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1. Introduction 

Phase-sensitive measurement techniques [1] for the characterization of ultrafast (< 1ps) 
optical pulses with large spectral bandwidths and long temporal windows (>100ps) are 
becoming increasingly important, following the recent introduction of coherent optical 
communications [2,3]. In addition, recent progress in synthesizing arbitrary optical 
waveforms [4–6] has intensified the effort toward providing simple and practical metrological 
methods to measure complex pulses having large time-bandwidth products (TBPs). These 
developments are creating a growing and compelling need for ultrafast coherent optical pulse 
measurement techniques that can operate at milliwatt peak power levels and on timescales 
ranging from sub-picoseconds to nanoseconds. Previous reports of ultrafast optical signal 
measurements in integrated, CMOS compatible platforms include time-lens temporal imaging 
and waveguide-based frequency-resolved optical gating (FROG) [1,7–10]. These approaches 
indeed transferred in the integrated domain two popular methods [1,11,12] for ultrafast pulse 
measurement; however, time-lens imaging is phase-insensitive while waveguide-based FROG 
methods require long integrated tunable delay lines - still an unsolved challenge for the full 
integration of the technique. Sheared interferometry, introduced by Walmsley [13] in 1998, is 
one of the most widely used methods for characterizing ultrafast optical pulses due to its 
ability to recover the full complex (i.e. amplitude and phase) information of an ultra-fast 
optical waveform. Most of its strength is due to a direct and robust algorithm [13–15] that 
retrieves the pulse from the spectra of two replicas of the same pulse, shifted (sheared) in 
frequency. The first and most popular implementation of sheared interferometry is named 
spectral phase interferometry for direct electric-field reconstruction, or SPIDER [1,13,14]. In 
the standard implementation of the SPIDER technique, the spectral shear between two 
replicas of the pulse under test (PUT) is obtained by nonlinearly mixing two delayed replicas 
of the PUT with a chirped pump pulse via a three wave mixing (TWM) process, as depicted 
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in Fig. 1. Each replica of the PUT must overlap with an almost monochromatic portion of the 
pump pulse in order to produce a nonlinear product with the same spectral shape of the PUT. 
As the two replicas mix with two different pump frequencies, the nonlinear product results in 
two pulses that are sheared in frequency. The pump pulse can be a dispersed replica of the 
PUT itself making this method remarkably self-referenced. In many cases, however, it is 
possible to use an external, well-characterized pump pulse, thus improving the accuracy of 
the method. In this case, the technique is usually referred to as cross-SPIDER or X-SPIDER 
[16,17]. In its many variants [1,13–20], SPIDER methods have proven to be well suited for 
the phase-sensitive characterization of ultra-fast laser pulses as short as 6fs, from the infrared 
to the ultraviolet. 

Quite remarkably, the SPIDER method is fully compatible with designs that are amenable 
to waveguide implementation: recently [21], we reported a device capable of characterizing 
both the amplitude and phase of ultrafast optical pulses with the aid of a synchronized, 
incoherently related clock pulse. In this previous work, we revisited the X-SPIDER approach 
in order to exploit degenerate four-wave mixing (DFWM) interactions to allow its 
implementation in centro-symmetric materials. We demonstrated that the X-SPIDER can be 
implemented in CMOS compatible integrated platforms, offering a simple phase sensitive 
metrological device on a chip. To address the demand for efficient methods to monitor optical 
data streams with high TBP in optical networks, we introduced a novel extraction algorithm 
method, that we termed FLEA: Fresnel-limited extraction algorithm. The FLEA dramatically 
improves the accuracy of any X-SPIDER device (based both on 3rd order and more 
conventional 2nd order nonlinearities) for optical pulses having very large TBPs: thanks to 
this approach, we measured [21] pulses with a frequency bandwidth of >1 THz stretched up 
to 100 ps pulsewidths, yielding a TBP of >100.The FLEA removes a classical approximation 
in the X-SPIDER methods operating via nonlinear optical processes. In general, an X-
SPIDER approach relies on the assumption of a pump pulse having a much larger chirp than 
the PUT. 

 

Fig. 1. (a) Sketch of the classical SPIDER setup for amplitude and phase retrieval. Two 
delayed replicas of the pulse under test (PUT) interact nonlinearly with a dispersed pump via 
frequency mixing in a bulk crystal. The nonlinear product is composed by two replicas shifted 
in frequency. Their spectrum is collected with a spectrometer and elaborated to extract the 
complete information (amplitude and phase) of the PUT. (b) Same interaction with a highly 
chirped PUT: in this case the two replicas of the signal cover a significant temporal portion of 
the pump and their spectrum is distorted when compared to the spectrum of the PUT. As a 
result, the standard algorithm fails to retrieve the PUT. Conversely, the FLEA is able to 
correctly work on this kind of pulses, by addressing the two replicas of the nonlinear product 
as a Fresnel Integral of the PUT. 

If this condition is violated, the two replicas of the nonlinear product obtained by the wave 
mixing process depicted in Fig. 1 are no more spectral sheared replicas of the PUT. Hence, 
the information retrieved with the usual algorithm will exhibit a significant error. For this 
reason SPIDER methods are usually restricted to application on pulses with low TBP. Indeed, 
in most cases, significantly increasing the pump chirp is not an available option as it is 
accompanied by a reduction in the signal-to-noise ratio of the reconstructed profile. In 
general, sheared interferometry has been adapted for the measurement of highly chirped 
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pulses in several implementations. Pulses spanning from 400fs to 100 ps have been measured 
with a properly corrected electro-optical implementation of the sheared interferometry [22], 
while multiple shearing SPIDER algorithms are able to address pulses with large chirps and 
spectral holes or double pulses [23–26]. In any case, it is interesting to note that the nonlinear 
product of a standard SPIDER implementation always contains information on the phase of 
the PUT, and some retrieval strategies have been adopted for Gaussian pulses in the self-
referenced case [20]. As detailed below, FLEA recognizes that the two replicas of the 
nonlinear product resulting in an X-SPIDER setup are a Fresnel Integral of the PUT, and 
implements the reconstruction process according to this observation, significantly extending 
the operating regime (TBP) of existing X-SPIDER setups. 

In this paper, we present the full detailed theory of FLEA for X-SPIDER measurements, 
and include a detailed discussion of the inherent limits and tolerances of this phase-recovery 
approach. Our conclusions are validated through numerical examples on a standard test bench 
of pulses. 

2. Parametric interaction and X-SPIDER 

The PUT is represented in time and frequency by the temporal complex envelope of the 
electric field e(t) and its spectrum E(ω), related to each other by the Fourier Transform: 
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As is typically done, we restrict our analysis to bandwidth-limited pulses, i.e. where the 
PUT vanishes outside of the intervals given in time and frequency by ΔτE and ΔωE, 
respectively. For both TWM and DFWM, the nonlinear interaction involves three optical 
waves: a pump p(t) that amplifies a signal s(t) and generates a nonlinear product (“idler” in 
DFG and DFWM cases) i(t). As depicted in Fig. 1, the signal s(t) consists of two delayed 
replicas of the PUT e(t): 
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The pump pulse is chirped in order to produce a temporal quadratic phase curvature with 
an envelope that is approximately constant over the duration span where nonlinear mixing 
with the signal occurs. Such a profile can be easily obtained by temporally stretching a 
transform limited pulse po(t) with a flat-phase, smoothly varying spectrum Po(ω), e.g. a 
spectrally bell-shaped or flat-top pulse over an interval ΔωP. After propagation through a 
predominantly first-order dispersive element with a total dispersion of φP = β2L (where L is 
the propagation length and β2 is the group velocity dispersion of the dispersive element), the 
pump can be expressed in the frequency domain as  

 
2

( ) ( ) exp
2

P
o

i
P P

ω φω ω
 

= − 
 

 (2.3a) 

In the temporal domain, the pump is the Fresnel Integral of its transform-limited version 
po(t): 
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where the symbol * indicates the convolution operation. Under the assumption that 
φP(ΔωP)2 >> 2π, i.e. for a highly stretched pump, it is possible to use the Fraunhofer 
approximation of Eq. (2.3b): 
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In this case the temporal amplitude of the stretched pulse follows the smoothly varying 
spectral shape Po(ω), e.g. a bell shape or a nearly flat-top profile. The shape of the nonlinear 
product is dependent on the specific nonlinear process involved; in particular, considering 
valid the approximation (2.3c): 
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Equations (2.4a)–(2.4c) report the nonlinear product for the cases of TWM sum frequency 
generation (SFG), TWM difference frequency generation (DFG) and DFWM, respectively. 
The last approximations in the relations above are valid when the pump temporal amplitude 
or the square of the pump temporal amplitude for the TWM and DFWM cases respectively 
are almost constant along the temporal window ΔτS occupied by the signal: 

 S E PNtτ τ τΔ = Δ + Δ ≤ Δ  (2.5) 

ΔτPN is the temporal window defined by the pump in the nonlinear interaction and it is 
dependent on the specific shape taken into consideration. As outlined in Fig. 1, the nonlinear 
product is collected by a spectrometer, and so the experimental quantity of interest is the 
power spectral density (PSD) |I(ω)|2 of the nonlinear product, for the cases above: 
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For simplicity, in what follows, we will refer explicitly only to the case of SFG. As it is 
clear from the relations above, these results can be easily extended to the DFG case by simply 
changing the sign of the pump chirp, and to the DFWM case by changing the sign and 
dividing by 2 the pump chirp. Table 1 summarizes the results for Gaussian and flat top pulses 
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in the different nonlinear mixing cases. Focusing on the SFG case, it is useful to define 
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The latter simply represents the output spectrum of the signal after an equivalent 
propagation in a first order dispersive system with the total dispersion of the pump φP, i.e. its 
Fourier Transform is the Fresnel Integral of the signal: 
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With the above definitions, expanding the convolution operation, we recast Eq. (2.6a) as  
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The nonlinear product is then proportional to the Fresnel Integral of the signal fs(t) defined 
in the equivalent temporal coordinate: 

 eq Pt ωφ= −  (2.9) 

Considering the equivalent definitions for the Fresnel Integral of the PUT, 
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we have 
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This identity is the core of the FLEA algorithm, which relates the nonlinear product to the 
signal with the only constraints on the pump pulse being those given by Eq. (2.5). Equation 
(2.11a) contains the information on the phase φfe(teq) of fe(teq), better seen by expressing Eq. 
(2.11a) as the sum of the three terms 
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where Δθ(teq) is the differential phase of the Fresnel Integral of the PUT: 

 ( )
2 2eq fe eq fe eq

t t
t t tθ ϕ ϕΔ Δ   Δ = + − −   

   
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Equation (2.12a) is the sum of the spectral moduli of the Fresnel Integral of the relatively 
delayed PUTs and does not contain any information on the phase of the PUT. We refer to this 
component as a “direct current” (DC) component as it is centered at zero in the equivalent 
frequency domain ωeq. The phase information, Eq. (2.12c), is contained in Eq. (2.12b) and, as 
discussed later, its phase contribution typically results in a frequency displacement in the 
transformed domain. For this reason, we refer to these terms as “alternate current” (AC) 
terms. In a large number of cases the AC terms can be isolated from the DC components 
using a filtering procedure, and then transformed back to extract the differential phase, Eq. 
(2.12c). This is the very robust procedure introduced by Takeda, Ina and Kobayashy [15], 
generally employed in the classical SPIDER approach to extract the phase information of the 
optical field from the measured optical interferogram. 

Table 1. Equivalent Quantities for the Nonlinear Interaction in Different Frequency 
Mixing Cases 

 TWM (SFG) TWM (DFG) DFWM 
Temporal window 
ΔτPN, Eq.(2.5) 

Gaussian (waist): ΔωPφP 
Flat top (full width): ΔωPφP

Gaussian (waist):
 
ΔωPφP 

Flat top (full width): ΔωPφP 
Gaussian (waist): ΔωPφP /√2 
Flat top (full width): ΔωPφP 

Equivalent time, 
Eq. (2.9) teq=-ωPφp teq=ωPφp teq=-ωPφp/2 

Effective chirp φP -φP -φP/2

2.1 Convergence of high pump chirp approximation to the standard X-SPIDER formalism 

Before presenting further details on the FLEA, we show that the standard relationships used 
in the X-SPIDER phase reconstruction process can be obtained from our more general 
expressions in Eqs. (2.11) and (2.12) by carrying out a Fraunhofer approximation of the 
Fresnel integral of the PUT, to explicitly obtain the shape of the PUT spectrum: 

 ( )
2 2

( ) *exp exp
2 2

eq eq eq
e eq eq

P P P

it t it
f t e t E

φ φ φ
    

∝ ≈ −           
 (2.13a) 

This approximation is strictly valid when 

 2 2 2 P
E P

P

ττ πφ π
ω

Δ
Δ << ≈

Δ
 (2.13b) 

When the pump spectrum is larger or equal to the PUT spectrum, as it usually happens in 
X-SPIDER setups, Eq. (2.13b) necessarily implies that ΔτE << ΔτP ≈ ΔωPφP , i.e., the PUT 
temporal window must be much shorter than the pump time duration. The Fresnel Integral is 
thus proportional to the spectrum of the PUT. Substituting Eq. (2.13a) into Eq. (2.11a) and 
considering the definition of the temporal coordinate, Eq. (2.9), we derive the classical 
expression for the spectral-sheared interference pattern [1]: 

 
2

2
( ) exp exp

2 2 2 2

t t
I E i E iω ω ω ω ωΩ Δ Ω Δ       ∝ + + + − −       

       
 (2.14a) 

The pattern contains two spectral replicas of the PUT shifted in time and in frequency by 
Δt and Ω, respectively, the latter being the spectral shear defined as 
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P

t

φ
ΔΩ =  (2.14b) 

The DC and AC components of Eq. (2.12) can be then written as 

 ( )
2 2

2 2
dc E Eω ω ωΩ Ω   = + + −   

   
 (2.15a) 

and 

 ( ) ( )exp
2 2

ac E E iω ω ω θ ω±
Ω Ω   = + − ± Δ         

 (2.15b) 

The latter is a measurable quantity that depends explicitly on the spectral differential phase of 
the PUT: 

 ( ) ( )
2 2E E Et tθ ω ϕ ω ω ϕ ω ϕ ω ωΩ Ω   Δ = Δ + Δ = + − − + Δ   

   
 (2.15c) 

As anticipated, the derived equations are the classical expressions exploited by the 
standard SPIDER method, which directly targets the reconstruction of the spectral phase of 
the PUT. 

3. Phase recovery algorithms 

We next discuss how the FLEA works to reconstruct the PUT, by describing step by step the 
procedure in comparison with the classic approach. Similarly to the conventional phase-
reconstruction SPIDER algorithm, FLEA requires a-priori knowledge on the time delay Δt 
and the effective chirp of the interaction φP. 

3.1 Step 1: Takeda procedure for the extraction of the differential phase from the 
interferogram 

The Takeda procedure [1, 13–15] can be in general applied to interferograms of different 
nature. The interferogram (2.11a) (or (2.14a) in its approximated form) can be described as 
the superposition of the “DC” and “AC” contributions in Eqs. (2.12a)-(2.12b). The AC 
contributions are responsible for the interference fringes and as a result, they can be extracted 
from the interferogram by applying a Fourier Transform procedure. Specifically, the Fourier 
Transform of the DC and AC components defined in Eqs. (2.12a)-(2.12c) in the space of ωeq 
are 

 ( ) *cos
2 2 2 2

eq eq eq
eq e e

t s s ds
DC F F

ω ω ω
ω

π

∞

−∞

Δ + −     
=      

     
  (3.1a) 

and 

 ( ) *1
exp

2 2 2 2 2
eq eq

eq e e

s s is t ds
AC F F

ω ω
ω

π

∞

±
−∞

+ −    Δ =      
    

   (3.1b) 

Roughly speaking, if the fringes are very dense as compared with the PUT spectral 
bandwidth, the AC contributions will be well separated from the DC contribution in the 
transformed space, as sketched in Fig. 2. Since the AC components contain information on 
the spectral phase, one of them is filtered and then transformed back. The phase of the 
resulting signal is the differential spectral phase Δθ(teq). It must be recalled that this operation 
cannot give any information on the sign of the differential phase, hence there is a degree of 
ambiguity. Rigorously the quantity obtained at this step is: 
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 ( )eqtμ θΔ  (3.1.c) 

Where μ can be ± 1 and is not known. In general, the issue of the separability of the terms 
in Eqs. (3.1a) and (3.1b) in the global Fourier Transform of the interferogram is nontrivial and 
depends on the unknown phase of the PUT. In Fig. 3 we report the DC and AC terms in the 
2D phase space, i.e. as a function of the frequency ωeq and of the delay Δt variables, for a 
Gaussian pulse with both first order and second order chirp. In the space (ωeq,Δt), we note 
that the AC terms have the shape of Wigner functions [1,27,28] - specifically, they are the 
cross-Wigner function of the Fresnel Integral of the PUT fe(t) and its time reversed copy fe(-t) 
in (ωeq,Δt) and (ωeq,-Δt), respectively. In these types of functions, a first order chirp generates 
a shear of the function along the straight line ωeq = Δt/φ where φ is the total first order chirp 
of the Fresnel integral of the PUT. For large values of φ the spectral content of the AC 
functions is nearly entirely localized along the loci ωeq =  ± Δt/φ. In the same way the spectral 
content of the DC component shrinks around ωeq = 0: the integral term in Eq. (3.1.a) is simply 
the autocorrelation in the frequency domain of a signal centred in ωeq = 0, which typically 
shrinks when the first order dispersion increases. 

 

Fig. 2. Phase extraction procedure. 

 

Fig. 3. (a) DC and (b-c) AC components as defined by Eqs. (3.1a)–(3.1b) in the phase space 
(ωeq,Δt), for a Gaussian PUT with first and second order chirps. The straight dashed line in red 
in (b-c) are the loci ωeq =  ± Δt/ φ; where φ is the total first order chirp of the Fresnel integral 
of the PUT, encompassing both the pump and the PUT chirps. In (d) the phase space 
representation of the complete interferogram is reported: in this case, the separation in 
frequency is not guaranteed for low values of the time delay Δt. (e-h) same as (a-d), but with a 
larger overall total dispersion φ: the spectral content of the DC (e) and AC (f-g) components is 
localized along ωeq = 0 and ωeq =  ± Δt/ φ, respectively. Thus, their separation in the 
interferogram (h) is guaranteed for a large set of delays Δt. Please notice that in (a), the pattern 
with hyperbolic loci around ωeq Δt/ 2 = const is due to the cosine term cos (ωeq Δt/ 2) 
multiplying the integral in Eq. (3.1a). When the energy is localized for frequency components 
|ωeq| <π/Δt, as in the case (e) the hyperbolic pattern is not visible anymore. 
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This means that, roughly speaking, if the phase of Fe(ωeq) has a dominant first order chirp 
(as it always occurs in the classical SPIDER approximation, which is regulated by the pump 
chirp φP) encompassing both the pump and the PUT chirps, the spectral separation among the 
DC and AC terms is always ensured for a certain time delay Δt. Although the quantities are 
interpreted differently, Step 1 is the same as that conventionally used in the classical SPIDER 
reconstruction algorithm: the phase Δθ used in the classical algorithm is indeed the same 
quantity extracted here (i.e., function given by Eq. (2.12c)), but interpreted in its 
approximated form, Eq. (2.15c). 

3.2 Step 2: extraction of the phase φfe (teq) from Δθ (teq) 

The phase Δθ (teq) must be processed to obtain the phase of the Fresnel Integral fe(teq). It is 
important to note that although the phase extraction cannot provide the sign of Δθ, this 
information can be recovered with the strategies described below. For a sufficiently small 
temporal delay Δt, the differential phase is the derivative of the phase φfe(teq): 

 ( ) ( )
2 2

fe eq

eq fe eq fe eq
eq

d tt t
t t t t

dt

ϕ
μ θ μ ϕ ϕ μ Δ Δ    Δ = + − − ≈ Δ    

    
 (3.2) 

We can directly integrate the result of Step 1 using the novel temporal coordinates 
introduced in Eq. (2.9): 

 ( ) ( ) ( )eq P
eq fe eq

dt d
t t

t t

φ ωμ θ μ θ ω μϕΔ = − Δ ≈
Δ Δ   (3.3) 

In the last equality we took into account the physical quantities. It is interesting to note 
that even in this Step 2, FLEA follows closely the standard extraction procedure. If the 
approximated relation for the differential phase, Eq. (2.15c), holds, taking into account Eq. 
(2.14b), we have 

 ( ) ( ) ( )
2

2
P P

E E

d d
t

t

φ ω ω φωμ θ ω μ ϕ ω ω μ ϕ ω
 

− Δ = − Δ − Δ ≈ − Δ Ω  
   (3.4) 

Equation (3.4) directly relates the differential phase obtained from Step 1 with the spectral 
phase of the PUT φE(ω). The additional quadratic term can be easily removed, as the pump 
effective chirp is known (indeed, the linear term ωΔt/Ω is usually removed before the 
integration). As the chirp of the pump is supposed dominant over the PUT phase for the 
classical SPIDER approximation, the ambiguity on the sign of Δθ is removed in this case. 

For large spectral shears, the derivative approximation is no more valid and several 
effective approaches have been proposed to retrieve the phase of the spectral PUT. Among 
them, a very popular concatenation method reconstructs exactly the phase even for large 
spectral shears. This method is discussed in detail elsewhere [1,14], including discussions on 
the accuracy of higher order integration and concatenation based techniques for different 
pulse profiles [29,30]. It is beyond the scope of this paper to discuss in detail how these 
methods can improve the performances of the FLEA. However, as Step 2 follows exactly the 
standard reconstruction procedure, concatenation and higher order integration techniques can 
be equivalently employed also for the FLEA as done in the classical algorithm. 

3.3 Step 3: reconstruction of the full function 

The amplitude of a single replica of the nonlinear product is measured independently and 
associated with the reconstructed phase. In the standard SPIDER approach, this quantity 
represents the PUT spectrum: the measurement is then complete. The temporal profile can be 
obtained with a simple Fourier Transformation. It is important to note that the SPIDER 
method does not have any ambiguity in the sign of the temporal axis because the sign of the 
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phase is determined as discussed previously. If the spectrum of the PUT is known, it can be 
associated with the reconstructed phase for better accuracy. 

In the case of the FLEA, the spectral measurement of a single replica of the nonlinear 
product associated to the reconstructed phase is interpreted as the Fresnel Integral of the PUT 
fe(teq), which then needs to be inverted in order to obtain the PUT. As noted previously, the 
phase extraction procedure does not provide information on the sign of the phase. Strictly 
speaking, we have to take into account the two relations 

 ( ) ( )( ) ( )exp
ee eq f eq e eqf t i t f tϕ =  (3.5a) 

 ( ) ( )( ) ( )*exp
ee eq f eq e eqf t i t f tϕ− =  (3.5b) 

Equation (3.5a) is the correct Fresnel integral of the PUT, while Eq. (3.5b) is its conjugate 
copy, leading to a wrong result. To obtain the PUT we Fourier transform both of them. We 
then obtain the correct Fresnel Integral of the PUT in frequency (Eq. (3.6a)) as well as its 
conjugate and frequency reversed copy, Eq. (3.6b): 

 ( ) ( ) ( )
2

exp
2

P eq
e eq eq E eqF E i i

φ ω
ω ω ϕ ω

 
= −  

 
 (3.6a) 

 ( ) ( ) ( )
2

* exp
2

P eq
e eq eq E eqF E i i

φ ω
ω ω ϕ ω

 
− = − − − +  

 
 (3.6b) 

where we use Eq. (2.9a). To obtain the PUT we subtract the phase exp(-iφP ω2
eq /2) and obtain 

the two results: 

 ( ) ( ) ( )( )expeq eq E eqE E iω ω ϕ ω=  (3.7a) 

 ( ) ( ) ( )( )2' expeq eq E eq P eqE E i iω ω ϕ ω φ ω= − − +  (3.7b) 

The Fourier Transform of the Fresnel Integral, Eq. (3.6a), has the same spectral amplitude 
as the PUT. If the spectrum of the PUT is not symmetric, Eqs. (3.6b) and (3.7b)—
representing the incorrect result—can be easily recognized through a simple comparison with 
a spectral measurement of the PUT. Otherwise, for spectrally symmetric waveforms, 
additional information on the PUT is needed. A second measurement with a different pump 
chirp will get rid of this ambiguity; however, very often it is simply possible to infer the 
correct phase as the two results differ by a large phase term. As in the case of standard 
SPIDER, the correct result given by Eq. (3.7a) does not have any ambiguity in the time 
domain. 

4. Numerical examples 

Summarizing the preceding discussion, we can conclude that i) the FLEA removes the high 
chirp approximation for the pump pulse and ii) is nevertheless subject to the following main 
limitations: 

⋅ The time duration of the pump (under approximation Eq. (2.5)), which defines the 
temporal window of the interaction, must be known a priori. 

⋅ The applicability of the Takeda phase extraction procedure is somehow limited. It 
depends on the phase of the unknown PUT and is not known a priori, but becomes 
clear only once the measurement has been performed. In general, a larger pump 
chirp guarantees better performances. 
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⋅ It is ambiguous in the sign of the phase for pulses with symmetric spectral amplitude. 
However this can be simply solved via an additional measurement. 

To better quantify the limitations imposed by the first two points, and also to compare 
with the standard extraction procedure, we calculate the accuracy of FLEA on benchmark test 
pulses [29,30]. Specifically, we consider a pulse with Gaussian spectral amplitude: 

 
2

2
( ) exp

E

E
ωω
ω

 
= − Δ 

 (4.1) 

We use this spectrum with different spectral phase profiles, such as phase jumps, 
parabolic, cubic and quartic phases. This benchmark pulse has already been significantly 
discussed in connection with calculations of the accuracy and precision of SPIDER 
reconstruction techniques [29,30]. The pump pulse is assumed to possess a nearly flat-top 
spectral amplitude. Specifically, it is assumed to have a super-Gaussian shape and parabolic 
phase: 

 
216

16
( ) exp exp

2
P

P

i
P

ω φωω
ω

   
= − −   Δ   

 (4.2) 

In the numerical tests we use pulses with frequency bandwidths of the order of those 
expected in ultrafast optical communications, i.e. ΔωE = 2π´1THz, ΔωP = 2π´2THz, and φP 
with values varying from 10ps2 - i.e. the pump covers a temporal window of approximately 
250ps (full width) - to 20ps2 - i.e. spanning a 500ps time window. We discuss the 
performance of the method for both the TWM (SFG) and DFWM cases. The simulations are 
performed using the exact relation i(t)∝s(t)p(t) in Eq. (2.4a) and i(t)∝s(t)[p(t)*]2 in Eq. (2.4c). 
Provided that the idler in the DFWM case falls in a frequency range well distinct from the 
pump frequencies, the absolute pump and signal frequencies are irrelevant for the following 
discussion. As discussed above, since we employ an almost flat-top pump, the effective 
temporal window in the two cases is the same when the pump is identical, while the effective 
chirp is opposite and half of the pump chirp for the DFWM case. We used 216 samples with a 
temporal resolution of 40fs. To simulate proper experimental conditions, we also took into 
account the limited bandwidth of the spectrometer, which we set to 1GHz. This translates to 
an equivalent temporal window of 600ps for the measured signals. The temporal limitation 
due to the spectrometer is then weaker than the temporal restriction due to the pump used in 
these simulations. To quantify the accuracy, we evaluated the RMS error ε of the 
reconstructed PUT ER(ω), compared with the original waveform E(ω): 
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 




 (4.3) 

Usually, RMS values below 0.02 are considered to be excellent reconstructions, while 
values above 0.2 are considered to fail the reconstruction [29,30]. The delay between the two 
PUT replicas is set to 6.5 ps, and is chosen to minimize the error introduced by the integration 
of the differential phase, while allowing the filtering procedure for the standard algorithm. It 
is important to notice that larger delays can be used when applying concatenation of higher 
order integration procedure for the reconstruction of the differential phase also in the FLEA 
case. 
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4.1 Phase-jump pulses 

We next apply phase jumps given by:  

 ( ) tan h
2E

E

π ωϕ ω α
ω

 
=  Δ 

 (4.4) 

Where α is a parameter that indicates the steepness of the phase jump. Figure 4 shows the 
spectral amplitude (Fig. 4(a), black solid line) and phase for α = 10 and α = 40 (Fig. 4(b), 
black solid line and Fig. 4(d), dashed lines, respectively). In Fig. 4(a) and (b) we show the 
intensity of the nonlinear product replica generated by a SFG nonlinear interaction, for α = 10 
and α = 40 (red solid and dashed lines, respectively).Here the pump possesses φP = 10ps2,  
ΔτP =250ps. This in turn translates into a significant distortion of the spectrum of the 
nonlinear product when compared with the original PUT spectrum. As discussed above, the 
distortion of the spectrum of the nonlinear product for the single replica is a clear indication 
that the high pump chirp approximation is exceeded. The phases reconstructed using both the 
classical algorithm and the FLEA are shown in Fig. 4, in red and green, respectively. (a-b) 
report the PSD for α = 10 and α = 40. The green plots indicate the PSD obtained with the 
FLEA reconstruction:  remarkably the algorithm largely mitigates the distortion on the 
spectral amplitude visible in the replica of the nonlinear product - reported in red. The 
reconstructed phase is depicted in Fig. 4(c,d,e). For α=10 both algorithms show good 
accuracy while for α=40 the FLEA shows better performance, i.e. a lower RMS error, as 
discussed in Fig. 5.  

 

Fig. 4. Phase jump reconstruction. Here φP =10ps2, ΔτP =250ps. (a) PSD of the PUT (black) 
used in the simulation. The  spectral amplitude for a single replica of the nonlinear product 
obtained with a PUT phase jump α=10, and the PSD reconstructed with the FLEA are 
displayed in red and green lines, respectively. (b) same as (a) for a PUT phase jump α=40. (c) 
PUT phase for α=10, and reconstructed phases with the classical algorithm and FLEA in 
black, red and green solid lines, respectively. The dashed red and green lines report the 
differential error for classic algorithm and FLEA respectively. (d) same as (c) for α=40. 

In Fig. 5(a) and (b) the RMS error as a function of α is reported for both the standard 
algorithm (red) and the FLEA (green). Fig. 5(a) shows the error obtained with SFG. In Fig. 
5(b) we used DFWM. We report in light red and light green the reconstruction obtained with 
a pump chirp φP = 10ps2 while dark red and dark green are used for the case of φP = 20ps2. In 
both cases, FLEA shows a significant reduction of the RMS error for high values of the phase 
jump parameter α, associated to longer temporal pulses. It is interesting to note that the RMS 
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error for the SFG case φP =10ps2 follows closely the RMS error for the case DFWM  
φP = 20ps2. As we remarked above, the pump chirp counts half in the case of a DFMW 
interaction with respect to a TWM case. Hence, in the two cases the nonlinear interaction 
provides the same magnitude of equivalent chirp. Conversely, the DFWM interaction for 
φP = 20ps2 possesses an equivalent temporal window that is approximately twice the case of 
SFG with φP = 10ps2, and approximately equivalent to the case of SFG with φP = 20ps2. 
Indeed, the error is lower for larger pump chirps while it is insensitive to the dimension of the 
time window associated to the interaction, suggesting that the error for large α is not 
associated to the time window of the pump, but can be related instead to the increasing 
overlapping of the AC spectral components, Eq. (3.3b) for large α, which ultimately hampers 
the phase extraction procedure. In any case, the error remains remarkably low even for 
extremely steep phase jumps. 

 

 

Fig. 5. RMS error as in Eq. (3) for the classic algorithm (red plots) and FLEA (green plots) vs 
α (higher values are for steeper phase jumps). (a) and (b) show the error calculated by using 
SFG and DFWM, respectively. Light red and light green are for φP =10ps2, while dark red an 
dark green are for φP =20ps2. 

4.2 High order phase dispersion 

Here we tested the performances of the FLEA applying first, second and third order 
dispersion to the PUT discussed above. The results in Fig. 6(a-d) are relative to first order 
dispersion phases for the classic algorithm and FLEA for a SFG (a-b) process and for the 
classic algorithm and FLEA for DFWM (c-d). They evidence a greatly extended range of 
consistency for the FLEA algorithm. The green dotted lines in (b) mark the maximum 
effective chirp that can be addressed due to the temporal limitation imposed by the pump 
temporal window. These lines are the same in the case of DFWM in (d). The cyan dotted 
lines in (b) report a “blind region” of the algorithm: for these values the chirp of the PUT 
exactly compensates the chirp of the pump. In this case the overall first order chirp of the 
Fresnel Integral is zero. As discussed in section 3.2, the fringes are not formed in the  
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Fig. 6. Estimation of the accuracy of FLEA vs the standard algorithm for a PUT propagating 
through first order dispersive systems. (a,b) RMS error for the retrieved waveform vs pump (y 
axis) and PUT(x axis) total dispersions for the SFG case, and (c,d) for the DFWM case; (a,c) 
standard algorithm, (b,d) FLEA. The color bar reports the RMS error. The picture is saturated 
for RMS>0.2. In (b) the green dotted line corresponds to the limit imposed by the limitation of 
the pump temporal window and the cyan dotted lines report the “blind region” of the 
algorithm, around the opposite of the value of the pump dispersion. This graph clearly 
evidences that the low-error (white) zone is significantly increased when FLEA is used as 
compared to the standard algorithm. (c,d) same comments as (a,b) for the DFMW case. 

interferogram and the Takeda Extraction procedure cannot be applied. The same region in (d) 
for the DFWM case is formed around the chirp values that compensate half of the pump 
chirp, with opposite sign. It is interesting to notice that the case of a Gaussian pulse with a 
first order chirp discussed here can be treated analytically, i.e. it is possible to find the 
correction of the chirp extracted by the Takeda procedure in a very similar fashion to what 
has been proposed for the SPIDER case in Ref. [20]; indeed, also using the exact correction 
of the extracted chirp the error follows the numerically calculated error as in Figs. 6(b) and 
6(d). 

Figure 7 shows the results for predominantly second order chirped pulses, with the same 
convention as of Fig. 6. The FLEA also extends the working regime of the X-SPIDER device 
in this case. The limitation for large second order chirps arises from the Takeda phase 
extraction procedure for the set of parameters exploited here, for pulses with both large 
positive and negative second order chirp, in a similar fashion to the example reported in 
Fig. 3. For this reason, the DFWM reconstruction for the FLEA shows a narrower range of 
consistency than the SFG case when the same pump is used, as the effective chirp of the 
nonlinear interaction is half of the pump chirp. However, in both cases the FLEA significantly 
extends the performance of the X-SPIDER setup. Figure 8 shows the results for 
predominantly third order chirped pulses. The limitations when large third order chirps are 
studied also arise from the Takeda phase extraction procedure for negative chirps, while the 
temporal window of the pump limits the reconstruction of the PUT with positive third order 
dispersions. 
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Fig. 7. Same as Fig. 6 for a PUT propagating through second order dispersive systems. 

 

Fig. 8. Same as Fig. 7 for a PUT propagating through third order dispersive systems. 

5. Conclusion 

We have discussed the performances of an innovative extraction algorithm for X-SPIDER, 
that we term FLEA. We have discussed in detail the FLEA approach, and defined its limits 
for PUT reconstruction in terms of the physical parameters of the pump and the PUT. We 
evaluated numerically the performance of the FLEA, also in comparison with the standard X-
SPIDER algorithm, for a conventional, comprehensive set of bench pulses: in all the 
addressed cases FLEA demonstrates a remarkably larger range of consistency in the 
reconstruction, evidencing a significant improvement in terms of time-bandwidth product of 
the reconstructed pulses. 
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