies for Intelligent Systems (ISMIS-
91), Z. W. Ras and M. Zemenkova, Eds. Number 542 in Lecture Notes in Artificial Intelligence.

Springer-Verlag, 163–171.

Niemelä, I. 1999. Logic programs with stable model semantics as a constraint programming

paradigm. Annals of Mathematics and Artificial Intelligence 25, 241–273.

Przymusinski, T. C. 1990a. Extended stable semantics for normal and disjunctive programs. In
Proceedings of the 7th International Conference on Logic Programming, D. H. D. Warren and

P. Szeredi, Eds. MIT Press, 459–477.

Przymusinski, T. C. 1990b. Stationary semantics for disjunctive logic programs and deduc-
tive databases. In Logic Programming, Proceedings of the 1990 North American Conference,

S. Debray and H. Hermenegildo, Eds. MIT Press, 40–59.

Przymusinski, T. C. 1990c. The well-founded semantics coincides with the three-valued stable
semantics. Fundamenta Informaticae 13, 4, 445–463.

Rao, P., Sagonas, K. F., Swift, T., Warren, D. S., and Freire, J. 1997. XSB: A system
for effciently computing WFS. In Proceedings of Logic Programming and Non-monotonic Rea-

soning (LPNMR-97). Number 1265 in Lecture Notes in Computer Science. Springer-Verlag,
431–441.

Reiter, R. 1978. On closed world data bases. In Logic and data bases, H. Gallaire and J. Minker,
Eds. Plenum Press, New York, NY, 55–76.

Reiter, R. 1980. A logic for default reasoning. Artificial Intelligence 13, 81–132. [a] Appears
also in [Ginsberg 1987], pp. 68–93.

Tarski, A. 1955. A lattice-theoretical fixpoint theorem and its applications. Pacific Journal of

Mathematics 5, 285–309.

van Gelder, A. 1989. The alternating fixpoint of logic programs with negation. In Proc. of the
8th ACM SIGACT SIGMOD Sym. on Principles of Database Systems (PODS-89). 1–10.

van Gelder, A., Ross, K. A., and Schlimpf, J. S. 1991. The well-founded semantics for general

logic programs. Journal of the ACM 38, 3 (Jan.), 620–650.

ACM Journal Name, Vol. V, No. N, Month 20YY.

