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Abstract
The European wildcat is a threatened carnivore, whose ecology is still scarcely studied, especially in Mediterranean areas. 
In this study, we estimated activity rhythm patterns of this felid, by means of camera-trapping at three spatial scales: (i) 
whole country (Italy); (ii) biogeographical areas; (iii) latitudinal zones. The activity rhythms patterns were also calculated 
according to temporal scales: (1) warm semester; (2) cold semester and (3) seasonal scales. Lastly, we also tested whether the 
effect of moon phases affected the wildcat activity. We conducted the analysis on a total of 975 independent events collected 
in 2009–2021, from 285 locations, in ~ 65,800 camera days. We showed that the wildcat in Italy exhibits a > 70% nocturnal 
behaviour, with 20% of diurnal activity, at all spatial scales, and throughout the whole year, with peaks at 10.00 p.m. and 
04.00 a.m. We observed a high overlap of wildcat activity rhythms between different biogeographical and latitudinal zones. 
The wildcat was mainly active on the darkest nights, reducing its activity in bright moonlight nights. Diurnal activity was 
greater in the warm months and decreased with the distance from shrubs and woodlands, most likely according to activity 
rhythms of its main prey, water presence in summer, the care of offspring and the availability of shelter sites. Conversely, 
the distance to paved roads seems to have no significant effects on diurnal activity, suggesting that, in presence of natural 
shelters, the wildcat probably may tolerate these infrastructures. We suggested limited plasticity in activity rhythm patterns 
of the wildcat, emphasizing the importance of dark hours for this species.

Keywords  Activity rhythms · Felis silvestris · Mesocarnivores · Human disturbance · Moon phase · Nocturnality · Camera-
trapping
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Introduction

Ecological studies on elusive carnivores are particularly 
challenging, as these mammals are often threatened spe-
cies that generally live in low population densities, with a 
fragmented distribution (Gese 2001). The European wildcat 
Felis silvestris is widely reported as a strictly nocturnal car-
nivore, living at low population densities throughout Europe 
and with a discontinuous distribution range (Daniels et al. 
2001; Germain et al. 2008; Soyumert 2020; Anile et al. 
2021; Migli et al. 2021). During daylight hours, the wildcat 
usually exploits resting sites, i.e., shelter structures, mainly 
at the limits of the forests (Jerosch et al. 2009). Some aspects 
of the wildcat ecology including population dynamics, popu-
lation density (Anile et al. 2014, 2020; Kilshaw et al. 2015; 
Fonda et al. 2022) and spatial behaviour (Monterroso et al. 
2009; Anile et al. 2019) have already been studied in detail, 
although large scale evaluations are still sparse. Conversely, 
the temporal activity level has been partially overlooked, 
in particular on a large scale (Anile et al. 2021; Migli et al. 
2021). Indeed, patterns of the temporal behaviour of species 
may change with habitat, latitude, presence of competitors or 
mating opportunities (Pearman et al. 2008; Pratas-Santiago 
et al. 2016; Karanth et al. 2017). Moreover, geographic dif-
ferences in genetic structure and ethological features (i.e.: 
valerian lures response) have been reported (Mattucci et al 
2013; Velli et al. 2015). Therefore, activity patterns need 
to be considered in different environmental contexts (e.g. 
Ashby 1972; Kerr 1997; Jordan et al. 2007; Brivio et al. 
2017; Mori et al. 2020a). The European wildcat is fully pro-
tected over most of its range, under national and international 
legislations. This felid is included in CITES (Convention on 
International Trade of Endangered Species) Appendix II, 
listed in the European Union Habitats and Species Directive 
Annex IV and the Bern Convention Appendix II. Currently, 
some European wildcat populations are locally expanding, 
partially recovering the species’ historical distribution range 
(Ragni and Mandrici 2003; Steyer et al. 2016; Tormen et al. 
2020; Gavagnin 2021). The process of colonization or recol-
onization exposes wildcats to even greater consequences of 
direct and indirect anthropogenic threats, such as habitat loss 
and fragmentation, hybridization with domestic cats and 
direct persecution (Yamaguchi et al. 2015; Mattucci et al. 
2013). Anthropogenic structures and disturbances might also 
influence the activity patterns of the wildcat (see Anile et al. 
2021). For instance, roads have negative effects on wildlife, 
acting as barriers to movement and source of disturbance, 
injuries and mortality (Spellerberg 2002; Roedenbeck et al. 
2007; Bastianelli et al. 2021).

Camera trapping is being increasingly employed to 
estimate animal distribution and abundance, as well as 
local species richness (Tobler et al. 2008; O’Connell et al. 

2011; Borchers et al. 2014; Kikuchi et al. 2020). This rep-
resents a reliable method to assess the temporal behaviour 
of animal species (Leuchtenberger et al. 2014; Mori et al. 
2020a; Rossa et al. 2021). Activity rhythms of the wild cat 
can hardly be directly estimated by direct observations, as 
being nocturnal and elusive. Temporal activity patterns 
of this species have been estimated by camera-trapping 
at local study sites in Northern Spain (Monterroso et al. 
2014), Anatolia (Soyumert, 2020), Central Bulgaria (Tsu-
noda et al. 2020) and Southern Italy (Mori et al. 2020b; 
Anile et al. 2021). Nevertheless, studies exploring wildcat 
activity patterns on a national scale are needed in order to 
effectively implement conservation strategies over wide 
areas.

In our study, we aimed at filling this gap, i.e., at deter-
mining patterns of the wildcat activity on the Italian 
national scale, in different bioclimatic regions.

We collected camera-trap data from several national 
Italian camera-trapping projects, which detected wildcats 
both as a target species and as a bycatch in monitoring 
programs of other medium to large-sized mammal species. 
We assessed the activity of the wildcat with the aim to 
assess whether the diurnal activity may be influenced by 
environmental and anthropogenic variables (e.g. distance 
from paved roads).

Calculating temporal overlap amongst contrasting eco-
logical contexts would provide information on behavioural 
plasticity of the species in terms of temporal patterns 
of activity. This would in turn provide researchers with 
valuable information on the basic ecology of the species, 
which is pivotal to create successful conservation and 
management plans (O’Connell et al. 2011). For instance, 
temporal plasticity of each species should be assessed to 
determine its ability to cope with local touristic pressure 
and with global climatic change. Where environmental 
pressures change (e.g. predation/competition, food and 
shelter availability, anthropization), the same species may 
show different adaptations to thrive (e.g. the coypu Myo-
castor coypus: Mori et al. 2020a; the wild boar Sus scrofa: 
Brivio et al. 2017; Gordigiani et al. 2021). Following the 
literature available on the wildcat, we predicted that (1) 
the European wildcat would have been nocturnal in all 
study areas; (2) activity of European wildcat would not 
change in biogeographic regions and at different latitudes; 
(3) activity of European wildcat would change season-
ally; (4) as most carnivores improve hunting abilities in 
bright moonlight nights, European wildcats might be most 
active in full moon nights (as in other small felids: Pente-
riani et al. 2013; Huck et al. 2017; Bhatt et al. 2021); (5) 
the European wildcat would show some daylight activity 
with increasing distance from roads (as a proxy of human 
disturbance).
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Materials and methods

Data collection and dataset preparation

We collected data gathered across research and monitoring 
projects using camera traps specifically centered on the 
European wildcat in Italy, or relevant to projects mainly 
targeted on other carnivore species. Analyses obtained 
through camera-trapping are accurate and precise as radio-
tracking data, when events (i.e. photos or videos) of the 
target species are at least over 30 (Lashley et al. 2018). 
In contrast, the accuracy of estimates decreases when the 
sample size is lower than 30 detections (Lashley et al. 
2018).

Overall, we obtained 1300 videos and photos of puta-
tive wild-living cats from 14 study areas from 2009 to 
2021 (Table 1), with altitudes ranging from 0 to 1800 m 
above sea level, spanning from North-Eastern Italy to the 
most Southern regions (Fig. 1). Requirements for data to 
be included in our study were those specified by Lash-
ley et al. (2018): (i) cameras should have been deployed 
on site according to a sampling design targeted to car-
nivores; (ii) one-month minimum monitoring time; (iii) 
records obtained from cameras kept active for the whole 
24-h cycle. Furthermore, we identified European wildcats 
using a blind approach by at least three expert operators 
that independently analyzed the coat pattern of the species 
following the specific literature (Ragni and Possenti 1996; 
Beaumont et al. 2001; Kitchener et al. 2005). Only con-
cordant identifications were included in the analyses. Dis-
crimination between European wildcats and domestic cats 
has been proved to be achievable by means of morphologi-
cal features, through ad-hoc keys (e.g. coat color pattern: 
Ragni and Possenti 1996; Devillard et al. 2014; Migli et al. 
2021). We discarded records of domestic cats from our 
analyses, as well as doubtful F. silvestris/F. catus records 
(cf. Mattucci et al. 2016), i.e. those not fully respecting 
typical key pelage characteristics of the European wildcat 
(Jiménez–Albarral et al. 2021; Migli et al. 2021). We only 
used detections from the same camera station separated 
from each other by at least 30 min to limit the autocor-
relation bias (Monterroso et al. 2014; Torretta et al. 2016; 
Mori et al. 2020b; Rossa et al. 2021). After filtering the 
initial dataset according to the above parameters, 975 
nationally independent events from a total of 285 camera 
locations were included in our analyses with a total survey 
effort of 65,802 camera days (see the Table 1). In all cases 
the cameras were deployed on animal trails, footways, or 
forest roads and they had an average distance from the 
nearest camera of 1138 m (standard deviation = 1543 m).

For each event, we registered geographical coordinates 
(EPSG: 3035), latitudinal zones (North, Central and South, 

see below for definitions), biogeographic areas (categories 
are: “Continental”, “Mediterranean”, “Alpine”), the solar 
hour of capture, date, season (categories are: “autumn”: 
October–December; “winter”: January–March; “spring”: 
April–June; “summer”: July–September), semester (cat-
egories are: “warm months”: April–September; “cold 
months”: October–March), type of habitat, assessed on 
the field during camera-trap deployment (deciduous forest; 
coniferous forest; shrubs; wetland; open land), lunar epact 
and percentage of the visible moon. The use of season 
allowed a better total year subdivision for our analyses; 
however, we also used the “semester” category to allow 
a reliable comparison with previously published studies 
which used this categorization (e.g. Mori et al. 2020b).

We used latitudinal zones subdivision to assess the pat-
terns of activity based on similar conditions of light and 
latitude. We also considered a subdivision of the peninsula 
with three main latitudinal zones: (i) Northern Italy, above 
the 44° parallel; (ii) Central Italy, between 44° and 41° paral-
lel; (iii) Southern Italy, under the 41° parallel, without isles 
(Fig. 1). Moreover, biogeographic regions categorization 
allowed us to elaborate data according to the main bioceno-
sis distribution and climate conditions. They are described 
in the Supplemental Material.

Patterns of activity rhythms

We used RStudio version 4.0.3 (RStudio Team 2020; R Core 
Team 2021) to estimate wildcats’ temporal activity patterns 
using the non-parametric kernel density estimation (Mer-
edith and Ridout 2014).

Then, we also estimated 95% confidence intervals of 
activity patterns as percentile intervals from 1000 bootstrap 
samples (Ridout and Linkie 2009). We used package ‘over-
lap’ (Meredith and Ridout 2014) to draw the overlap plots 
between temporal activity patterns assessed in different bio-
geographic areas, latitudinal zones, seasons and semesters 
temporal overlap. Considering the similar results between 
the two temporal scales (seasons and semesters), we have 
been parsimonious and have considered only “semester”.

Bearing in mind that this work does not follow an 
homogeneous sampling designs for all study sites, and 
the events of wildcat have been collected in the frame-
work of different projects, we checked for sampling sites 
that could weigh more than others due to potential differ-
ences in sample size across them, by comparing activity 
patterns between the full dataset (N = 975 events) and a 
subsample of randomly selected events homogeneously 
distributed across sites (N = 312, with 18 random events 
per site, i.e., the number of events coming from the site 
with the smallest sample size). We compute the Watson's 
two-sample test of homogeneity to evaluate the uniformity 
of the two distributions (Lund et al. 2017). We used the 
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overlap coefficient Δ4 to compare the two samples and to 
verify their concordance. We calculated the Δ4 estimator 
coefficient since our sample was > 75 events (Linkie and 
Ridout 2011; Meredith and Ridout 2014). Overlap was 
defined as “low” when it was < 0.50, “intermediate” when 
included between 0.50 ≤ Δ ≤ 0.75, “high” with Δ > 0.75 
(Monterroso et al. 2014; Mazza et al. 2020; Mori et al. 
2020b). We calculated the 95% confidence intervals for 
overlap coefficients as percentile intervals from 1000 boot-
strap samples (Meredith and Ridout 2017).

Ambiental light and activity

We tested through a chi-square test whether the activity of 
wildcats was concentrated during night, crepuscular hours, 
or daylight (Sokal and Rohlf 2012). A Cramer’s V index was 
calculated to test for the size effect of the variables on wild-
cat detections. We considered as crepuscular hours the range 
time between the nautical dawn (sun is 12° below horizon) 
to sunrise (sun is 0.833° below horizon) and between nauti-
cal dusk (sun is 12° below horizon) to sunset (sun is 0.833° 
below horizon). The nautical dawn and dusk begin ~ 24 min 
before and after the civil dawn and civil dusk, equal to the 
time it takes for the earth to rotate 6°. We calculated the 
times of sunset and sunrise for each camera site using a spe-
cific algorithm by Meeus (1991), implemented in a VBA 
(visual basic for application) script, including coordinates 
and dates of each wildcat event. In the same way, we also 
classified surveyed nights following moon phases and epact, 
to test the effect of night sky brightness on the activity of 
the wildcat. Nights were classified as it follows: (1) epact 
days = 0–3, 26–29; (2) epact days = 4–6, 21–25; (3) epact 
days = 7–9, 17–20; (4) epact days = 10–16 following the 
approach by Mori et al. (2020b). Then, we conducted a chi-
squared test on numbers of nocturnal events (i.e. excluding 
from this analysis diurnal and crepuscular events) in each of 
these moon phases, to assess if they were uniform through-
out the lunar cycle (Mori et al. 2020a).

Diurnal behaviour

We set a generalized mixed linear model (GLMM) through 
the package ‘glmmTMB’ (Brooks et al. 2017) and ‘lme4’ 
(Bates et al. 2015). We created a dichotomous dependent 
variable using binomial errors (link: logit), labelling daylight 
events (after sunrise, when the sun is 0.833° below horizon, 
and before sunset, when the sun is 0.833° below the hori-
zon) as “1” and darkness events (before sunrise and after 
sunset) as “0”. We chose these sunset and sunrise, because 
we wanted to include only events with a substantial daylight 
and not borderline events. Running this model, we aimed 
at figuring out the diurnal activity of the species based on 
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our detections, outside major peaks of activity during the 
darkness hours.

First, we used Quantum Geographic Information Sys-
tem (QGIS) version 3.10 ‘A Coruña’ to calculate environ-
mental predictors. We used the MMQGIS-Hub distance 
plugin and data from Corine Land Cover © European 
Union, Copernicus Land Monitoring Service, European 
Environment Agency (EEA)] and open street map (https://​
www.​opens​treet​map.​org) to calculate minimum distances 
to woodland (broad-leaved forest, coniferous forest, mixed 

forest), shrubs (moors and heathland, sclerophyllous veg-
etation, transitional woodland/shrub), natural and semi-
natural open areas (arable land, heterogeneous agricul-
tural areas), discontinuous urban fabric and paved roads. 
According to the classification of the roads provide from 
Open Street Map, we excluded to our analysis the path-
ways and “minor road” (forest roads, residential roads, 
pedestrian roads) and we included only principal paved 
roads (“major roads”: motorway and highway). In the anal-
yses we only considered environmental predictors that had 

Fig. 1   Biogeographic regions 
(shades of grey), 10 × 10 km 
cells selected for analyses (in 
red, N = 85) and latitudinal 
zones (whose borders are 
marked by parallels, highlighted 
in red). Cells have been identi-
fied when at least one detection 
of wildcat was inside the border 
of cell. Our map excluded Sar-
dinia, where the African wildcat 
Felis (silvestris) lybica is pre-
sent. All data were projected on 
the grid identified by Regulation 
(EU) No 1089/2010 and the 
INSPIRE Directive 2007/2/EC 
(ETRS 89/Laea-EPGS-3035)

https://www.openstreetmap.org
https://www.openstreetmap.org
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a distance within 2500 m (hence our sample is reduced 
to N = 729) using as reference the approximate average 
radius of largest home-ranges of European wildcats in 
Italy (males and females) in literature (Anile et al. 2017). 
Moreover, the average daily home-range from radio-
tracking data was similar, i.e., 2.26 km (Sarmento et al. 
2006; Monterroso et al. 2009). Since more of 50% of our 
camera-trapping stations (N = 285) were farther than our 
limit distance to natural and semi-natural open areas and 
discontinuous urban fabric we did not consider these land 
use categories as predictors in our model. We used the 
‘raster sampling’ plugin and DEM at an accuracy of 20 m 
(data from National Environmental Information System 
Network of the Italian National Institute for Environmen-
tal Protection and Research: ‘SinaNet-ISPRA’, www.​mais.​
sinan​et.​ispra​mbien​te.​it/​ost/) to calculate the elevations of 
each camera-trapping station.

Overall, in our global model, we considered as predic-
tors: (i) season, (ii) % of visible moon, (iii) elevation, (iv) 
distance to the nearest paved road, (v) distance to the near-
est shrubs, (vi) distance to the nearest woodland, (vii) type 
of habitat at each camera-trap site. As random effects, we 
selected the year and the study areas. We assessed col-
linearity among predictors through correlations using the 
Pearson and Spearman correlation coefficient for each 
possible couple of predictors, using a threshold of |0.5| 
(Crawley 2007).

A global model was initially evaluated for this analysis 
with all predictors. Subsequently, all possible models were 
calculated with the different combinations of considered 
predictors, evaluated through model selection procedure 
based on comparison of AIC scores (Akaike Information 
Criterion). We identified as the best model the most parsi-
monious one, i.e., the one having the lowest AICc (Burn-
ham and Anderson 2002; Richards et al. 2011). Moreo-
ver, we selected for inference all models with AICc ≤ 2 
(Burnham and Anderson 2002; Harrison et al. 2018) and 
among these, those which were not more complex ver-
sions of the simpler model (Richards et al. 2011); we used 
the selection model with nesting rule to avoid retaining 
overly complex models (Richards et al. 2011; Harrison 
et al. 2018). Model selection was conducted through the R 
package ‘MuMIn’ (Barton 2012). We estimated parameters 
(95% confidence intervals and B coefficients, which is the 
degree of change in the response variable for every 1-unit 
of change in the predictor variable) of the best model by 
using the R packages ‘glmmTMB’ (Brooks et al. 2017) 
and ‘lme4’ (Bates et al. 2015). Then, the best model was 
validated by visual inspection of the distribution of residu-
als (Zuur et al. 2009) through the ‘DHARMa’ package 
(Hartig 2021). Model weight was standardized within the 
subset of selected models.

For our best model we also performed a post-hoc analy-
sis for the categorical season predictor.

Results

Activity rhythm patterns on the national scale

We included in our analyses a total of 975 events (warm, 
N = 524; N = 451). The comparison between the random 
sample generated and our total sample underlined high 
overlap between two distributions (Fig. 2a–b). The Watson 
two test was not significant (Fig. 2c); thus, we used the 
total sample for the followed analyses. The European wild-
cat activity peaked at night on an annual level, with two 
main peaks around 10:00 pm and 04:00 am (Fig. 2a–c).

In the warm months, the wildcat activity increased from 
07:00 pm, with a maximum peak between 02:00 and 04:00 
am. In the cold months, the greatest activity was recorded 
between 05:00 pm and midnight, with a second peak at 
about 05:00 am (Fig. S1 in Supplementary Material).

Patterns of activity rhythms at the biogeographic 
scale

The overlap in all cases (Fig. S2–3 in Supplementary Mate-
rial), between the activity of the wildcats in the three dif-
ferent biogeographic contexts, on a yearly scale was high. 
Nonetheless, some minor differences could be observed 
(Fig. 3a–c). The highest peak in the Continental area was at 
10:00 pm with a second lowest peak at 05:00 am, whereas, 
in the Mediterranean area, the maximum peak was at 05:00 
am and a second one after 11:00 pm. The wildcat had a lit-
tle activity also during the daylight, with two small peaks 
at midday and at 04:00 pm. In the Alpine area, the activ-
ity began to increase around 04:00 pm with a peak around 
11:00 pm with a plateau until 03:00 am. As to the analyses 
of two semesters (cold and warm), the intra-area overlap was 
high for the Alpine and Mediterranean areas and intermedi-
ate for the Continental area (Fig. S3 in Supplementary Mate-
rial). There was a slight peak of activity in diurnal hours for 
the Alpine and Mediterranean areas in the warm period but 
not in the cold one.

Patterns of activity rhythms at the latitudinal zones 
scale

In the northern area, the major peak was recorded around 
10:00 pm, but the activity kept being high until 05:00 am. 
In central Italy the wildcat had two highest peaks of activity 
at 10:00 pm and 04:00 am. In southern Italy, the activity 
of wildcat began to increase around 06:00 pm reaching the 
highest peak at about 03:00 am (Fig. 4a–c).

http://www.mais.sinanet.isprambiente.it/ost/
http://www.mais.sinanet.isprambiente.it/ost/
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The overlap was high in all cases (Fig. S4–5 in Supple-
mentary Material), on a yearly scale (Fig. S4 in Supple-
mentary Material), at the semester scale (warm and cold 
months), at the intra-area and the inter-area levels (Fig. S5 
in Supplementary Material), underlining a substantial activ-
ity overlap among the three different latitudinal zones. The 
peaks of activities during cold months were anticipated with 
respect to warm months in all latitudinal zones. Moreover, 
a slight increment of wildcat diurnal activity in the warm 
months was observed, with respect to the cold ones.

Ambiental light and activity

The wildcat activity resulted significantly dependent from 
night-day phases being recorded for 70.2% of our events in 
night ours, for 20% during daylight and for the remaining 
9.8% during the twilight (χ2 = 914.87, df = 2, P < 0.001; 
Cramer’s V = 0.56). Nocturnal activity of the wildcats 
was not constant in different moon phase nights (year: 
χ2 = 66.54, df = 3, P < 0.01; warm months: χ2 = 30.83, 
df = 3, P < 0.01; cold months, χ2 = 86.85, df = 3, P < 0.01; 
Cramer’s V = 0.57), decreasing from darkest nights 
(78.25% nocturnal records) to full moon nights (21.75% 
nocturnal records).

Fig. 2   a Total activity rhythms of the wildcat in Italy; b activity 
rhythms estimated through a random subset of wildcat records; c 
overlap between a and b Δ4  =  0.96; 95% confidence intervals  = 0 

.89–0.96; Watson test: W < 0.001, P > 0.10. Coloured lines represent 
bootstrapped estimates of activity patterns; dashed black lines repre-
sent 95% confidence intervals

Fig. 3   Temporal activity patterns of wildcat in the three biogeographic regions: a Continental, b Mediterranean, c Alpine. Coloured lines repre-
sent bootstrapped estimates of activity patterns; dashed black lines represent 95% confidence intervals
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Diurnal behaviour

In the global model none of the predictors were correlated 
and they could all be included.

In the best model we considered the follow predictors: 
(i) distance to the nearest shrub woods; (ii) elevation; (iii) 
season.

The probability of wildcat detection in daylight was 
favoured by a minor distance to shrubs and low altitudes 
(Table 2; Fig. S6 in Supplementary Material). Moreover, 
the model underlines that the probability of wildcat detec-
tion in daylight is higher in spring and summer compared 
to the autumn. Conversely, the human structures, i.e., 
paved roads—seem not to influence the diurnal activity of 
the species, since this variable was not selected to be part 
of the best model (Table S1 in Supplementary Material).

Discussion

In all our outcomes and pairwise comparisons, the Euro-
pean wildcat confirmed a predominantly nocturnal habit as 
also reported in other studies (Daniels et al. 2001; Germain 
et al. 2008; Soyumert 2020; Anile et al. 2021; Migli et al. 
2021), with over 70% events falling in dark hours. Further-
more, the wildcat seemed not to select the transition period 
between night and daytime (only less than 10% of events 
were in crepuscular hours). Surprisingly, we found a 20% 
of our detections fell during daylight. One reasons could 
lie in the sample size of our study being significantly larger 
with respect to most of other works, carried out mostly on 
local or regional scale (Germain et al. 2008; Can et al. 2011; 
Anile et al. 2021; Migli et al. 2021) and that might have 

better detected this phenomenon. Moreover, our data come 
from a more representative geographic range that could have 
intercepted hidden differences in prey typology and abun-
dance with a consequent shift in feeding habits for some 
individuals. Indeed, in areas where some wildcat preys are 
diurnal (e.g. voles), wildcats may show some diurnal activity 
(cf. Jiménez–Albarral et al. 2021). Inter-season activity dif-
ferences showed shifts in the peaks, in line with differences 
in sunrise and sunset time, suggesting a preference toward 
total darkness.

Wildcats show several physical and physiological adapta-
tions to nocturnal or crepuscular activity, mainly involving 
hunting and courtship behaviour. These adaptations include 
an acute auditory sense, an improved tactile sense from 
vibrissae and other hair tufts, and an acute sense of smell 
for maximizing the activity at dark (Tabor 1983), which may 
explain why they are mostly reported as nocturnal species. 
Furthermore, wildcats have large eyes with a high propor-
tion of rods in the retina for better vision in poor low-light 
vision (Tabor 1983).

Amongst mammals, the activity of predators is often syn-
chronized with the activity of their prey (Daan and Aschoff 
1981; Zielinski et al. 1983; Monterroso et al. 2013), or 
shaped by the need of avoidance of humans or other com-
petitors (Wang et al. 2015; Mori et al. 2020b; Murphy et al. 
2021). As a matter of fact, nocturnal activity is one of the 
strategies that wildlife adopts to avoid encounters with 
humans (Gaynor et al. 2018; Nickel et al. 2020). Differently 
from our hypotheses, our results suggested that nocturnal 
activity of the wildcat was the lowest in bright moonlight 
nights. This behaviour might be explained in relation to 
the temporal behaviour of its main prey. Rodents and lago-
morphs tend to avoid bright moonlight nights (Mori et al. 

Fig. 4   Temporal activity patterns of wildcats in the three latitudinal zones: a northern, b central, c southern. Coloured lines represent boot-
strapped estimates of activity patterns; dashed black lines represent 95% confidence intervals
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2014; Penteriani et al. 2013; Pratas-Santiago et al. 2016; 
Viviano et al. 2021), with ranging movements mostly con-
centrated in concealed habitats or during the darkest nights. 
Therefore, it is likely that the wildcat synchronized its 
movements with those of its main prey, e.g., by decreasing 
its activity in bright moonlight nights. Another reason for 
which the wildcat avoids bright moonlight nights could be 
related to the fact that increased visibility would make it 
less effective in predatory activity (Prugh and Golden 2014). 
Moreover, the avoidance of bright moonlight could also be 
related to the presence of apex predators, i.e., the grey wolf 
Canis lupus, which is present and abundant throughout Italy, 
and, the lynx Lynx lynx, only present with few individuals in 
the Alps (Loy et al. 2019). Accordingly, apex predators are 
mostly active in bright moonlight nights, potentially forc-
ing mesocarnivores to be active mostly in the darkest nights 
(e.g. Theuerkauf et al. 2003; Penteriani et al. 2013). Several 
other small-sized carnivores coexist with the wildcat and 
may compete with this species for diet and/or spatiotem-
poral behaviour (cf. Mori et al. 2020b). Our result seems to 
agree with Di Bitetti et al. (2006), as they examined feline 
activity on the trails in Argentina and found that ocelots 
Leopardus pardalis were predominantly nocturnal with no 
significant differences between males and females and more 
active during dark sky periods (new moon near periods). 
However, ocelots are adapted to thrive in environments with 
abundance of larger carnivores (e.g. pumas Puma concolor 
and jaguars Panthera onca). Conversely, where the meso-
carnivore guild is composed by a lower number of species 
or in areas where wolves are a rare occurrence, no effect of 
moonlight is observed in wild cats (Migli et al. 2021).

Diurnal activity occurred in about 20% of our events 
and was reported especially in the warm season (spring and 

summer) perhaps due to the activity of diurnal prey such 
as arthropods, reptiles, squirrels, birds (Apostolico 2003; 
Apostolico et al. 2005; Ragni et al. 2014), or due to, most 
likely, the reduced prey availability during summer which, 
in the Mediterranean climate, represents the limiting sea-
son. Therefore, the wildcat may switch prey to maximize 
hunting opportunities, considering also that during sum-
mer the daylight hours are more represented during the day. 
This behaviour has never been reported for the wildcat. A 
similar behaviour has been observed in the jaguar, which 
exploit diurnal hours to search for peccaries when noctur-
nal turtle abundance was the lowest (Carrillo et al. 2009). 
Furthermore, the warm period coincides with the weaning 
of offspring and consequently with an increase in the physi-
ological demand for additional food resources. Accordingly, 
Migli et al. (2021) confirmed a peak of activity in night 
hours in radio-tracked wildcats in Greece, with a peak in 
diurnal activity of reproductive breeding females in warm 
months.

Diurnal movements are negatively correlated with 
increasing distance from shrubs, but not with forests. Thus, 
we suggest the importance of shrubs for the species prob-
ably due to a greater preference for protection, shelter, and 
the abundance of prey (Monterroso et al. 2009; Lozano et al. 
2010; Ferretti et al. unpublished data). A preference for these 
habitats has also been revealed by wildcat monitoring in 
the Polish Carpathians (Okarma et al. 2002). Conversely, 
Anile et al. (2019) reported a preference for mixed forests 
in a volcanic environment of Southern Italy. In this area, 
the shelter provided by shrub is largely overwhelmed by the 
local abundance of natural cavities typical of the volcanic 
soil. This particular situation is related to the volcanic area 
and to a wildcat population which is genetically isolated 

Table 2   Model selection for diurnal activity, estimated through generalized linear mixed models

Effects of predictors included in best model are shown: model coefficients (B), their standard error (SE), 0.95 confidence intervals (Cis), zeta-
value (z), and p value (P). For our best model we included also a post-hoc analysis for the categorical season predictor

Post-hoc analysis Variables B SE 95% CIs P

Spring (autumn) 0.976 0.301 [0.202, 1.750] 0.006
Summer (autumn) 0.939 0.300 [0.169, 1.708] 0.009
Winter (autumn) 0.381 0.303 [− 0.398, 1.159] 0.589
Summer (spring)  − 0.037 0.259 [− 0.702, 0.628] 0.999
Winter (spring)  − 0.595 0.288 [− 1.334, 0.144] 0.163
Winter (summer)  − 0.558 0.272 [− 1.255, 0.139] 0.168

Best model Variables B SE 95% CIs z P

Diurnal activity Intercept  − 1.887 0.257 [− 2.391, − 1.383]  − 7.338  < 0.001
Distance to the nearest shrub  − 0.301 0.100 [− 0.498, − 0.105]  − 3.003 0.003
Elevation  − 0.200 0.093 [− 0.381, − 0.018]  − 2.155 0.031
Season [Spring] 0.976 0.301 [0.385, 1.567] 3.238 0.001
Season [Summer] 0.939 0.300 [0.351, 1.526] 3.132 0.002
Season [Winter] 0.381 0.303 [− 0.213, 0.975] 1.256 0.209



The rhythm of the night: patterns of activity of the European wildcat in the Italian peninsula﻿	

1 3

from the peninsular population. Our study, including data 
from the whole of the Italian peninsula, stresses that shrub-
lands are important for the species, in agreement with other 
studies carried out in the Mediterranean.

Wildcat occupancy has been reported as negatively 
affected by altitude (Anile et al. 2019). Our results hence 
showed that diurnal activity decreases with increasing alti-
tude (i.e., up to 1800 m a.s.l). Nevertheless, the interpreta-
tion of this result requires further investigation.

The presence of paved roads seemed not to affect the 
diurnal activity of wildcats, even though the transit of vehi-
cles generally increases during the day. This result suggests 
that in presence of natural shelters, such as shrubs and other 
protection elements, which sometimes occur on paved road 
sides, this species can tolerate these anthropogenic infra-
structures (Jerosch et al. 2009; Wening et al. 2019). Klar 
et al. (2008) highlighted how human infrastructures such 
as roads and villages are usually avoided by the wildcat 
although over a certain distance (i.e., ca. 200 m for single 
streets and houses, ca. 900 m for villages). Thus, human 
infrastructures do not seem to influence the wildcat ranging 
movement patterns, further suggesting that a small number 
of main roads can be tolerated within the home-range of a 
wildcat, despite being an important mortality factor (Klar 
et al. 2009). Many of our study areas are protected areas 
that are in natural and rural zones with roads usually not 
too busy, hence further ad hoc study could be required to 
confirm the result. Moreover, this result could be affected 
by a gender factor as highlighted in Jerosch et al. (2018) 
suggesting a gender difference, with females avoiding the 
areas near roads more than males.

In conclusion, our insights shed lights on some basic 
ecology elements of wildcat behaviour in Italy, for the first 
time with a national-scale perspective and at different lati-
tudes, including some novel information about its diurnal 
movements. These aspects are pivotal for the conservation 
and effective management of this endangered species that 
has been poorly studied on a large scale. Nonetheless, we 
are aware that gathering data from different monitoring pro-
jects, carried out with heterogeneous designs, even though 
complying with fundamental requirements, could lead to 
some inaccuracies that could be taken into consideration. 
We, therefore, think it should be advisable to standardize 
as much as possible the camera-trapping protocols and to 
tend to national-scale coordination in wildcat monitoring 
in Italy. Several in-depth analyses will be necessary for the 
future, holding into consideration the behaviour of wildcat 
prey and/or direct potential competitors, including Martes 
spp., red foxes Vulpes vulpes, apex predators (wolves and 
lynxes), golden jackals Canis aureus and, locally, alien spe-
cies too (e.g., the racoon Procyon lotor and the genet Gen-
etta genetta). Moreover, another element to investigate is the 

spatio-temporal behaviour of wildcats in relation to climate 
change scenarios, particularly in the context of the Mediter-
ranean region, with drought currently lasting longer than in 
the past, and potentially leading to behavioural modulation 
changes.

To conclude, the data collected during this study made it 
possible to highlight that the currently known distribution 
of the species is lacking and needs further nationwide stud-
ies, essential to properly describe the range of the European 
wildcat in the Italian territory.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s42991-​022-​00276-w.
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