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A B S T R A C T   

Using UAV imagery is a powerful method for monitoring invasive alien plant species (IAPs), particularly when 
combined with automatic image analysis conducted by artificial intelligence. To this end, we conducted a pilot 
study on Yucca gloriosa, an invasive species of coastal dunes spread in central Italy. Specifically, we assessed the 
agreement in quantifying Y. gloriosa cover between field-based sampling and human visual screening of UAV 
images captured at different altitudes. Additionally, we examined the concordance among different operators 
both before and after a training procedure, comparing a simpler and quicker approach (referred to as the “en
velope” method) against a seemingly more precise but time-consuming method (referred to as the “leaf by leaf” 
method). In our current study, we discovered a good concordance not only between operators and field sampling 
but also among operators, particularly when using the “envelope” method. Furthermore, we assessed the per
formance of deep learning in identifying Y. gloriosa plants in UAV images compared to visual identification by 
human operators, achieving an overall accuracy of 96 % for images taken at an altitude of 35 m. Our findings 
suggest that UAV imagery may serve as a valid alternative to field-based sampling for monitoring IAPs, especially 
when dealing with plants like Y. gloriosa, which have distinctive morphological characteristics that facilitate 
identification. Consequently, mapping Y. gloriosa on Mediterranean coastal dunes can be effectively accom
plished using UAV images, even though an automated machine-based approach, thereby expediting and 
enhancing the reliability of alien species monitoring and management.   

1. Introduction 

Invasive alien plant species (IAPs) pose significant environmental 
and economic challenges for Europe (Vilà et al., 2010). The European 
Commission has enacted regulations on invasive alien species (EC, 
2014), urging Member States to implement specific monitoring and 
surveillance actions to detect both animal and plant invasive species 
within European countries. Controlling invasive plants often requires 

expensive and environmentally damaging methods (Weidlich et al., 
2020). This, coupled with the growing demand for more sustainable, 
cost-effective, and environmentally friendly control approaches (de Sá 
et al., 2018), underscores the importance of biocontrol monitoring. 
Early detection and mapping of IAPs are among the most effective tools 
for addressing biological invasions by predicting risks, identifying po
tential threats, and promoting actions against invaders (McGeoch et al., 
2016). Despite historically incomplete and inadequate invasive species 
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management, new technologies are emerging, and multi-disciplinary 
approaches are proving effective for detecting, identifying, reporting, 
and responding to invasive species (Martinez et al., 2020). 

Monitoring alien plants relies on survey techniques ranging from 
traditional field sampling to more recent and advanced methods using 
unmanned aerial vehicles (UAVs), which are preferred over satellite 
images due to their high spatial resolution and cost-effectiveness 
(Müllerová et al., 2017). Free satellite data (e.g., MODIS or Landsat) 
often have coarser spatial resolution that may not capture specific 
phenomena. Higher spatial resolution satellite images (e.g., WorldView, 
Quickbird) from the same platform tend to be costlier than UAV images 
and can sometimes suffer from co-registration or misalignment issues 
with other remote sensing or field data. 

Visual detection of IAPs involves field-based methods, such as ocular 
estimates of alien species identification and coverage (using, for 
instance, the Braun-Blanquet cover scale) within the study area. While 
this approach can yield accurate data at high spatial resolutions, it is 
often limited to small spatial extents due to its time-consuming nature 
and inability to extrapolate information over large areas (Elzinga et al., 
1998). In contrast, UAV technology has seen rapid adoption in IAP 
monitoring, especially in heterogeneous environments like coastal 
habitats (Klemas, 2015; de Sá et al., 2018; Marzialetti et al., 2021). UAVs 
capture high-resolution images over contiguous spatial areas, making 
landscape monitoring less labor-intensive and faster than traditional 
field sampling surveys, with georeferencing performed by an operator 
during the flights (Weber et al., 2008; Le Moigne et al., 2011; Müllerová 
et al., 2017). Additionally, UAVs offer flexibility in data acquisition, 
allowing for the selection of sensor type (Red-Green-Blue, Multispectral, 
or Hyperspectral), flight periods and conditions, such as phenological 
stage, altitude, weather, and image resolution, thus enabling standard
ized monitoring (Watts et al., 2012; Klemas, 2015; Müllerová et al., 
2017). 

Orthophotos derived by UAV images can be visually analyzed by 
operators, typically within a Geographic Information System (GIS) 
environment. To the best of our knowledge, there are no existing studies 
in the literature that assess the agreement between traditional field 
sampling of aliens and the quantification of their cover percentages by 
operators using UAV images. Most research focused on extrapolating 
various indices (e.g., cover estimates, canopy volume, plant height) from 
UAV imagery and evaluating their agreement with field measurements 
(e.g., plant coverage, number of flowers) for a range of IAPs and eco
systems (Kosmowski et al., 2017; de Sá et al., 2018; Tay et al., 2018; 
Broussard et al., 2020; Gillan et al., 2020; Karl et al., 2020; Marzialetti 
et al., 2021; Oldeland et al., 2021; Sladonja et al., 2022). In general, 
manually detecting the presence of IAPs is a time-consuming procedure, 
and its accuracy may be influenced by various factors, including the 
experience and expertise of the operators. 

On the other hand, automated analysis techniques, such as deep 
learning coupled with UAV technology (James and Bradshaw, 2020; 
Kentsch et al., 2020; Aota et al., 2021; Charles et al., 2021; Lam et al., 
2021; Rodriguez et al., 2021), enable the detection of alien plants in 
digital images (Dash et al., 2019; Sun et al., 2021). Deep learning, a 
machine learning technique, is utilized to identify and classify infor
mation from raw input, such as images, using a multi-layered structure 
model, such as convolutional neural networks. The model can be trained 
and tested with supervised examples, providing both input and expected 
output, allowing it to learn distinguishing features from the data. This 
technique has proven valuable, especially in plant identification (Zhang 
et al., 2016). 

These automated classification methods are promising because they 
enhance the capacity for investigating phenomenon over large spatial 
and temporal scales while reducing the effort required for costly and 
time-consuming field monitoring. However, ground truth data is still 
necessary to validate the performance of such systems. It is common 
practice to build this ground truth data from aerial images interpreted 
by human operators (James and Bradshaw, 2020; Kentsch et al., 2020; 

Charles et al., 2021; Lam et al., 2021; Marzialetti et al., 2021; Rodriguez 
et al., 2021). Nevertheless, even with the availability of high-resolution 
aerial images, particularly from UAVs, human interpretation can intro
duce errors due to factors such as phenological stages and the presence 
of shadows (Lam et al., 2021; Ciccarelli et al., 2023), although few 
studies have investigated the error introduced by human interpretation 
(Rodriguez et al., 2021). 

In the present study, we focused on coastal sand dune ecosystems, 
examining the advantages and disadvantages of traditional field-based 
sampling compared to advanced methods using UAVs for monitoring 
IAPs. Among European terrestrial environments, coastal dunes are the 
most invaded habitats (Chytrỳ et al., 2008, 2009) with a flora charac
terized by 7 % of alien species, two-thirds of which originate from 
outside Europe and are mostly naturalized and ruderal (Giulio et al., 
2020). In Italy, fixed dunes habitats characterized by Juniperus sp. pl. are 
frequently invaded by Yucca gloriosa L. (Asparagaceae), an invasive 
species (Galasso et al., 2018) from the southeastern Atlantic coast of the 
United States (Rentsch and Leebens-Mack, 2012), introduced to Europe 
for ornamental purposes. This IAP can establish itself in dune habitats 
prone to disturbance, displaying a high capacity to cope with 
drought-stressed conditions, attributed to its ability to switch photo
synthesis from C3 to CAM pathways (Heyduk et al., 2016, 2021). In 
invaded landscapes, Y. gloriosa forms dense, monospecific evergreen 
patches due to its vegetative reproduction, especially through rhizomes, 
and competes with juniper for space and nutrients (Ciccarelli et al., 
2023). 

This work specifically aimed to test: (i) the agreement between field- 
based sampling of Y. gloriosa and manual screening performed by 
different operators on UAV images, taken at various altitudes, (ii) inter- 
operator concordance after a training procedure to minimize the effects 
related to the experience and expertise of the operators, (iii) the 
agreement between Y. gloriosa identification by visual interpretation of 
orthophotos and deep learning. The ultimate goal of this research is to 
reduce the costs associated with manpower in IAPs monitoring by using 
automated detection systems to facilitate efficient management and 
control of alien species. 

2. Material and methods 

2.1. Study site 

This research was conducted within the Migliarino-San Rossore- 
Massaciuccoli Regional Park (MSRM Regional Park), a protected area 
covering approximately 230 km2 in northern Tuscany, Italy (Fig. 1). The 
climate in this region is Mediterranean sub-humid, characterized by an 
average annual temperature of approximately 15.2 ◦C and a yearly total 
rainfall of 879 mm during the period 1991–2020 (http://www.lamma. 
rete.toscana.it/clima-e-energia/climatologia/clima-pisa last visited on 
20–10–2022). The MSRM Park hosts a diverse range of habitats classi
fied as being of Community interest under the Habitats Directive 92/43/ 
EEC (EEC, 1992; Ciccarelli, 2014). Many of these habitats are located 
along the coastal dunes, which cover 1.7 % of the park’s total area, 
amounting to approximately 3.9 Km2. One significant threat to these 
unique and ecologically valuable environments is posed by alien plants 
(Guarino et al., 2021). In particular, Y. gloriosa represents a notable issue 
within the park as it competes with Juniperus macrocarpa in the fixed 
dunes (Ciccarelli et al., 2023). The field sampling and acquisition of 
images via UAV were carried out in the “Bufalina Nature Reserve’’, a 
protected area partially included within the Special Area of Conserva
tion (SAC) known as the ”Coastal sand dunes of Torre del Lago” (code 
IT5170001). 

2.2. Data collection and image dataset 

The procedure employed in this study was structured following four 
key steps, as schematically illustrated in Fig. 2: (A) fieldwork and UAV 
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data acquisition, (B) manual image screening and training framework, 
(C) identification of Yucca gloriosa via a deep learning model, (D) sta
tistical analyses. 

We obtained UAV images of the study area using a DJI Phanthom 4 
PRO v. 2.0, chosen for its favorable balance between costs-effectiveness 
and user-friendliness. This drone is equipped with a Red–Green–Blue 
(RGB) 20 megapixel camera and CMOS 1-inch sensor. To prepare the 
flight plans for the UAV, we employed the PIX4DCapture application 
(https://www.pix4d.com/product/pix4dcapture). This software was 
selected because it requires minimal attention from the pilot in the field, 
allowing for easy monitoring and control through the user-friendly 
interface. 

The UAV images were captured during two distinct phases: the 
flowering phase in October and the post-flowering period in May, 
focusing on Y. gloriosa. This approach was adopted to account for any 
spectral variations associated to the phenological stage of the invasive 
plant. In October 2020, we selected an area of 90 × 90 m for our study, 
where we conducted multiple drone flights at various altitudes (15, 20, 
25, 30, 35, 40, 45, 50, 60, 70 m above sea level). Our objective was to 
determine the most optimal altitude for mapping Y. gloriosa while 

minimizing drone usage. The scanning time for these flights varied, 
taking only 4 min at a height of 70 m, and extending to 16 min at an 
altitude of 15 m. Consequently, the resolution of the UAV images ranged 
from 0.4 cm/px at 15 m to 1.8 cm/px at 70 m of altitude. Within this 
area, we randomly selected 15 plots (1 ×1 m or 2 ×2 m) in which at 
least one Y. gloriosa plant was present. Before conducting the flights, we 
delimited and marked each plot on the ground affixing numbered con
trol points (GCPs) of 15 × 20 cm (see Fig. 1S of the Supplementary 
material) to ensure easy recognition by drones (Marzialetti et al., 2021). 
In the field, two botanical operators visually estimated the cover of 
Y. gloriosa in square meters for each plot. Additionally, we performed the 
same Y. gloriosa cover estimation in these plots using UAV images, which 
were visually screened by multiple human operators (refer to the sub
sequent section for a detailed procedure). All images captured at various 
altitudes by these flights were used to assess both the agreement be
tween field-based Y. gloriosa sampling and visual screening conducted 
by different operators on UAV images, as well as inter-operator 
concordance both before and after a training procedure. In May 2021, 
we expanded our study area to 1000 × 300 m and conducted eight 
flights at an altitude of 35 m above sea level. This altitude had been 

Fig. 1. Overview of the study area and its location. (A) Tuscany region in black. (B) The orthomosaic of the study area, situated within the Migliarino-San Rossore- 
Massaciuccoli Regional Park. 
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Fig. 2. Workflow diagram summarizing the methodology employed in this study. (A) Fieldwork and UAV data acquisition, (B) Manual image screening and training 
framework, (C) Identification of Yucca gloriosa via a deep learning model, (D) Comparative analysis of field-based sampling, human interpretation of UAV imagery 
and deep learning. 
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determined as the most efficient choice in terms of both time and image 
resolution during our previous assessments. The images captured during 
this period were used to evaluate the agreement between Y. gloriosa 
identification through human visual interpretation and deep learning. 

During both the October 2020 and May 2021 flights, we scheduled 
them to take place between 11:00 AM and 01:00 PM to minimize the 
presence of shadows resulting from the inclination of solar radiation at 
Mediterranean latitudes. 

For photogrammetric processing, we utilized Agisoft Metashape 
software (https://www.agisoft.com/). This software enabled us to 
generate RGB orthomosaics for each period and altitude by merging 
individual photos captured during the flights. We ensured an 80 % front 
and side overlap in these image acquisitions to facilitate accurate 
photogrammetric processing. 

2.3. Manual image screening and training framework 

All the orthomosaics were analyzed using the open-source 
Geographic Information System QGIS 3.4 Madeira using the coordi
nate system WGS84 (https://www.qgis.org/it/site/). This software 
enabled us to delineate polygons around individual Y. gloriosa plants or 
small clusters of plants, hereafter referred to as “nuclei”, on the ortho
photos. Additionally, QGIS automatically calculated the area covered by 
these polygons in squared meters (Fig. 3). We developed two distinct 
procedures for delineating the polygons occupied by Y. gloriosa plants, 
named as the “envelope method” and the “leaf by leaf method”. In the 
“envelope method”, each operator drew a polygon (outlined by the red 
line at the bottom of Fig. 3) connecting only the leaf apexes. Conversely, 
in the “leaf by leaf method” the operator traced a polygon (outlined by 

the pink line at the bottom of Fig. 3) following the contours of each 
individual leaf of the plant. The authors of this research employed both 
the “envelope” and “leaf by leaf” methods to map Y. gloriosa in two 
consecutive rounds. In the first round, all operators manually examined 
the orthophotos at various altitudes (ranging from 15 to 70 m above sea 
level) to determine the coverage area occupied by Y. gloriosa plants 
within each plot. Following the first round, we conducted an analysis to 
assess how the accuracy of manual screening compared to field sampling 
and the level of inter-operator agreement were influenced by two key 
factors: a) the selected method of estimating Y. gloriosa cover, (i.e., 
whether the "envelope" or "leaf by leaf" procedure was used); b) the 
resolution of UAV images. In the second round, all operators underwent 
a training procedure aimed at standardizing the manual screening of 
orthomosaics. This training was designed to minimize the potential in
fluence of varying levels of experience and expertise among operators. 
Following the training, each operator analyzed the same plots in the 
orthomosaics captured at two altitudes: 15 m (providing the highest 
orthomosaics resolution) and 35 m (representing an optimal compro
mise between resolution and the time required to scan the area) 
employing both the “envelope” and the “leaf by leaf” methods. Like the 
first round, we conducted an analysis to assess the level of inter-operator 
agreement. This analysis considered the selected method of visual esti
mation (i.e., "envelope" or "leaf by leaf") and the altitude at which the 
orthomosaics were taken. 

2.4. Identification of Yucca gloriosa by deep learning 

In this study, we developed a deep learning model based on Goo
gLeNet (Szegedy et al., 2015) to perform the identification of Y. gloriosa 

Fig. 3. Orthomosaic of the study area captured by the drone at 15 m of altitude. In the bottom right, a zoomed view of one of 15 plots displays the delimitation of 
Yucca gloriosa coverage, marked with polygons using the “envelope method” (red line) and “leaf by leaf method” (pink line). 
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within the orthophotos. GoogLeNet is a convolutional neural network, 
characterized by 22 layers of depth, and it is widely employed for image 
classification (Mehdipour Ghazi et al., 2017; Mostafa et al., 2022). Our 
model consists of a total of 57 convolutional layers, 14 pooling layers, 
one fully connected layer, and it takes color image patches sized 
224 × 224 pixels as input. For training and validation our system, we 
utilized a dataset consisting of 600 images (224 × 224 pixels) extracted 
from UAV acquisitions conducted during diverse monitoring activities. 
The dataset comprised 300 images of Y. gloriosa, and 300 images of other 
plant species and soil. For our experiments, we partitioned the dataset, 
allocating 90 % of its contents for training purposes, while the remaining 
10 % served as an independent test set (Table 1). 

The training process for the identification of Y. gloriosa was con
ducted using the Matlab framework. Our model exhibited convergence 
at an accuracy level of approximately 94.10 % following the 756th 
iteration. Subsequently, the trained deep learning model was applied to 
an orthomosaic generated from drone scans. Specifically, we employed 
the sliding window technique across the entire image to detect regions 
containing Y. gloriosa. The window dimensions were set to 224 × 224 
pixels, serving as input for the trained model. For each window position, 
the model provided a probability estimate of the presence or absence of 
Y. gloriosa (refer to Supplementary Fig. 2S for detailed information). 
This probability information was utilized to generate a raster map 
denoting the presence of Y. gloriosa across the entire scanned area. A 
value of “1” indicated presence (probability > 0.7), while a value of “0” 
denoted absence (probability < 0.7) of Y. gloriosa. To evaluate the ac
curacy of this classification method compared to human operator-based 
classification, we conducted assessments on three randomly selected 
areas (as illustrated in Fig. 4). 

2.5. Statistical analyses 

We compared the estimated cover of Y. gloriosa on the orthophotos 
for each plot with the cover obtained in the field, serving as the ground 
truth. To quantify the accuracy of our estimations, we calculated the 
Percentage Error (PE), defined as the ratio between the estimated cover 
on the orthomosaic and the estimated cover in the field. Additionally, 
we computed the average PE for all 15 plots, categorizing them by 
altitude and operator. Subsequently, we assessed the differences in 
percentage error obtained by the operators at various altitudes and be
tween the “envelope” and the “leaf by leaf” methods. We conducted 
these comparisons using the Kruskall-Wallis non-parametric test, with 
significance levels set at p < 0.05 * and p < 0.01 * * for both for the first 
and the second rounds of testing. 

We conducted a linear regression analysis to evaluate the relation
ship between the estimated Y. gloriosa cover obtained by the operator 
using the two methods (during the second round at a height of 35 m) and 
the cover measured directly in the field for each individual plot. 

The map indicating the presence of Y. gloriosa, generated by the 
trained model, underwent evaluation against visual interpretation by a 
human operator. Within the study area, three randomly selected regions 
(cells), each covering an area of 1100 m2, were chosen. To facilitate this 
assessment, each cell was subdivided into 275 subcells, using a 2 × 2 m 
grid. Three skilled operators were tasked with visually determining the 
presence or absence of Y. gloriosa in each subcell. They assigned values 
of “0” for absence and “1” for presence. Subsequently, a two-column 
table was created, with each row indicating the corresponding code 
assigned to the subcell by both the deep learning model and the oper
ator. The deep learning-based classification was compared to the human 
operator’s visual classification, with the latter considered the reference 
standard. A confusion matrix was then calculated to quantify the per
formance of the deep learning model. The performance of the deep 
learning model was assessed using several metrics defined as follows 
(adapted from Campbell, 1996):  

• Overall Accuracy (OA) = (TP+TN)/(TP+TN+FP+FN)  
• Cohen’s Kappa (K) = (Po-Pe)/(1-Pe) 

where Po is the observed agreement and Pe is the expected agree
ment. It’s typically used to measure the agreement between the deep 
learning model’s predictions and the ground truth.  

• Sensitivity (SNS) = TP/(TP + FN) 
also known as true positive rate or recall and quantifies the pro

portion of actual positive cases correctly identified by the model.  
• Precision (PRC) = TP/(TP + FP) 

represents the proportion of positive predictions made by the model that 
are actually true positives. 

Where:  

• TP (True Positives): The number of cases correctly identified as 
positive by the deep learning model.  

• TN (True Negatives): The number of cases correctly identified as 
negative by the deep learning model.  

• FP (False Positives): The number of cases incorrectly identified as 
positive by the deep learning model.  

• FN (False Negatives): The number of cases incorrectly identified as 
negative by the deep learning model.  

• N (Total Number of Testing Data): The total number of data points in 
the testing dataset. 

All the statistical analyses were conducted using the R software (R 
Development Core Team, 2016). 

Table 1 
The training dataset for the deep learning procedure consisted of distinct image classes, each accompanied by a description, a specific number of images, and 
representative examples for illustration.  

Classes Description Number of 
images 

Examples 

Yucca 
gloriosa 
plants 

An evergreen shrub, reaching a height of 2.5 m, characterized by long, narrow leaves 
that are straight and exceptionally rigid. The inflorescence consists of a lengthy 
panicle of bell-shaped white flowers  

300 

Other Sandy soil, other coastal dune plants (like Calamagrostis arenaria, Juniperus 
macrocarpa, etc.), everything within the environment except for Y. gloriosa  

300 
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3. Results and discussion 

3.1. First round of assessments 

During the first round of assessments, the average coverage of 
Y. gloriosa, when categorized by altitude and operator, consistently 
exhibited overestimation, with average PE between 11.7 % and 25.4% 
for the “envelope” method (Fig. 5 and Table 1S of the Supplementary 

material). Conversely, the “leaf by leaf” method yielded an average 
underestimation, with PE values ranging from 0.1% to − 12.9 % (Fig. 5 
and Table 2S of the Supplementary material). The Kruskal-Wallis test 
indicated that PE was significantly influenced only by the method used 
(p < 0.01). However, in the case of the “envelope” method, agreement 
in cover estimates among operators was observed solely for intermediate 
altitudes (ranging from 20 m to 50 m), whereas such concordance was 
not observed for both higher and lower altitudes (Table 1S of the Sup
plementary material). Concordance among operators was never ach
ieved at any altitude when employing the “leaf by leaf” method. 
Consequently, these findings suggest that the “envelope” method, when 
applied at intermediate altitudes (between 20 m and 50 m), appears 
more suitable for quantifying Y. gloriosa, as significant discrepancies in 
cover estimates among operators were not observed. In general, flying at 
lower altitudes allows for the capture of more detailed and easily 
interpretable images. However, this also entails an increase in the 
number of images and flight operations required to cover a larger area. 
Therefore, when selecting the optimal flight altitude, it is advisable to 
strike a balance between image resolution and the total scanning time 
required for the area. Indeed, flight altitudes vary considerably across 
studies, ranging from 10 m to 160 m (de Sá et al., 2018; Tay et al., 2018; 
Kentsch et al., 2020; Charles et al., 2021; Lam et al., 2021; Marzialetti 
et al., 2021; Oldeland et al., 2021; Rodriguez et al., 2021). Furthermore, 
it is important to note that European regulations governing UAVs, spe
cifically 2019/945 and 2019/947 (EC, 2019a,b), have established a 
flight height limit of 120 m for non-regulated areas. In regulated ones, 
such as those near military installations or airports, drone flights are 
prohibited. It is crucial to emphasize that there is not a universally 
optimal altitude suitable for all type of studies. The choice of altitude 
depends on a combination of technical factors, including UAV flight 

Fig. 4. Yucca gloriosa presence (yellow) in the study area, alongside three gridded cells (red) selected for comparing presence/absence as determined by deep 
learning and human interpretation. 

Fig. 5. Boxplots showing percentage errors for five operators at different alti
tudes during the first round of assessments, using the “envelope” method (blue) 
and the “leaf by leaf” method (orange). The green dashed line represents the 
standard method used as ground truth (0 % error). 
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autonomy and digital camera resolution, plant morphological charac
teristics such as size and phenology, and environmental factors such as 
weather conditions and the presence of shading, as well as contrast with 
the background. In this context, the versatility of drones proves 
invaluable in multiple aspects, encompassing flight planning, sensor 
selection, and timing of data acquisition concerning the phenological 
stage. These considerations collectively contribute to the attainment of 
optimal data for our specific application (Müllerová et al., 2017; Yao 
et al., 2019). Consequently, the identification of the ideal altitude for 
investigating a particular phenomenon becomes a pivotal step in this 
process. Remarkably, such altitude optimization remains relatively un
common within the research domain (Lam et al., 2021). 

In the present study, given Y. gloriosa’s distinctiveness in UAV im
agery due to its size, shape, and pronounced contrast against the back
ground, we selected an intermediate flight altitude. This choice was 
made to expedite scanning while maintaining the accuracy and inter
pretability of the results. Taking into consideration the performance 
observed in the first round of assessments with both methods, we 
determined the optimal flight altitude for Y. gloriosa monitoring to be 
35 m. This altitude represents a well-balanced compromise between 
spatial resolution and flight duration, efficiently covering an area of 
approximately 30 ha (see also Ciccarelli et al., 2023). 

3.2. Second round of assessments 

After completing a training procedure, all operators conducted a 
secondary assessment of the areas inhabited by Y. gloriosa plants within 
the 15 selected plots. In line with the outcomes from the first round of 
assessments, we applied both the “envelope” and the “leaf by leaf” 
methods to the orthomosaic generated from images captured at an 
altitude of 35 m. This altitude represented a favorable balance between 
image resolution and the time needed for drone flights. Additionally, we 
evaluated the operators’ performance using an alternative orthomosaic 
derived from images acquired at an altitude of 15 m, which provided the 
highest resolution image but involved a more time-consuming process. 
Concordance among the operators was achieved at all altitudes for the 
“envelope” method. Notably, the average PE at 35 m improved 
compared to the first round, with values of 10.2 % and 20.3 %, 
respectively (Fig. 6 and Table 3S of the Supplementary material). In the 
case of the “leaf by leaf” method, operators reached concordance only at 
an altitude of 35 m (Fig. 6 and Table 4S of the Supplementary material). 
However, it is worth noting that the average PE at 35 m, while slightly 
higher than in the first round (− 11.7 % vs − 7.4 %), showed improved 
concordance this time (refer to Table 3S and 4 S of the Supplementary 

material for detailed information). 
Given our best results in terms of operator concordance at an altitude 

of 35 m, we exclusively applied linear model analysis to images captured 
at this altitude. This was done with the goal of comparing the estimated 
Y. gloriosa cover by the operator with the cover measured directly in the 
field. Similar to the findings in the first round, the “envelope” method 
consistently overestimated the average coverage of Y. gloriosa, whereas 
the “leaf by leaf” method consistently underestimated. Specifically, 
operators’ cover estimations from images captured at an altitude of 35 m 
displayed a strong positive correlation with field estimates, both for the 
“envelope” (R2 = 0.94, N = 15) and the “leaf by leaf” (R2 = 0.93, 
N = 15) methods (as illustrated in Fig. 7A and B). This correlation aligns 
with results observed in other studies (e.g., Tay et al., 2018). Notably, 
when employing the “envelope” method, we observed that the level of 
cover overestimation increased with the dimensions of the plants 
(Fig. 7A). However, this may not pose a significant concern in our case, 
given that the average dimension of Y. gloriosa was approximately 0.5 m 
(Ciccarelli et al., 2023), which falls before the point on the graph where 
the error escalates with plant dimension. Conversely, using the “leaf by 
leaf” method, we noted an inverse correlation between the level of cover 
underestimation and the dimension of Y. gloriosa plants (Fig. 7B). 
Nevertheless, the levels of PE appear to be similar in both methods. 
Consequently, we recommend the use of the “envelope” method due to 
its ease of implementation and efficiency, especially when dealing with 
plants exhibiting complex three-dimensional structures, such as 
Y. gloriosa. Furthermore, employing the “envelope” method helps reduce 
the subjective human element in the interpretation process, as evi
denced by a higher level of concordance among operators (Kruskal-
Wallis p-value for “envelope” = 0.865, as opposed to p-value for “leaf by 
leaf” = 0.202). Lastly, all these results provide strong evidence for the 
decision to use drones at an altitude of 35 m for image acquisition in the 
study area. 

3.3. Deep Learning against Human visual interpretation 

Out of the 825 cells classified through human identification, six cells 
were excluded from the analysis due to the operator uncertainty 
regarding the presence or absence of Y. gloriosa. All the accuracy metrics 
derived from the confusion matrix (Table 2) showcased the effectiveness 
of the deep learning classification method, boasting notably high values, 
all exceeding 0.91 (Table 3). Comparatively, other studies that have 
evaluated the accuracy of automatic classification methods, such as 
random forest (de Sá et al., 2018; Marzialetti et al., 2021) and deep 
learning (James and Bradshaw, 2020; Kentsch et al., 2020; Charles et al., 
2021; Lam et al., 2021; Aota et al., 2021), have also reported scores 
surpassing the 0.90 threshold. However, it is essential to acknowledge 
the complexity of making direct comparisons among studies in the field 
of plant mapping, given the wide variability in the type of information 
employed for classification and the diverse objectives pursued. The 
manual or automated identification of Y. gloriosa from UAV images 
proves to be a highly effective approach, primarily owing to the 
distinctive morphological characteristics of the species, especially 
regarding its leaves, which render it easily recognizable. 

3.4. Methodological and management considerations 

The current study has brought to light both the advantages and 
limitations of various methodologies for monitoring Y. gloriosa in 
Mediterranean coastal dunes. The most demanding and time-intensive 
approach remains the visual detection of IAPs in the field. However, 
this method, when executed at high spatial resolutions, can yield 
exceptionally accurate results (Elzinga et al., 1998). Traditionally, 
field-based monitoring was deemed indispensable, particularly in the 
context of forests where the invasive species often occurs beneath the 
canopy. Nevertheless, modern advancements in technology, particularly 
the utilization of UAVs, now afford researchers the ability to investigate 

Fig. 6. Boxplots showing percentage errors for six operators at 15 m and 35 m 
of altitude during the second round of assessments, using the “envelope” 
method (blue) and the “leaf by leaf” method (orange). The green dashed line 
represents the standard method used as ground truth (0 % error). 
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both the horizontal and the vertical structures of plant communities with 
unprecedented precision (Sun et al., 2021). Furthermore, Y. gloriosa is 
readily distinguishable in UAV imagery due to its size, distinctive shape, 
and pronounced against the sandy dune background, as detailed in our 
recent study (Ciccarelli et al., 2023). However, a key inquiry arises: How 
much does the quantification of Y. gloriosa coverage by an operator on 
UAV images deviate from that determined in the field? Additionally, are 
there any discernible distinctions between multiple operators, each 
possessing varying levels of expertise and experience in this task? Our 
research endeavors have elucidated that the “envelope” method, char
acterized by its ease and efficiency relative to the “leaf by leaf” method, 
serves as a robust compromise for quantifying Y. gloriosa plants on UAV 
imagery, irrespective of the operator involved. It is our perspective, 
however, that the “envelope” method may exhibit limitations when 
dealing with larger plants (with a coverage exceeding approximately 

0.5 m2 for Y. gloriosa). To the best of our knowledge, the reliability and 
variability associated with human interpretation of orthophotos for the 
assessment of plant species coverage have not been previously studied. 
Only a limited number of studies have ventured into the assessments of 
humans’ ability to discern the presence or absence of a species through 
visual interpretation of aerial photographs (Rodriguez et al., 2021). 

Finally, our study demonstrates the effectiveness of using UAV im
agery for automated Y. gloriosa identification in invasive species moni
toring due to its high accuracy. Future research will delve into the 
potential of deep learning algorithms for Y. gloriosa identification, 
aiming to assess their objectivity, efficiency, and cost-effectiveness in 
comparison to traditional photointerpretation methods. However, it is 
important to consider that the question of whether automated classifi
cation methods coupled with UAV technology can entirely replace 
traditional field-based sampling in IAP monitoring does not yield a 
universal and definitive answer. The feasibility of such a transition 
largely hinges on several factors, including the morphological charac
teristics of the IAP, its ease of identification in imagery, the specific 
vegetational context in which the IAP resides (as structural features 
differ between herbaceous plant communities and forests), the scale of 
the study area (given that field-based sampling is inherently more time- 
consuming than UAV imagery analysis), and the technical capabilities of 
the drone employed (including flight autonomy and digital camera 
resolution). Additionally, addressing the need for multiple flights, 
particularly in cases involving the monitoring of extensive territories, is 
a limitation that can be addressed through the utilization of fixed-wing 
flight systems, renowned for their extended flight autonomy. Never
theless, from a conservation and management perspective, UAV tech
nology represents a promising tool for reducing the manpower costs 
typically associated with IAP monitoring efforts. 

4. Conclusions 

To the best of our knowledge, this is the first study that examines the 
agreement between visual analysis of UAV images conducted by human 
operators and field sampling for quantifying Y. gloriosa cover. Secondly, 
it investigates the concordance among different operators both before 
and after training. Thirdly, it compares the efficiency of a streamlined 

Fig. 7. Comparison of mean cover estimates made by operator for each plot at 35 m of altitude during the second round of assessments, using the “envelope” method 
(A) and the “leaf by leaf” method (B), against field-based estimates. Dashed lines represent linear regression equations, and the solid line represents the 1:1 values. 

Table 2 
A 2 × 2 confusion matrix was utilized to tabulate true positives (TP), false 
negatives (FN), false positives (FP), and true negatives (TN) in relation to the 
presence (1) or absence (0) of Y. gloriosa as predicted by deep learning model 
against the actual presence/absence (1, 0) evaluated by human identification.   

Predicted presence (Deep learning model) 

1 0 

Actual presence 
(human identification)  

1 242 (TP) 11 (FN)  
0 19 (FP) 547 (TN)  

Table 3 
The accuracy assessment values of the deep learning method 
were computed based on the confusion matrix presented in 
Table 2. All these metrics yield values between 0 and 1, 
indicative of a perfectly performing classification method.  

Accuracy assessment metrics Values 

Overall Accuracy (OA)  0.96 
Cohen’s Kappa (K)  0.91 
Sensitivity (SNS)  0.96 
Precision (PRC)  0.93  
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and time-efficient approach, referred to as the “envelope” method, 
against a seemingly more precise yet time-intensive method, termed the 
“leaf by leaf” method. Lastly, it evaluates the capacity and reliability of 
deep learning for identifying Y. gloriosa plants in UAV images in com
parison to human visual identification. 

Our key findings are as follows: a) there exists a strong agreement not 
only between operators and field-based sampling but also among oper
ators when employing the “envelope” method, which notably expedites 
the process; b) UAV imagery might represent a credible alternative to 
traditional field sampling, particularly for plants like Y. gloriosa with 
distinctive morphological traits that facilitate their identification; c) the 
application of deep learning for Y. gloriosa mapping yields results 
comparable to visual UAV image analysis by human operators. 

In summary, our study underscores the potential utility of drones, 
coupled with deep learning techniques, as effective tools for reducing 
the human costs associated with monitoring IAPs, thereby enhancing the 
management and control of Y. gloriosa in coastal dune environments. 

One future development of this line of research may involve 
comparing the quantification of Y. gloriosa coverage and the accuracy of 
methods between deep learning and field-based sampling. Additionally, 
exploring the effectiveness of automatic or semi-automatic classification 
methods, including pixel-based or object-based approaches, could 
further enhance our understanding in this field. 
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