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Abstract The microscopic visualization of nanoparticles in plants is crucial to
elucidate the mechanisms of their uptake through the cell wall and plasma
membrane and to localize the possible sites of their extracellular or
intracellular accumulation. Lignin nanocarriers are polymeric hollow
nanocapsules able to contain and transport several bioactive substances
inside plant tissues. We describe here a method for the preparation of
Fluorol Yellow 088-labeled lignin nanocapsules that allow their
localization in plant organs and tissues by fluorescence microscopy.
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2Fluorescent Labeling of Lignin Nanocapsules with Fluorol
3Yellow 088
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7Abstract

8The microscopic visualization of nanoparticles in plants is crucial to elucidate the mechanisms of their
9uptake through the cell wall and plasma membrane and to localize the possible sites of their extracellular or
10intracellular accumulation. Lignin nanocarriers are polymeric hollow nanocapsules able to contain and
11transport several bioactive substances inside plant tissues. We describe here a method for the preparation of
12Fluorol Yellow 088-labeled lignin nanocapsules that allow their localization in plant organs and tissues by
13fluorescence microscopy.

14Key words Lignin nanocarriers, Nanocapsules, Fluorescence microscopy, Confocal microscopy, Two-
15photon microscopy, Scanning electron microscopy

161 Introduction

17Lignin nanocarriers are hollow polymeric nanocapsules (NCs) that
18can be used as devices to transport several bioactive substances.
19One of the advantages of lignin nanoparticles is that their chemical
20nature is natural (lignin is produced by land plants) and hence are
21less toxic than other types of nanoparticles [1] and completely
22biodegradable [2]. This aspect is fundamental if the use of nano-
23particles is carried out releasing them in the environment in order
24to obtain a specific effect, particularly in agriculture [3, 4].
25Several polymers (in particular starch, alginate, chitin, albumin,
26and cellulose) were tested to produce nanoparticles in plant science
27with the function of transporting bioactive compounds
28[5, 6]. Another polymeric β-glucan, chitosan, can be obtained by
29extraction from crustaceans chitin and shows antifungal activity [4],
30while alginate can be extracted from the epidermis of brown algae
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31(Phaeophyceae) and can be used for building nanoparticles able to
32transport insecticides [7].
33Lignin NCs contain nanocavities composed of a lignin shell
34matrix that traps the bioactive compounds also protecting them
35from degradation [8]. Such nanocavities may contain lipophilic
36substances that are normally difficult to transfer inside living organ-
37isms. Lignin is a plant-produced substance that may hence be
38considered particularly suitable for the delivery of lipophilic sub-
39stances inside plants such as hormones, biocides, and insecticides
40[4, 5, 7], with the function of modulating growth and health status
41of the plant. Moreover, lignin is the main waste produced by paper
42and cellulose production [2, 9].
43The preparation of lignin NCs can be obtained by engineering
44the solvent/co-solvent interface for polymer-based nanosystems
45with several possible protocols, depending on the chemical prop-
46erty of the inner core/cavity and the shell of the nanocapsule and
47the nature of the cargo to be carried [10].
48The microscopic visualization of nanoparticles in plants is of
49fundamental importance to observe if they enter the plant, in which
50tissues they tend to accumulate, if they are able to penetrate the wall
51and plasma membrane, in which part of the cells they can be stored,
52and finally what an effect they have at the tissue and cell level, even
53possible toxicity, which is another relevant concern related to the
54use of NCs in agriculture [2].
55The protocol we describe here allows the preparation of lignin
56NCs labeled with Fluorol Yellow 088, a lipophilic fluorescent dye
57that makes them observable in plant tissues and cells by fluores-
58cence microscopy.

592 Materials

2.1 Samples and

Chemicals

60For all the solutions, use ultrapure Milli-Q filtered water.

611. Plants seeds from both monocots and dicots (see Note 1).

622. Commercially available Kraft lignin.

633. Olive oil.

644. 0.1% Fluorol Yellow 088 (FY088) stock solution: dissolve 0.1 g
65of FY088 in 100 mL of olive oil, as modified by Giuliani
66et al. [12].

675. 0.1-M phosphate buffer saline (PBS): add 9 g of NaCl to
68500 mL of water under gentle agitation by magnetic stirrer;
69add 50 mL of PB (phosphate buffer 0.2-M, pH 7.4); bring the
70solution to a final volume of 1 L with water and adjust to
71pH 7.4 using 1-N NaOH.
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2.2 Equipment 721. Ultrasonic processor (we used a Branson 450 Digital Sonifier).

732. Apparatus for dynamic light scattering measurements (we used
74Malvern Zetasizer Nano ZS, ZEN 1600 system).

753. Cryostat.

764. Scanning electron microscope (we used Gaia 3 Tescan s.r.o,
77Brno, Czech Republic) and sputtering system.

785. Bright-field and epifluorescence microscope (see Note 2).

796. Polydimethylsiloxane (PDMS)-coated petri dishes.

807. A custom-made two-photon fluorescence microscope (TPFM)
81was also used. We employed the apparatus described in
82Costantini et al. [13] that enable mesoscopic reconstruction
83of biological samples (see Note 3).

843 Methods

3.1 Preparation of

Lignin Nanoparticles

851. Dissolve 1 g of Kraft lignin powder in 100 mL of 1% KOH, to
86obtain a lignin alkaline solution.

872. Prepare olive oil/acetone emulsions. (A) For empty nanopar-
88ticles, add olive oil to acetone dropwise, at a 1:1 (v/v) ratio;
89(B) for dye-loaded nanoparticles, add 500 mL of FY088 stock
90solution in olive oil to acetone dropwise, at a 1:1 (v/v) ratio.

913. Add 300 μL of olive oil/acetone emulsions to 3 mL of the
92lignin alkali solution.

934. Emulsify the oil/water phase by applying high-frequency ultra-
94sounds, which facilitate the incorporation of oil or oil plus
95FY088 into the pre-existing lignin aggregates, thus forming
96the final NCs dispersion (Fig. 1) (see Note 4).

Fig. 1 Preparation of the fluorescent nanocapsules
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97The final pH of the lignin NCs loaded with FY088 (fNCs) is
98close to neutrality (6.8–7.2) that is a suitable range for organisms
99and can be applied to biological systems in vitro.

3.2 Physicochemical

Characterization of

Empty and FY088-

Loaded NCs

100For DLS measurements:

1011. Dilute the samples 1:500 with water, to adjust the optical
102turbidity.

1032. Perform the diameter measurements, and average the results
104over an adequate number of runs (see Note 5).

105For the fluorescence emission measurements:

1061. Dilute 100 μL of the stock solution (0.1% FY088 in oil) in
1071.9 mL of olive oil, to prepare the FY088 0.005% working
108solution at the same concentration used for the
109nanoformulation.

1102. Perform emission spectra recorded in the range 480–570 nm
111with fixed excitation wavelength (470 nm) and 125-nm/min
112acquisition time (Fig. 2) (see Note 6).

113SEM observations (to be performed to investigate if the mor-
114phology of fNCs may be affected by dye loading):

1151. Deposit the samples on a stub.

1162. Dry in a vacuum.

Fig. 2 Emission spectra of FY88 alone (green curve) and after encapsulation into the NCs at fixed excitation
wavelength (470 nm)
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1173. Coat with an ultrathin gold coating to enhance the contrast,
118thanks to the presence of an electrically conducting material.

1194. Perform the NCs morphology observations (Fig. 3a, b) (see
120Note 7).

3.3 Fluorescence

Microscope

Observation

1211. Grow the seedlings (we used Eragrostis teff and Eruca sativa)
122on wet paper, and make them in contact with the fNCs for
12324 h. Dilute the final NCs dispersion 1:1 with water.

1242. Cut 20- to 30-μM-thick sections by a cryostat, to obtain longi-
125tudinal and cross sections.

1263. Place the sections on microscope slides in a drop of water, and
127gently coverslip.

1284. Observe the sections in bright-field and epifluorescence
129microscopy using blue light excitation (450–480 nm).

130Epifluorescence images showed that the fNCs tended to pref-
131erentially concentrate in some cells toward the middle of the root
132(Fig. 4a): at higher magnification (Fig. 4b), the mostly involved
133cells proved to be the xylem vessels (see Note 8).

3.4 Two-Photon

Observation

1341. A mode-locked Ti-Sapphire laser (Chameleon, 120 fs pulse
135width, 80-MHz repetition rate, Coherent, CA) operating at
136900 nm was coupled into a custom-made scanning system
137based on a pair of galvanometric mirrors (LSKGG4/M,
138Thorlabs, USA).

Fig. 3 SEM micrograph of (a) empty NCs (magnification: 21,200) and (b) fNCs (in average smaller than the
empty ones; magnification: 28,800)
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1392. The laser was focused onto the specimen by a refractive index
140tunable 25� objective lens (LD LCI Plan-Apochromat 25�/
1410.8 Imm Corr DIC M27, Zeiss, Germany).

1423. The sample was mounted on a PDMS-coated petri dish using
143two pins that enable to immobilize the sample (see Note 9).

1444. Emission filter of 530� 55 nmwas used to detect the signal for
145Fluorol Yellow 088 (seeNotes 10 and 11). The acquisition was
146performed using a FOV of 450 μM resulting in 1024 � 1024
147pixels images that were saved as TIFF files.
148The reduction in noise with respect to epifluorescence was
149clearly observed both in the epidermis areas (Fig. 4c) and inside
150longitudinal lines of cell inside the root central cylinder
151(Fig. 4d).

Fig. 4 (a) Eragrostis teff root, epifluorescence image: the fNCs (arrow) tended to
concentrate preferentially in some cells close to the middle of the root (arrow).
(b) Eragrostis teff root. Same as panel (a), but at higher magnification, the cells
mostly involved appeared to be xylem vessels (arrow). (c) Eruca sativa root, two-
photon microscope image: the fNCs lined the root epidermis (rhizodermis) and
were recorded also in specific cell lines inside the root (white arrow). (d) Eruca
sativa root, two-photon microscope image: the fNCs were also observed inside
longitudinal lines of cell of the root central cylinder (white arrow)
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1524 Notes

1531. Here we used Teff, Eragrostis teff (Zucc.) Trotter, belonging to
154the family Poaceae, and Arugula, Eruca sativa L. Cav., belong-
155ing to the family Brassicaceae. The seeds were left to germinate
156on wet paper and later hydroponically cultivated.

1572. If available, confocal or two-photon fluorescence microscopy is
158especially appropriate due to their high-resolution and optical
159sectioning capability, which allow imaging the nanoconstructs
160through the tissue depth (as deep as about half the thickness of
161a seedling root, in the species we studied).

1623. Two-photon fluorescence microscopy, thanks to the use of an
163infrared laser, allows excitation light to penetrate deep into
164tissues while offering high axial and lateral resolution.

1654. This step was conducted in mild conditions in order to avoid
166possible damage of labile molecules [1]. Specifically, the appa-
167ratus power was kept at 200 W and 5 cycles of 3 min (1 s pulse
168on and 0.5 s pulse off) were used.

1695. To measure the average diameter of the fNCs, we used a Mal-
170vern Zetasizer Nano ZS (ZEN 1600) apparatus, equipped with
171a He-Ne 633 nm, 4 mW laser, and backscattering optics at
172173� detection. Each measurement was averaged over 11 runs
173and taken in duplicate. DLS measurements showed that the
174unlabeled NCs had a mean diameter of 204 � 20 nm and a
175polydispersity index (PDI) of 0.35, while the fNCs had a mean
176diameter of 230 � 20 nm with a moderate PDI (0.25).

1776. The emission wavelength of the encapsulated FY088 is close to
178green (510 nm, Fig. 4) as indicated by the shoulder in the
179emission curve (Fig. 2), with a shift compared to FY088 in
180olive oil (520 nm, yellow), which confirms the association of
181this dye with the lignin in the NCs.

1827. SEM micrographs showed that both empty (Fig. 3a) and
183loaded (Fig. 3b) NCs had a spherical shape with a homoge-
184neous surface. When one or more size distributions are present
185in solution, SEM tends to evidence larger particles, while DLS
186reports on the statistical average over all the volume.

1878. Noise in epifluorescence imaging can be reduced by averaging
188or moding a given number of images of the same field. Some
189microscope camera software can do the averaging during the
190acquisition, while for moding specific Python software should
191be used [1].

1929. Roots were completely immersed in tap water during the
193acquisition.
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19410. The system was equipped with a closed-loop XY stage (U-780
195PILine® XY Stage System, 135 � 85-mM travel range, Physik
196Instrumente, Germany) for the radial displacement of the sam-
197ple and with a closed-loop piezoelectric stage (ND72Z2LAQ
198PIFOC objective scanning system, 2-mM travel range, Physik
199Instrumente, Germany) for the displacement of the objective
200along the z-axis. The fluorescence signal was collected by a
201GaAsP photomultiplier module (H7422, Hamamatsu
202Photonics, NJ).

20311. The instrument was controlled by a custom software, written in
204LabView (National Instruments, TX) able to acquire 3D stacks
205through the depth of the sample by performing z-stack imag-
206ing with a voxel size of 0.44 � 0.44 � 2 μM3 up to 180 μM of
207depth.
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