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1 Executive summary

This deliverable describes matching technics necessary to rewrite a query and to address it
towards the peer which most probably keep most relevant information. Such information can
be of semantic or multimedia nature, so we have to perform two different matching technics.
The first one, concerning semantic aspect, has been developed by IsGroup of University of
Modena and Reggio Emilia while the second one, concerning multimedia contents has been
worked up by ISTI-CNR.
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2 Introduction

Information and communication technologies (ITCs) over the Web have become a strategic
asset in the global economic context. The Web fosters the vision of an Internet-based global
marketplace where automatic cooperation and competition are allowed and enhanced. This
is the stimulating scenario of the outgoing Italian Council co-founded NeP4B (Network Peers
for Business) Project whose aim is to develop an advanced technological infrastructure for
small and medium enterprizes (SMEs) to allow them to search for partners, exchange data
and negotiate without limitations and constraints.

According to the recent proposal of Peer Data Management Systems (PDMSs), the
project infrastructure is based on independent and interoperable semantic peers who be-
have as nodes of a virtual peer-to-peer (P2P) network for data and service sharing. In this
context, a semantic peer can be a single SME, as well as a mediator representing groups
of companies, and consists of a set of data sources placed at the P2P network disposal
through an OWL ontology. These data sources include multimedia objects, such as the de-
scription/presentations of the pruducts/services extracted from the companies’ Web sites.
This information is represented by means of appropriate multimedia attributes in the peers’
ontologies (e.g. image in Peer1’s ontology of Figure 1 that are exploited in the searching pro-
cess by using a SPARQL-like language properly extended to support similarity predicates.

Each peer is connected to its neighbors through semantic mappings, appropriately ex-
tended with scores expressing their strength, which are exploited for query processing pur-
pose: in order to query a peer, its own ontology is used for query formulation and semantic
mappings are used to reformulate the query over its immediate neighbors, then over their
immediate neighbors, and so on, following a semantic path of mappings. For instance, in
Figure 1 the concepts product, origin and image of the sample query must be reformulated
in item, provenance and photo when the query is forwarded to Peer2.

Scores are very important because of the heterogeneity of schemas as they give a mea-
sure of the semantic compatibility occurring between involved concepts. Moreover, as such
scores reflect the relevance of peer’s data to a query, we deem that semantic mappings can
be exploited in the searching phase to suggest a direction towards the semantic paths which
better satisfy the query conditions.

In this document we present:

• in Section 3 our semantic mapping technic in order to be able to perform a query
reformulation: when a querying peer pi forwards the query q to one of its neighbors,
say pj , q must be reformulated into q′ so that it refers to concepts in the pj ’s schema.
To this end, pi uses the semantic mapping between source and target schema;

• in Section 4 our extension of semantic mapping, relying on a fuzzy set theory, to obtain
semantic paths associated with a score;

• in Section 5 a support for similarity search over sets of multimedia attributes for content-
based retrieval;

• in Section 6 some experiments relative to our matching algorithm.
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Figure 1: Reference scenario

3 Semantic Matching

In this section, we describe our proposal of Semantic Matching which goal is to find cor-
respondences between concepts, i.e. classes and properties, defined in the RDF/OWL
schemas.

We denote with P a set of peers. Each peer pi ∈ P stores local data, modeled upon local
schema Si, like those shown in Figure 2. This makes a peer pi a semantic peer [6], in that
its local schema Si describes the semantic content of its underlying data. A peer schema,
as we work with RDF/OWL standard, is represented by a graph SG = (C, P,Hc,Hp, Lc, Lp)
where C is a class set, P is a property set, Hc and Hp are sets of standard constructs used
to define hierarchies between, respectively, classes and properties and Lc and Lp are label
sets. A single class ci ∈ C is associated to a unique label lc ∈ Lc. A property pi ∈ P is
defined as (lp, cd, cr) where lp ∈ Lp is its label and cd and cr are respectively its domain and
range classes. We further define a path on the schema as sequence of properties (pi, ...pj)
such that the range class of pk, i ≤ k ≤ j, corresponds to the domain class of pk+1. Notice
that a path whose length is 1, represents a single property.

Peers are pairwise connected in a semantic network through semantic mappings be-
tween their schemas. A semantic mapping M(Si, Sj) can be established from a source
schema Si and a target schema Sj , and it defines how to represent Si in terms of Sj ’s vocab-
ulary. In particular, it associates each class and each property in Si to a corresponding class
or path, respectively, in Sj according to a score ∈ [0, 1] , denoting the degree of semantic
similarity between two concepts (µ(C, C ′) or simply sim(C, C ′)).

The proposed matching algorithm consists of 5 different sections, schematically shown
in Figure 3:

1. parsing of the input schemas;

2. pre-processing to write schemas in such a format that maximize the matching effec-

Page 6 of 37 D4.2.1 - Design of procedures and structures for the support
of the inter-peer semantic queries

30/04/2009
FINAL



NeP4B project — Firb 2005 — Networked Peers for Business

productCategory
market

xsd:string

producedBy

market.offers

market.name

company

company.location

market.location

company.namedomain range

location

image

image

categoryName
origin

contacts

company.contacts

email

(a) Peer1 schema fragment

product

store
xsd:string

requestBy
store.offers

store.name

enterprise
enterprise

.mainLocation
enterprise

.otherLocation

providedBy

enterprise
.name

domain range

shop

shop.offers

productFamily isMember

shop.name
location

photography

photo xsd:integerquantity

denomination

provenance

(b) Peer2 schema fragment

Figure 2: Peers’ schema

tiveness;

3. basic matching computation, which concerns single concepts, i.e. single classes and
single properties, performed through a Similarity Flooding [7] inspired algorithm;

4. refinement to extract relevant results coming from the previous phase;

5. path matching computation, i.e. a specifically devised semi-automatic process aimed
at finding correspondences between unmatched properties and paths, exploiting differ-
ent techniques based on label similarity, automatic semantic path categorization and
user feedback learning.

Such algorithm output is an xml file containing the semantic mapping for the involved couple
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Schema
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Pre -
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Basic matching 
computation Refinement Path matching 

computation
Mapping 
M(Si, Sj)Schema Si

Schema Sj
Figure 3: Schema matching phases

of schemas.

3.1 Schema parsing

The matching phase input is represented by OWL or RDF annotated schemas. This means
that, for each class or property, a further information, represented by one or more senses
in a reference ontology, is required in order to point out their meaning. We extract anno-
tations from the English lexical database WordNet (WN) [1] using a completely automated
approach [5]. WordNet is organized conceptually in synonym sets of synsets, represent-
ing different meaning or senses. Each term in WN is usually associated to more than one
synset, signifying it is polysemic, i.e. has more than one meaning.

In our computation a schema element can be composed by more terms, one of which is
marked as the “main” one, i.e. the one bearing most of the semantics and each term can
be associated with one or more synsets. Formally we define, for each element the set of
terms associated to as {t1, ...tn} and for each term ti the corresponding set of senses as
{si1 , ...sih}. Figure 4 schematically represents this situation: different annotation levels for a
generic element of one schema.

Example 3.1 Following our reference Example (Figure 2), concepts productCategory
and productFamily are both composed by two terms, “product” and “category” and “prod-
uct” and “family”, respectively, with “category” and “family” as main terms. Further we will
suppose they are both annotated using two synsets. In particular category is annotated
as “a collection of things sharing a common attribute” and as “a general concept that marks
divisions or coordinations in a conceptual scheme”, while family is annotated as “a social
unit living together” and as “a collection of things sharing a common attribute”.

In the schema parsing phase it is necessary to extract all the different annotations and
properly keep them to be used during the similarity calculation between concepts.

3.2 Schema pre-processing

The phase of schema pre-processing is very simple and consists of two different steps:

1. graph extraction;

2. property inference;
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Term t1
Term t0

…
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Sense si1

Sense si2

Sense si3

…

Figure 4: Annotation format for the kth schema element

3.2.1 Graph extraction

This phase consists of the extraction of a direct labeled graph from each of the considered
schemas. If they are well-formed RDF/OWL schemas, this step is very simple. In fact what
we want is a graph structure as general as possible in which both classes and user-defined
properties are nodes while edges can be only standard RDF constructs.

Single nodes have not a real meaning if considered as lonely entity but they are as-
sociated to their right names using a label arc: if we analyze only the node we can not
distinguish if it represents a class or a user defined property. To define relationships be-
tween schema elements we use RDF/OWL construction, like, for example, rdfs:subClassOf,
rdfs:subPropertyOf, domain and range which became the graph edges. This is the reason
why if we have a well-formed RDF schema this phase is so simple. Figure 5 shows a por-
tion of a original schema format (Figure 5(a)), as we can represent it just read from a file,
translated into the correspondent standard labeled graph (Figure 5(b)) just described.

As the big amount of RDF construction types we performed tests to estimate matching
effectiveness using only subsets of them. In particular we noted that best performances were
obtained using only:

• subPropertyOf;

• subClassOf;

• label;

• type;

• domain;

• range;

For this reason our graph can have at most these arcs types. It is possible, in fact to restrict
the range of possible properties choosing them before running the algorithm.

3.2.2 Property inference

Before skip to the basic matching computation, we perform inferences on the schema prop-
erties. In particular, subClassOf and subPropertyOf arcs are analyzed because, having a
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Figure 5: Representation of a portion of the original schema, as we can read from a generic
input file (a), with the corresponding portion of the direct labeled graph created (b).

such that chain like that in Figure 6(a) in the schema, it is possible to define relationships in
order to connect all the involved chain concepts.

As we can see in the Figure 6(b) we created three new arcs that connect class c3 with
class c1 and class c4 with classes c2 and c1.

These new relationships don’t provide any additional information but they can be useful
in the similarity calculation between two concepts because, as we can see in the next sec-
tion, it is performed analyzing similarity between near elements (neighbors). As subClassOf
and subPropertyOf are relations expressing concept specialization it is absolutely rightful to
consider as neighbor of one chain element all the other ones.

A further pre-processing operation that is a part of the property inference procedure,
concerns only subPropertyOf arcs. Imagine a situation like that of Figure 7(a) in which
property p has class c as domain and represents a super-property for p1, p2 and p3. This
means that relations

1. (p1, subPropertyOf, p);

2. (p2, subPropertyOf, p);

3. (p3, subPropertyOf, p).

are defined in the schema. Even if it should not appear formally correct, it is allowed not to
define the sub-property domain. In this case, it is possible to perform an inference operation
by which three new domain arcs, that connect respectively p1, p2 and p3 to c, are created.

Two clarifications must be provided about that. The first one is that this inference is not
allowed in the opposite case wherein a domain relationship is defined for sub-properties but
not for super-property. Second the procedure does not chance if we know the range instead
of the domain or even both of them.

3.3 Matching computation

In this phase our goal is to find all the possible matches between single classes and proper-
ties starting from the expanded annotated schemas.

Our matching technique is inspired by the Similarity Flooding approach by Garcia-Molina
et al [7]. The algorithm works starting from two direct labeled graphs that, as said in Sec.
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Figure 6: Property inference for a subClassOf arc chain

cpdomain
p2 p3subPropertyOfsubPropertyOfp1 subPropertyOf

(a)

domain
domain domaincpdomainp1 p2 p3

(b)

Figure 7: Property inference related to subPropertyOf arcs with undefined domain or range

3.2.1, represent both classes and user-defined properties as nodes. Graphs are used in a
iterative fixpoint calculation whose results tell us which nodes in the first one are similar to
nodes in the second one. The two direct labeled graphs are respectively:

G1 = (V1, E1) G2 = (V2, E2)

where V1 and V2 are vertex sets and E1 and E2 are edge sets.
Starting from G1 and G2 an auxiliary structure is created: the pairwise connectivity graph

(PCG). A PCG is defined as:

((x, y), p, (x′, y′)) ∈ PCG(G1, G2) ⇔ (x, p, x′) ∈ G1 and (y, p, y′) ∈ G2

Each node in the connectivity graph is an element from the cartesian product between nodes
from G1 and nodes from G2. We call such nodes map pairs. The intuition behind arcs that
connect map pairs (x, y) and (x’, y’) is that if x is similar to y then probably x’ is somewhat
similar to y’. This is evidenced and captured by the property p that represent an edge in
the connectivity graph leading from (x, y) and (x’, y’). For this reason (x, y) and (x’, y’) are
neighbors.

The PCG is then extended: for every edge a new one going in the opposite direction is
added. Weights are placed on each arcs in order to indicate how well the similarity of a given
map pair propagates to its neighbors and back. These so-called propagation coefficients
∈ [0, 1] can be calculated in many different ways. For example, most of the time in our
calculation, we use an average approach based on the intuition that each edge type makes
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Figure 8: Similarity table for concepts productCategory and productFamily and for
single terms category and family

an equal contribution of 1.0 to spreading of similarities from a given map pair. For this reason
the weight of a certain type p-edge leaving from a map pair (x, y) is given by:

1.0
number of that type pi edge leaving from (x, y)

Each PCG node composed of two literals is assigned an initial score quantifying the
semantic similarity between the involved resources. As said in Section 3.1 given n1 ∈ G1

and n2 ∈ G2, we can have:

• {t11, ...t1n}: term set associated to n1 and {t21, ...t2m}: term set associated to n2

• {si1 , ...sih}: sense set associated to t1i , i = 1, ...n and {sj1 , ...sik}: sense set associated
to t2j , j = 1, ...m

The idea is to define a way to compute the similarity between two senses sil and sjl′ , then to
perform a two stage aggregation in order to obtain first similarity between terms (t1i and t2j )
and then between relative nodes.

Three methods can be used to compute initial similarity between different senses:

1. Path-based similarity : exploits WordNet hypernym/hyponym hierarchies between synsets;

2. PageRank based similarity [A. Esuli & F. Sebastiani, 2007];

3. WordNet::similarity.

In our computation we use the first one: scores for each pair of senses (sil sjl′ ) are obtained
by computing the depths of the synsets in the WN hypernyms hierarchy and the length of the
path connecting them as follows:

2 · depth of the least common ancestor

depth of sil + depth of sjl′

The first aggregation stage is characterized by the function gs which allows to pass from
the single sense similarities {sim(sil , sjl′ )}, l = 1, ...h, l′ = 1, ...k, i = 1, ...n and j = 1, ...m, to
term similarity sim(t1i , t

2
j ). The second step, otherwise, involves the function gt that, starting
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from terms, returns the similarity between nodes (sim(n1, n2)). In our computation we chose
the max for gs and a weighted mean for gt but any aggregation function is possible.

Focus on gt the weight are represented by:

1. a highest coefficient used for similarity between main terms to give them the most
importance;

2. a lowest coefficient used for similarities involving only one of the two main terms be-
cause most probably such couples are not significant;

3. an intermediate coefficient used for all the other similarities which can help in identifying
concepts context.

Example 3.2 Figure 8 shows an exemplification of the process for computing the initial sim-
ilarity between the concepts productCategory and productFamily considered in Ex-
ample 3.1. The final value (0.84) derives from the aggregation gt of the similarities between
all term pairs (the values shown in the upper table). For instance, the similarity between the
main terms, which in this case are family and category, is 0.89. This derives in turn
from the aggregation gs of all the different senses associated to such terms (lower part of the
figure).

Initial similarities are then refined by a iterative fixpoint calculation as the basic assump-
tion is that whenever any two nodes in G1 and G2 are found to be similar, the similarity of
their adjacent elements increases. On the other hand that similarity decreases if they have
very different neighbors. Thus, over a number of iterations, the initial similarity of any two
nodes propagates through the graphs. Let σ(x, y) ≥ 0 be the similarity measure of nodes
x ∈ G1 and y ∈ G2. We refer to σ as a mapping whose values are calculated in a iterative
computation: Let σi denote the mapping at the ith iteration while σ0 represents initial simi-
larities, in every step, the σ-values for a map pair (x,y) are incremented by the σ-values of
its neighbor pairs in the propagation graph multiplied by the propagation coefficients on the
edges going from the neighbor pairs to (x,y). In general, mapping σi+1 is computed from
mapping σi as follows:

σi+1 (x, y) = σi (x, y) +
∑

(au,p,x)∈G1, (bu,p,y)∈G2

σi (au, bu) · w((au, bu), (x, y)) +

∑

(x,p,av)∈G1, (y,p,bv)∈G2

σi (av, bv) · w((av, bv), (x, y))

where w((au, bu), (x, y)) is the propagation coefficient on the graph edge that goes from
(au, bu) to (x, y). In each of such steps it is required to normalize σi for example divided all
for the maximal σi-value of the current iteration.

This computation is performed iteratively until the Euclidean length of the residual vector
∆(σn, σn−1) becomes less than a certain ε for some n > 0. If the computation does not
converge, we terminate it after some maximal number of iteration or a certain time.

The resulting similarities of the PCG nodes give rise to a multimapping representing all
the possible matches between nodes so it contains many potentially useful mappings as
subsets. Single matches are expressed as {(n1, n2, sim) | n1 ∈ G1, n2 ∈ G2, sim ∈ [0, 1]}
where the score sim is fundamental to extract the more relevant mapping. Each node of
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company 0.82 enterprise

PEER2 SCHEMAPEER1 SCHEMA

product
Category

product
Family

shop

0.96
M= (company, enterprise, 0.82)

(productCategory, productFamily, 0.96)
(contacts, shop, 0.08)

contacts 0.08
Figure 9: Example of multimapping

one graph can be associated to more than one node of the other but they must be of the
same category, i.e. both classes or both properties. Despite it could be too limitative in
our computation we exclude the class-property match because otherwise a lot of problems
would be coming out during the query rewriting procedure that would have loose its general
features. We have decided so as the matching phase is not an end in itself but it is targeted
for the query rewriting that must be consistent and efficient.

Such “basic” matches will be refined to the final mapping in the subsequent refinement
phase (Section 3.4). They will also constitute the starting points for the final matching phase
(Section 3.5), which will be able to discover advanced matches, specifically the ones where
properties match compositions of concepts (paths) rather than single properties. In this
way, through the different phases we are able to deal with gradually more complex matching
problems, thus allowing the more difficult and possibly error-prone matching evaluations to
be supported by all the previously computed results.

Example 3.3 The upper part of Figure 9 depicts a small portion of the multimapping for
source classes company, productCategory and contacts. From these correspon-
dences, a mapping M (lower part of the figure) will be extracted in the next matching phase.

3.4 Refinements

The refinements phase takes as input the multimapping returned from the previous phase
and, using the list of ranked map pairs, it extracts a consistent and correct mapping between,
first, single classes and, second, single properties. Such order is fundamental because, as
in our Semantic Web project scenario classes bear the largest part of the schema meaning,
their correspondences will became the bases on which to find the following property and
path matchings. This also allows query reformulation, which represents the major final goal
of our matching computations, to be kept light while always performing naturally consistent
and correct rewritings.

3.4.1 Class - class matching

The goal of the first refinement step is to finalize the correspondences between classes. The
fundamental step in this phase is represented by the stable marriage filter which produces
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the best matching for our schemas taking as input the multimapping. It bases on the intuition
provided by the so-called Stable marriage problem. In one of its instances, each of m men
and w women lists the members of the opposite sex in order of preference. A stable marriage
is defined as a complete matching of men and women with the property that there are no
two couples (x, y) and (x′, y′) such that x prefers y′ to y and y′ prefers x to x′. For obvious
reasons, such a situation would be regarded as unstable. Naturally, in our computation, men
represent source schema elements and women represent target schema elements.

The problem of this approach is that the stable marriage is able to find only 1:1 matches,
while, in our experience we often need to have 1:N correspondences. In fact, as we can see
in Figure 10(a) it is possible, and even frequent, that a class in one schema corresponds
to more classes in the other one. This is evident in the multimapping because those pairs
present very close, or ever equal, similarity values as appear for (market, store) and
(market, shop) of the example. For this reason a threshold τDH (Dead-heat)is defined
in order to create equivalence classes that share a very close similarity. Taking a (c1, c2, sim)
that is a class-class match, if an element (c1, c

′
2, sim

′) exists such that sim − sim′ ≤ τDH ,
they are put in the same equivalent class that presents as comprehensive similarity value
the maximum one. This became the real stable marriage input, that so, allow to find 1:N
correspondences.

At this point of the computation we have the best matching but it may contains couples
of concepts with a vary low similarity and so, not relevant for our purpose. For this reason
a pruning threshold filter can be applied in order to extract only significant results. It simply
consists of the definition of a pruning threshold value τP and analyzing the stable marriage
output: only couples that have sim > τP are selected for the final mapping.

Example 3.4 With regards to Example 3.3, the output mapping fragment M is shown in the
lower part of Figure 9. In particular, the two couples are the direct output of the stable
marriage filter. Notice that contacts, which has no correspondence in the target schema,
correctly does not appear in M due to the application of the threshold filter (threshold 0.2).

Refinements parameters can be changed to run different tests, but they especially can
be excluded from the computation in order to measure how much they are essential in the
matching computation effectiveness.

3.4.2 Property - property matching

The second refinement step involves the property matching results extraction. As already
discussed, at this point we assume correctness of the class mappings, so we can start from
this to define the property mappings. Such procedure is absolutely analogue to the class
one but in this case not all the property are accepted. In particular a property p1 = (l1p, c

1
d, c

1
r)

can be mapped to a semantically related property p2 = (l2p, c
2
d, c

2
r) only if (c1

d, c
2
d) and (c1

r, c
2
r)

are both class mappings.

Example 3.5 Let us have a look at Figure 10(b) and in particular at proper-
ties company.location and market.location (source schema on the left) and
enterprise.mainLocation (target one). Even if their main term (“location”)
and annotations are the same, the only right map pair is (company.location,
enterprise.mainLocation) and this is also the only one which is allowed, as evi-
denced by the final mapping. In particular, the presence of (company, enterprise)
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and (location, location) in the class mapping satisfies the check, while, for instance,
the absence of (market, enterprise) in the mapping rejects (market.location,
enterprise.mainLocation).

PEER2 SCHEMAPEER1 SCHEMA

market

market.name

xsd:string

shop.namestore.name

0.89

0.89

xsd:string

store shop

(a)

market

location

market
.location

enterprise

enterprise
.mainLocation

location

PEER2 SCHEMAPEER1 SCHEMA

(b)

Figure 10: The left figure shows an example of 1:N matches while the right one shows a
previously property exclusion

3.5 Path Matching Computation

The goal of this last phase is to enhance the final matching completeness by enriching it
with possibly advanced and “mixed” matches which could not be discovered by the basic
matching algorithm. In particular, in the most general case, we are now ready to compute
correspondences between a property and a path, i.e. a composition of concepts. To do
that we assume the completeness and correctness of both classes and properties mappings
obtained from previous phases but we know that this could not be enough: there may still be
unmatched properties, since there may be more subtle correspondences between schemas.
This is a challenge for OWL schema matching right now, so we propose a specifically devised
semi-automatic approach exploiting different techniques based on label similarity, automatic
semantic path categorization and user feedback learning. Such approach can provide more
and more precise suggestions about possible complex mappings.

The first step for this method consists of the identification of all those properties which
have been excluded during previous phases. For each unmatched property p1 = (l1p, c

1
d, c

1
r)

in source schema it is necessary to:

1. extract from the mapping, if exist, classes c2
d and c2

r of the target schema, related to c1
d

and c1
r;

2. find all the possible paths that connect c2
d and c2

r.

Having a property and a series of possible corresponding paths we apply two indepen-
dent methods:

• Label similarity ;

• Category confidence from category pattern learning.

They are run independently from each other and both return a ranking of the schema paths
which is often different from the other one. For this reason a ranking fusion is necessary in
order to have the best correspondences considering both results.
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3.5.1 Label similarity

The label similarity technique provides a first method to coarsely evaluate path correspon-
dences without the need of any previous user intervention. It consists of the global evaluation
of all the similarities between the source schema property p1 and each single component
(class or property) of a target schema path. We denote with S the sum of all these similar-
ities normalized by the length of the path. In particular, given the kth path (p2

1, ...p
2
h) going

from c2
d and c2

r we can define an Sk label similarity value for each of them as:

Sk =

∑
i=1,h sim(p1, p2

i ) +
∑

i<h sim(p2, c2
ri

)
l

with l the number of properties and classes of that path, excluding c2
d and c2

r. Similarities are
extracted directly from the basic matching computation output as we need information that
can not be contained into results coming out refinement procedure. Notice that normalizing
the S-value using the length of the considered path helps us in avoiding that very long chains
of concepts, which rarely are significant for our scope, become part of the mapping. Once
having obtained a S-value for each of the target schema path it is necessary to create the
ranking for them. To do that we simply order S-values, and consequently paths related to,
from the bigger to the smaller one. It is possible also to apply a sort of threshold filter in order
to immediately exclude from the ranking paths with too low similarity with p1 to be considered
relevant. The obtained result is the Similarity label ranking.

Example 3.6 Let us consider property marketOffers in the source schema (Figure
2(a)), for which no corresponding single property exists in the target schema. Indeed,
it should correspond to the path isMember-product-storeOffers or equivalently to
isMember-product-shopOffers of the target schema (Figure 2(b)). Figure 11(a) shows
the label similarity computation involved in this case.

3.5.2 Category confidence

In order to enhance the matching suggestions’ effectiveness, we complement the label simi-
larity approach with a learning one, which is able to learn from users feedback. The initial aim
is to classify user-defined properties using a defined set of categories as we are interested
in limiting the infinite set of possible properties so to be able to create significant statistics.

In our project scenario, we perform categorization w.r.t. the Global Mind knowledge base
(GM) [3], a database containing lots of current English language sentences expressed as
triples in the form of subject + verb + complement and categorized into 20 groups, as, for
example:

• LocationOf

• CapableOf

• UsedFor

• PartOf

• ...
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productCategory

market.offers

market

productFamily

isMember

product

store.offers

store

0.27

S1 = 0.49
(a) Computation of the label similarity value
S related to property pa and one of the pos-
sible corresponding paths.

productCategory

market.offers

market

productFamily

isMember

product

store.offers

store

capableOf partOf

capableOf

(b) Example of property categorization using Global
Mind.

Figure 11: Different steps in the semi-automatic approach to find matching between a prop-
erty and a path.

In our Category confidence approach we first have to categorize the source schema
property p1 using Global Mind, analyzing its similarity with one of the sentences contained.
Then this is done also for all concepts composing all the target schema paths but in this case
we keep an internal representation of each path as a sequence of Global Mind categories,
call them category paths. We also introduce a sort of approximation in the categorization
process. In particular, a maximum score is assigned if a sentence exists corresponding
exactly to (cd, p, cr), while a lower score is given if only two or, possibly, one of the three
concepts are present. Further, a path-based similarity like the one used in the basic matching
computation can be applied to further enhance the categorization effectiveness.

In correspondence of a given property category and of the possible path categories found
out in the source and target schemas, the algorithm internally keep up to date some statistics
accounting the number of times such correspondence appears (Nfind) and the number of
times it has been effectively chosen by user (Nright).

Let us now analyze how path matching is performed for a given source schema property
p1. The first time all Nright = 0 but they are updated as user make a decision on which
match is the right one. The algorithm starts presenting all the possible corresponding target
schema paths ordered according only to the label similarity ranking. User must choose one
of them (if any) for the final mapping and, basing on his decision, statistics are updated
increasing the related Nright value. During the computation for a subsequent property of the
same category, a so called category confidence level (CL) is computed as

CL = Nright/Nfind

for each associated category pattern found in the statistics. On the basis of CL, paths are
sorted on a category confidence ranking and this means that paths are ordered upon the
matching most probable candidate for that property category.

This is a learning procedure as the algorithm is able to get knowledge from user’s de-
cision, to applying it to category patterns and to provides more and more precise mapping
suggestions as path ranking. On the other hand this absolutely remains a semiautomatic
approach as the algorithm returns just tips and user must take the final mapping decision.
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PEER1 
SCHEMA

PEER2 
SCHEMA Nright Nfind

capableOf partOf
capableOf 8 11

… … …

CL = 0.73

Figure 12: Category confidence level computation

productFamily

requestBy

enterprise

providedBy

productCategory

producedBy

company

PEER2 SCHEMAPEER1 SCHEMA

Figure 13: Two possible path that connect two concepts in Schema B. The algorithm is able
to decide which of them is the right correspondence for the Schema A property.

3.6 Output result

At the end of the computation the matching algorithm produces a result similar to the one
shown in table 1. This is the final mapping which contains all the relevant couples of similar
concepts from the two schemas. As we can see in the first and in the third row of table
1, this algorithm is able to find semantic correspondences between terms annotated only
in a similar way, for example using synonyms. This is very important in order to provide
an efficient and robust mechanism able to hack it heterogeneity of schemas. Moreover if
we have a situation like that in Figure 13 where we have two couples of classes in the final
mapping but, during the property matching we find that target schema classes are connected
by two or more paths (composed of only one property). The algorithm can extracts only the
correct match between for the source schema property.

The matching algorithm produces also an xml file containing all the information about
the final mapping. This will be read by the query rewriter in order to understand concept
similarities to perform its job.

The file is composed by different sections: the first one is a description of the original
source and target schemas as a simple list of classes and properties:
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SCHEMA A SCHEMA B SIM
company enterprize 0.81838
location location 0.95719
market store 0.81556
market shop 0.81556

producedBy proviededBy 0.76328
company.location enterprize.mainLocation 0.89398
company.location enterprize.otherLocation 0.89398

isMember
market.offers product 0.65285

store.offers
... ... ...

Table 1: Example of matching algorithm result representing only correct and more significa-
tive mapping couples. First three rows correspond to class matching while the other are
about property matching. The last column (SIM) shows similarity values between concepts.

< schemaInfo >
< schema > Schema1.rdf < /schema >
< nodeInfo >
< path > http://www.nep4b.owl#company < /path >
< /nodeInfo >
< nodeInfo >
< path > http://www.nep4b.owl#market < /path >
< /nodeInfo >

Then it follows the class mapping set:

< schemaMatch >
< schema1 > Schema1.rdf < /schema1 >
< schema2 > Schema2.rdf< /schema2 >
< nodeMatch >
< node1 > http://www.nep4b.owl#company < /node1 >
< node2 > http://www.nep4b.owl#enterprise < /node2 >
< sim > 0.81838 < /sim >
< /nodeMatch >

and the property mapping set:

< nodeMatch >
< node1 > http://www.nep4b.owl#company.location < /node1 >
< node2 > http://www.nep4b.owl#enterprise.mainLocation < /node2 >
< sim > 0.89398 < /sim >
< /nodeMatch >
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4 Semantic Peers

In this section, we introduce the basic concepts routing mechanism relies on, although rout-
ing is not properly a point of this document. We do that because we are interested in defining
some aspects, like semantic path and generalized semantic mapping, directly related to what
we have already discuss about.

These concepts are defined in a fuzzy theoretical framework. Fuzzy set theory has been
widely applied in contexts where uncertainty of description is intrinsic in the nature of data,
most notably in the case of multimedia data [4, 8]. We deem that these principles can provide
a valid support to deal with the semantic approximation originated by the heterogeneity of
the schemas in a PDMS.

4.1 Semantic path

A semantic path [6] is a chain of semantic mappings connecting a given pair of peers.
Through the reformulation of a query along the mappings composing a semantic path, the
PDMS can access data on remote peers. As a local semantic mappings may involve seman-
tic approximations, the semantic approximation given by a semantic path can be obtained
by composing the fuzzy relations understood by the involved mappings. This relies on the
notion of generalized composition of binary fuzzy relations [9]: given a t-norm1 I and the
semantic mappings, M(Si, Sj) ⊆ Si × Sj and M(Sj , Sk) ⊆ Sj × Sk, the I-composition of
M(Si, Sj) and M(Sj , Sk) is the semantic mapping M(Si, Sj) ◦I M(Sj , Sk) ⊆ Si × Sk. This is
defined by: [M(Si, Sj) ◦I M(Sj , Sk)](C,C ′′) = I[M(Si, Sj)(C,C ′),M(Sj , Sk)(C ′, C ′′)], ∀C ∈
Si, C

′′ ∈ Sk, withC ′ ∈ Sj .
After the definition of composition of mapping we can pin down on a semantic path.

Given a t-norm I and < M(S1, S2), ..., M(Sk−1, Sk) > that is a sequence of mappings
connecting peer p1 with peer pk, the path Pp1...pk

⊆ S1 × Sk is the semantic mapping
M(S1, S2) ◦I ... ◦I M(Sk−1, Sk). The composition function should capture the intuition that
the longer the chain of mappings, the lower the grades, thus denoting the accumulation
of semantic approximations given by a sequence of connecting peers. In order to obtain
such effect of semantic attenuation due to the chain of mappings from C1 to Ck in the
schema of a peer pk which is far away form p1, a possible choice for the t-norm I is the
algebraic product I(µ, µ′) = µ ∗ µ′. In fact, given that the arguments are grades in [0,1], their
algebraic product is still in [0,1] and it is lower than or at most equal to its arguments.

4.2 Generalized semantic mappings

The query execution process starts from the querying peer which reformulates the query
over its immediate neighbors, than over their neighbors and so on. Thus, from a multi-step
reformulation point of view, whenever a query posed over peer pi is reformulated over pj , the
query is moving from pi to the subnetwork rooted at pj and it might follow any of the semantic
paths originating at pj . In order to model the semantic approximation of the pj ’s subnetwork
w.r.t. the pi’s schema, the semantic approximation given by each path in the pj ’s subnetwork
are aggregated into a measure reflecting the relevance of the subnetwork as a whole.

1A t-norm I is a binary operation on [0,1] that is monotone, commutative, associative and it satisfies the
boundary condition I(a, 1) = a∀a ∈ [0, 1].
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To this end, the notion of semantic mapping is generalized as follows [6]. Let p4j denote
the set of peers in the subnetwork rooted in pj , S4j the set of schemas {Sjk

|pjk
∈ p4j } and

P
pi...p

4
j

the set of paths from pi to any peer in p4j . The generalized mapping relates each

concept C in Si to a set of concepts C4 in S4j taken from the mappings in P
pi...p

4
j

, according

to an aggregation score which expresses the semantic similarity between C and C4.
Given two peers pi and pj , not necessarily distinct, and an aggregation function g, we

can formally define a generalized semantic mapping between pi and pj as a fuzzy relation
M(Si, S

4
j ) where each instance (C, C4) is such that:

• C4 is a set of concept {C1, ..., Ch} associated with C in P
pi...p

4
j

• µ(C, C4) = g(µ(C, C1), ..., µ(C, Ch)).

As to the function g, the following properties, which express the essence of the notion of
aggregation [9], must hold:

1. g is monotonic increasing in all its arguments;

2. g is a continuous function;

3. g respects the boundary conditions g(0, ..., 0) = 0 and g(1, ..., 1) = 1;

4. g is a symmetric function for all its arguments;

5. g is a idempotent function, that is, g(a, ..., a) = a∀a ∈ [0, 1].

The last two conditions are usually expected when one refers to aggregating operations on
fuzzy sets. Several choices are possible for g, for instance function such as the min, the max,
any generalized mean or any ordered weighted averaging function.
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5 Multimedia Data Indexing

5.1 Multimedia Routing Index

In this section, we describe our proposal of Multimedia Routing Index that supports similarity
search over sets of multimedia attributes for content-based retrieval.

This problem of similarity searching can be formalized by the mathematical notion of met-
ric space, so data elements are assumed to be objects from a metric space domain where
only pairwise distances between the objects can be determined by a respective distance
function.

More formally, a metric space is defined by a domain of objects D (elements, points) and
a distance function d – a non-negative and symmetric function which satisfies the triangle
inequality d(X, Y ) ≤ d(X, Z)+d(Z, Y ), ∀Z, Y, Z ∈ D. The focus of this paper is on similarity-
based Range Queries over multi-feature metric objects, defined as follows: given a database
D ⊂ D of objects, a query object Q ∈ D, and a positive range r ∈ R, a query Q = (Q, r) has
to retrieve the set {X ∈ D | d(X,Q) ≤ r}.

In the rest of this paper we use the following conventions. We consider a P2P network
composed by N peers. Each peer P knows a a set of other peers directly connected to it.
This set is called the neighborhood of P and is denoted with Nb (P ). Moreover, P owns a
set of data objects, called local repository. We denote it with Data (P ). We use the qualifier
“data” in order to distinguish it from metric objects. Every data object O of such repositories
is characterized by a set of multimedia features. A feature is a metric object extracted from
the data object. For instance a data object could be a jpeg image, from which we can extract
two features, e.g. the texture and the color-histogram. OF indicates the value of feature F
for O, and DF its corresponding domain of metric objects. As done by other systems, we
index data objects with the help of some reference objects, or pivots. Each feature has its
own set of reference points. The cardinality of these sets may differs for different features.
Supposing that we have m reference objects, we denote with RF = {RF

1 , . . . , RF
m} the set of

such objects. Finally, in case of a single feature scenario, for sake of simplicity, we omit the
subscript symbol F since it is clear form the context.

5.2 Network Organization

Routing Indices are thought for unstructured P2P networks. No organization in special
shapes are required, in contrast to the DHT-based networks. Nonetheless, there exist one
problem for RIs related the P2P system topology.

Routing Indices collect and summarize the information about objects located in a given
portion of the network. If the network present a loop, the information about the peers involved
in the loop could be duplicated. This behavior can be considered correct, since a node P
involved int he loop can reach the objects owned by another peer P ′ following the loop in one
sense or or in the other. Anyway, since RIs store only the information about object values
and not about object’s owners, a request could be sent along both sides of the loop only to
reach the same node twice.

In order to avoid such a problem, we decided to keep inside each node a cache of the
IDs of already received updates. Each information is maintained for a given time and is used
to reject updates that are received twice or more from different neighbors. The result is that
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updates about newly available objects are stored by a peer only for one side of a loop, thus
avoiding to replicate object information and then improving the query forwarding process.

Given this mechanism for updating the indices, the information collected by each RI
comes from a loopless part of the network. Thus, the index associated with a peer Pj of
a node P represent the values of objects stored in a logical tree rooted on Pj . From now on,
we refer to this logical tree as T (P → Pj)

5.3 Data Indexing

The data indexing process is intended to produce a summarized description of all the fea-
tures of the objects owned by each peer in order to produce efficient multi-feature Routing
Indices. The aim of these indices is to provide a concise but yet sufficiently detailed de-
scription of the resources available in a given network area. This information is then used at
query-resolution time to prune entire system zones from searching, thus easing the search
process.

Since we are considering objects in a metric space, we use reference objects and the
triangle inequality as the base for building our Routing Indices. When dealing with metric
objects, the triangle inequality property is exploited to build indices that allow us to select
only some subsets of candidate objects, among which the objects relevant to the query can
appear. These indices permit to save work: only for the candidate objects X we need to
compute the distances d(Q,X) in order to determine the relevant objects with respect to
query Q = (Q, r).

Several indices have been proposed so far [2]. We will refer to the the well known tech-
nique of reference objects (or pivots) to transform each indexed object and query object into
a vector of distances from the m reference objects R = {R1, . . . , Rm}. In particular, given
X ∈ D, function T : D ×R → Rm transforms x as follows:

T (X,R) = (d(X, R1), . . . , d(X, Rm))

Due to the triangular inequality property of metric spaces, using L∞ we obtain a contractive
mapping in the new vector space, such that L∞(T (X), T (Y )) ≤ d(X, Y ).

Therefore, given Q = (Q, r), we have to check regions of our mapped space that include
objects X such that
L∞(T (Q, R), T (X, R)) ≤ r, i.e., such that maxm

i=1(|d(X, Ri)− d(Q,Ri)|) ≤ r.
Then L∞(T (Q,R), T (X, R)) ≤ r is a necessary condition for d(Q,X) ≤ r, and thus for

X to be a relevant objects for query Q = (Q, r). Unfortunately it is not a sufficient condition
too. Therefore, for all the objects X such that L∞(T (Q,R), T (X, R)) ≤ r, we need to check
whether d(Q,X) S r. However, thanks to the triangular inequality, we can prune all the
objects for which
L∞(T (Q, R), T (X, R)) > r.

In conclusion, we need only to check regions of our mapped space Rm centered in
(d(Q,R1), . . . , d(Q,Rm)), such that [d(Q,Ri) − r, d(Q,Ri) + r] for each reference object Ri

(i.e., for each dimension i of Rm).
Practically , first we compute the vector

(d(Q,R1), . . . , d(Q,Rm)) ∈ Rm, and then select all objects X, already mapped in Rm, such
that each component d(X, Ri) of the vector associated with X falls into interval [d(Q,Ri) −
r, d(Q,Ri) + r].
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The situation depicted above refers to object with a single feature. In presence of a multi-
feature objects, we have to take into account that each feature is characterized by its own
set of reference objects and, consequently, its own distance definition. Usually, the metric
distance d between multi-feature objects is defined as a linear combination of the various
metric distances dj , where each dj is defined on the basis of the j–th feature extracted from
each object:

d(X,Y ) = α1d1(XF1 , Y F1) . . . + αndn(XFn , Y Fn)

where αj ∈ R, αj ≥ 0, are scalar coefficients, and XFj , Y Fj ∈ DFj . If each component dj of
this linear combination is metric, it can easily be shown that also distance d is metric.In this
way, we obtain a new (combined) metric space D that is the result of the fusion of n metric
spaces (features) DF1 , . . . ,DFn .

While we can always define an index on the basis of the total distance d, thus considering
all the features extracted from the multimedia objects, one can also be interested in making
query definition more flexible for the users. For example, to allow them to specify similarity-
based queries that only consider a subset of all the features extracted from the multimedia
objects, or to change the coefficient αj of the linear combination defined above.

Unfortunately, in order to provide such flexibility, we have to define a separate index
for each of the component distances dj of the linear combination of d, thus mapping each
single feature object into a separate vector of distances from m reference objects R =
{R1, . . . , Rm}. Note that the reference objects, used to map the feature objects onto a vec-
torial space Rm, can be the same for all the features, or can be different for each of the
features considered. Since query Q = (Q, r) has to retrieve the set Obj(Q, r) = {X ∈ D |
d(X, Q) ≤ r}, but we do not have an index defined over d, we can only try to extract the
candidate objects of each set Objj(QFj , r) = {XFj ∈ DFj | αjdj(XFj , QFj ) ≤ r}. Only
objects that are found to belong to all sets Objj(QFj , r) can belong to Obj(Q, r).

Theorem 1 X ∈ Obj(Q, r), where Obj(Q, r) = {X ∈ D | d(X,Q) ≤ r} ⇒ ∀j, XFj ∈
Objj(QFj , r), where
Objj(QFj , r) = {XFj ∈ DFj | αjdj(XFj , QFj ) ≤ r}.

Proof Since d(X,Q) ≤ r, where d(X,Q) =
α1d1(XF1 , QF1) + . . . + αjdj(XFj , QFj ) + . . . + αndn(XFn , QFn), and each single member
of this summation must not be negative (αj ≥ 0, and also dj(XFj , QFj ) ≥ 0, due to the
positiveness property of metric distance), then we can deduce that for all j ∈ {1, . . . , n},
αjdj(XFj , QFj ) ≤ r (i.e., XFj ∈ Objj(QFj , r)). ¥

Theorem 1 states that a necessary condition to have d(X, Q) ≤ r for a given object
X ∈ D is that dj(XFj , QFj ) ≤ r for all feature objects j ∈ {1, . . . , n}. Obviously, the last
condition is not a sufficient one, so that, when we select all the objects X ∈ D, such that ∀j,
X ∈ Objj(q, r), many of them will not be relevant for the range queryQ = (Q, r), because the
linear combination d(x, q) will result greater than r. Therefore, by building a separate index
for each feature objects, we trade flexibility, since we allow users to determine which combi-
nation of features to consider when formulating query Q, for additional work in selecting the
real relevant objects.

All the facts stated above are used to build the indices used in our system. As stated in
the previous sections, we make use of Routing Indices for forwarding queries toward network
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Figure 14: Creation of a single local index

Figure 15: A peer’s histogram for a reference object Rj

areas of potential interest. Routing Indices provide a concise representation of the objects
available in a given zone of a P2P network. In order to achieve this goal, for each object
O we need a different representation of O’s features values. For each feature Fj and its
set of associated reference objects RFj = {RFj

1 , . . . , R
Fj
m }, we encode the value dj(O, R

Fj

i ),
i = 1, . . . , m, with a k bit binary vector

DataIdx (O)
R

Fj
j

= (b0, b1, . . . , bk−1) (1)

such that bc = 1 if and only if d(OFj , R
Fj

i ) ∈ [ac, ac+1). An example of such a representation is
given in Figure 14. Both the parameter k (number of elements of the vector) and the division
points a0, a1, . . . , ak may be different for each reference object of each feature type. Thus,
each feature is now characterized by a set of m bit vectors, one for each of the feature’s
reference objects. Each of these vectors shows which is the interval in which falls the real
distance of the data object from a reference object.

Such simple object indices become useful to construct a concise description of all the
data owned by a peer. The peer index, wrt a reference object Ri, is obtained by simply
summing the indices of all the objects of the local repository of P :

NodeIdx (P, Fj)Rj
≡

∑

O∈Data(P )

DataIdx (O)
R

Fj
i

(2)

The final result is a vector that represent how the objects of the peer are distributed with
respect to the feature of the reference object Rj , as illustrated in Figure 14.

The next step allows the construction of Routing Indices and thus the spreading of ob-
ject information along the network. RIs are characterized by the fact that they represent a
summarization of all the objects values that can be found in a given zone of a P2P network.
Since the index of a peer’s objects are already in a condensed form, we can exploit them to
obtained the final RIs.
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1 1 2 0 0

0 1 3 0 0

0 0 2 0 0

1 0 4 0 1

8 1 4 0 3

8 1 4 0 3

0 4 7 3 0

0 4 7 3 0

2 2 11 0 1

Figure 16: Construction process of the Multimedia Routing Index.

Let us consider a generic peer Pi. For each neighbor Pj ∈ Nb (Pi), Pi keeps information
on the data items which can be found by following the link {Pi, Pj} on the overlay network.
For this purpose, Pi maintains an index called LinkBitIdx (Pi → Pj , F )Rk

for each reference
object Rk of each feature F of the data items in T (Pi → Pj). Since Pi can receive information
only from its neighborhood, the index is calculated recursively in the following way:

LinkBitIdx (Pi → Pj , Fj)
R

Fj
k

≡ NodeIdx (Pj , Fj)Rk
+

∑

P∈Nb(Pj)−Pi

LinkBitIdx (Pj → P, Fj)Rk

The final result is that the index contains the sum of all the vector indices NodeIdx (P, F )Rk

associated with every peer in T (Pi → Pj).

As it is clarified in the Deliverable D.4.3.1, this index is exploited during the query eval-
uation in order to drive the query to the peer that best match the query. In fact, since the
MRI is composed of histograms of the distribution of objects with reference to every feature,
it is possible to know the number of potentially matching objects. This possibility gives us the
ability to perform different query forwarding strategies. One of this strategies consist in allow-
ing a peer p, that has to forward a query, to select its neighbors on the basis of the number
of potential matchings they have in their subnetworks. The selection is made using what we
call the requested coverage, i.e. the neighbors the query is to be forwarded to must have a
number of matchings that is equal or above a given percentage of all the possible matchings
given by the routing indices. The aim of this process is to further reduce the number of query
messages, while trying to collect the largest number of results.

30/04/2009
FINAL

D4.2.1 - Design of procedures and structures for the support
of the inter-peer semantic queries

Page 27 of 37



NeP4B project — Firb 2005 — Networked Peers for Business

6 Matching Experiments

In this section we present a selection of the results we obtained through the experimental
evaluation performed on the matching procedure.

In the first subsection we discuss results relative to the current reference scenario for the
NEP4B project while in the next one we analyze two different couples of schemas which are
been devised ad hoc to precisely evaluate the behavior of different features of our approach.

6.1 Tourism Scenario

Tourism scenario is the current reference one for the NEP4B project. We have at our disposal
three peers shown, respectively, in Figures 17, 18 and 19. They all contains a lot of concepts
but their structure is very light. In the reported figures we decided to leave out arc names for
sick of clarity but we have used different colors to distinguish them. In particular a purple arc
represents a domain relationship, a green one shows a range relationship and a blue one
is a subClassOf relationship. Object properties can be distinguished because they present
both the domain and range arcs while for datatype properties, which have always a range in
the rdf class ”http://www.w3.org/2001/XMLSchema#string”, we have decided to shown only
domain arcs.

Most significant results are about matching between Peer1 and Peer3 and they are shown
in Tables 2. Keeping constant the Dead-heat threshold value, we have varied the Pruning
threshold in order to maintain only most significant results. It is clear that, as we can see
in Table 1(a), without any pruning filter all matching couples are returned: both good ones
and bad ones, although their similarity is too low. Let’s see, for example, all inconsistent
mappings involving Peer1 concept hotels.email: they present the same small similarity
value and they are all wrong. As we can see later in Section 6.2, this is due to schemas
structure. On the other hand good results are represented by, for example, the matching
between the two classes (first two rows of the table) and, in general, can be recognized
thanks to a similarity value grater than 0.13 in the third column of the table.

Let’s look to Tables 1(b) and 1(c) to see that results are very good. In particular in the
first case we applied a pruning threshold of 0.10 while in the second one its value was of
0.15. Those values must not be compared to those reported in the third column of tables
because those final results are obtained by the computation of a relative similarity using
results coming from the self matching after the filter application.

In Table 1(b) not all results are really significative because we can see two mapping
involving Peer1 concept hotels.fax which are wrong together with matching between
hotels.web site and hotels.single room and between hotels.telephone and
hotels.code. Totaly we find 16 correct concept couples as in Table 1(a). This is a
good result as it means that pruning threshold filter has excluded only wrong mappings
keeping all the write ones. This is not true for the third case (see Table 1(c)) in which
not relevant results just said are rule out but also with a significant couple represented by
restaurants.locality and restaurant.province.

For this reason it must be careful to increase threshold filter because good results can be
pruned although it is clear that a mapping refinement is necessary with this kind of schemas.
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Figure 17: Peer1 schema

Figure 18: Peer2 schema

In appendix ?? analogues results are reported. In this case the matching computation
involves Peer1 and Peer2 and results are not as good as in the previous description. If we
look to Figure 17 and 18 we can see that Peer1 presents classes hotels and restaurants
while Peer2 has hotels, campings, accommodations and facilities so, it’s evident
they have very different schema structure. Matching computation feels the effect of this
difference and so results are those shown in Tables 5, 6 and 7. Experiments have been done
exactly in the same manner as in the previous description three tables refers respectively to
proves done without a pruning threshold, with a pruning threshold of 0.10 and of 0.15.

Results coming from the first proof are naturally the worst but the real problem is that
classes restaurants and campings are matched together while it is not right. Unfortu-
nately this appears in all results, although the increase of the pruning threshold, so while
mapping is gradually refined, wrong results are keeping because of this uncorrect matching.
Let’s look to Table 7: all couples involving class hotels are right and all the other property
matching are reasonable because they express, for example, the name, the url or the tele-
phone but they refer to different aspects. This is a big problem in rewriting phase because it
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Figure 19: Peer3 schema

is not possible to distinguish consistent or not information.

6.2 Other examples

In this section we analyze two different couples of schemas which are been devised ad hoc
to precisely evaluate the behavior of the matching algorithm when more complex situation
are present in schema structure.

The first example involves rdf schemas presented respectively in Figures 20 and 21 of
Appendix B and matching results are in Table 3. First 10 rows refer to class mapping while
the others are about of property mapping. Differently from the Section 6.1, we present only
mappings obtained without a pruning threshold filter because we found the same results
both applying and not applying it.

The final mapping is very good for these two schemas also because they don’t have a
simple structure. All the relevant correspondences are found and none of them is wrong.

The second example involves schemas shown in Figures 22 and 23 of Appendix C.
These are very simple and light but they present all the possible situations the matching
algorithm must be robust to; for example:

• in Schema A both concepts name and secondName must correspond to the same
concept playerName in Schema B;

• class photo in Schema A must match to picture although they are annotated with
synonymous terms;
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(a) TP = 0 and TDH = 1e− 3
PEER1 PEER3 SIM

hotels hotels 0.29493
restaurants restaurants 0.30679

hotels.id hotels.id 0.34542
hotels.zip hotels.zip code 0.37050

hotels.email hotels.region 0.12430
hotels.email hotels.district 0.12430
hotels.email hotels.price judgements 0.12430
hotels.email hotels.single on sale 0.12430
hotels.email hotels.double on sale 0.12430
hotels.email hotels.services 0.12430
hotels.email hotels.triple room 0.12430
hotels.email hotels.discount 0.12430
hotels.email hotels.triple on sale 0.12430
hotels.email hotels.rank 0.12430
hotels.email hotels.zone 0.12430
hotels.email hotels.total judgements 0.12430

hotels.url hotels.url 0.34542
hotels.fax hotels.double room 0.21877
hotels.fax hotels.img map 0.21877
hotels.fax hotels.comfort judgements 0.12430
hotels.city hotels.city 0.34619

hotels.web site hotels.hygiene 0.12430
hotels.web site hotels.single room 0.21877
hotels.web site hotels.staff judgement 0.12430
hotels.address hotels.address 0.34610

hotels.telephone hotels.code 0.25746
hotels.name hotels.name 0.37050

hotels.pr hotels.province 0.37050
restaurants.price reduction restaurants.fax 0.11876

restaurants.name restaurants.name 0.35053
restaurants.url restaurants.url 0.55893

restaurants.closed restaurants.fax 0.11876
restaurants.id restaurants.id 0.34974

restaurants.locality restaurants.province 0.20973
restaurants.address restaurants.address 0.35050

restaurants.city restaurants.city 0.58517
restaurants.telephone restaurants.telephone 0.35207
restaurants.holidays restaurants.website 0.11876
restaurants.holidays restaurants.zip code 0.12053
restaurants.holidays restaurants.email 0.11876

(b) TP = 0.10 and TDH = 1e− 3
PEER1 PEER3 SIM

hotels hotels 0.29493
restaurants restaurants 0.30679

hotels.id hotels.id 0.34542
hotels.zip hotels.zip code 0.37050
hotels.url hotels.url 0.34542
hotels.fax hotels.double room 0.21877
hotels.fax hotels.img map 0.21877
hotels.city hotels.city 0.34619

hotels.web site hotels.single room 0.21877
hotels.address hotels.address 0.34610

hotels.telephone hotels.code 0.25746
hotels.name hotels.name 0.37050

hotels.pr hotels.province 0.37050
restaurants.name restaurants.name 0.35053

restaurants.url restaurants.url 0.55893
restaurants.id restaurants.id 0.34974

restaurants.locality restaurants.province 0.20973
restaurants.address restaurants.address 0.35050

restaurants.city restaurants.city 0.58517
restaurants.telephone restaurants.telephone 0.35207

(c) TP = 0.15 and TDH = 1e− 3
PEER1 PEER3 SIM

hotels hotels 0.29493
restaurants restaurants 0.30679

hotels.id hotels.id 0.34542
hotels.zip hotels.zip code 0.37050
hotels.url hotels.url 0.34542
hotels.city hotels.city 0.34619

hotels.address hotels.address 0.34610
hotels.name hotels.name 0.37050

hotels.pr hotels.province 0.37050
restaurants.name restaurants.name 0.35053

restaurants.url restaurants.url 0.55893
restaurants.id restaurants.id 0.34974

restaurants.address restaurants.address 0.35050
restaurants.city restaurants.city 0.58517

restaurants.telephone restaurants.telephone 0.35207

Table 2: Matching between Peer1 schema and Peer3 schema, using different pruning thresh-
olds

• class playerImageSource in Schema B must match only to class photoSource
although they present the same annotation of instanceSource;

• classes player and internationalCups in Schema B are connected by two differ-
ent paths but only the one involving property wins must match to property victories
of Schema A.

Results are shown in Table 4. As for the example of Section 6.1 we have tested software
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CAMERA PHOTOCAMERA SIM

Viewer OpticalDevice 0.26675
Lens Lens 0.50459
Body Structure 0.11953

Money Money 0.78429
SingleLensReflex SingleLensReflex 0.55450

Range Range 0.52054
BodyWithNonAdjustableShutterSpeed FixedShutterSpeed 0.36257

PurchaseableItem Components 0.15704
Camera Model 0.16063

LargeFormat LargeFormat 0.44927
focalLength focalLength 0.88099

LargeFormatBody characteristics 0.41670
aperture aperture 0.88099

min min 0.92078
size property 0.38807
units units 0.91276
fStop fStop 0.88099

currency currency 0.95589

Table 3: Matching between Camera schema and Photocamera schema, using Pruning
threshold = 0.0 and Dead-heat threshold = 1e-3

varying the pruning threshold. In particular Table 3(a) gives the mapping found without it
while Table 3(b) gives the mapping relatives to a pruning threshold value of 0.10. In this
case the best result is the first one because it presents all the possible right matching couples
including in the solution only one wrong mapping: height and stateOfBirth. If we look at
the second table we can see that the situation is massively get worse because together with
the uncorrect match, a lot of correct ones are excluded. This is a case in which schemas
structure helps to find right mappings while, for the example of Section 6.1, it makes the
results less precise and it makes a final couples refinement necessary.

(a) Pruning threshold=0.0 and Dead-
heat threshold=1e-3

FIFA UEFA SIM

dataset dataset 0.64194
player player 0.70374

internationalCups internationalCups 0.56073
photo playerImage 0.49150

position position 0.70019
currentClub currentTeam 0.31813
photoSource playerImageSource 0.05464

victories wins 0.68999
picture picture 0.72463

nationality stateOfBirth 0.32506
hasPosition role 0.72943

height stateOfBirth 0.32506
name playerName 0.49380

secondName playerName 0.49380
club team 0.48532

photoFrom from 0.27994

(b) Pruning threshold=0.10 and Dead-
heat threshold=1e-3

FIFA UEFA SIM

dataset dataset 0.64194
player player 0.70374

internationalCups internationalCups 0.56073
photo playerImage 0.49150

position position 0.70019
currentClub currentTeam 0.31813

victories wins 0.68999
picture picture 0.72463

hasPosition role 0.72943
secondName playerName 0.49380

club team 0.48532

Table 4: Matching between Fifa schema and Uefa schema, using different pruning threshold
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7 Conclusion

This deliverable proposed a detail design of two different matching technics, applicable re-
spectively to obtain a semantic mapping and a sort of similarity between multimedia contents.
Several issues are still open especially about the combination of these two approaches be-
cause of their differences and about the matching between a single property and a path as
concerns lonely semantic aspect. In the future we are intended to study further these two
aspects.
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A Peer1-Peer2 Matching Results

PEER1 PEER2 SIM

hotels hotels 0.26541
restaurants campings 0.23086

hotels.id hotels.id 0.33308
hotels.zip hotels.comments 0.20412
hotels.zip hotels.logo 0.19203
hotels.zip hotels.infos 0.21156

hotels.email hotels.email 0.33308
hotels.url hotels.url 0.33308
hotels.fax hotels.fax 0.33308
hotels.city hotels.city 0.33308

hotels.web site hotels.city map 0.20412
hotels.web site hotels.detailed map 0.20412
hotels.web site hotels.zone map 0.20412
hotels.address hotels.address 0.33308

hotels.telephone hotels.telephone 0.33308
hotels.name hotels.name 0.33308
hotels.name hotels.complete name 0.33308

hotels.pr hotels.locality 0.19768
restaurants.price reduction campings.zip 0.09699

restaurants.name campings.name 0.33028
restaurants.url campings.url 0.33028

restaurants.closed campings.web site 0.09699
restaurants.id campings.id 0.33028

restaurants.locality campings.locality 0.33028
restaurants.address campings.province 0.14700

restaurants.rank campings.email 0.09699
restaurants.rank campings.web site 0.09699
restaurants.rank campings.fax 0.09699
restaurants.city campings.city 0.33028

restaurants.telephone campings.telephone 0.33028

Table 5: Pruning threshold = 0 and Dead-heat threshold = 1e-3

PEER1 PEER2 SIM

hotels hotels 0.26541
restaurants campings 0.23086

hotels.id hotels.id 0.33308
hotels.zip hotels.comments 0.20412
hotels.zip hotels.logo 0.19203
hotels.zip hotels.infos 0.21156

hotels.email hotels.email 0.33308
hotels.url hotels.url 0.33308
hotels.fax hotels.fax 0.33308
hotels.city hotels.city 0.33308

hotels.web site hotels.city map 0.20412
hotels.web site hotels.detailed map 0.20412
hotels.web site hotels.zone map 0.20412
hotels.address hotels.address 0.33308

hotels.telephone hotels.telephone 0.33308
hotels.name hotels.complete name 0.33308
hotels.name hotels.name 0.33308

hotels.pr hotels.locality 0.19768
restaurants.name campings.name 0.33028

restaurants.url campings.url 0.33028
restaurants.id campings.id 0.33028

restaurants.locality campings.locality 0.33028
restaurants.city campings.city 0.33028

restaurants.telephone campings.telephone 0.33028

Table 6: Pruning threshold = 0.10
and Dead-heat threshold = 1e-3

PEER1 PEER2 SIM

hotels hotels 0.26541
restaurants campings 0.23086

hotels.id hotels.id 0.33308
hotels.email hotels.email 0.33308

hotels.url hotels.url 0.33308
hotels.fax hotels.fax 0.33308
hotels.city hotels.city 0.33308

hotels.address hotels.address 0.33308
hotels.telephone hotels.telephone 0.33308

hotels.name hotels.name 0.33308
hotels.name hotels.complete name 0.33308

restaurants.name campings.name 0.33028
restaurants.url campings.url 0.33028
restaurants.id campings.id 0.33028

restaurants.locality campings.locality 0.33028
restaurants.city campings.city 0.33028

restaurants.telephone campings.telephone 0.33028

Table 7: Pruning threshold = 0.15
and Dead-heat threshold = 1e-3
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B Camera Scenario

Figure 20: Schema A

Figure 21: Schema B
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C Soccer Scenario

Figure 22: Schema A

Figure 23: Schema B
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