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Abstract— Automatic extraction of facial feature can provide
valuable information on the health of newborns. However,
determining an optimal facial features extraction strategy,
especially for preterm infants, is a challenging task due to
significant differences in facial morphology and frequent pose
changes.

In this work, we collected video data from 10 newborns
(8 preterm, 2 at term, ≤ 4 weeks post term equivalent age),
obtaining a novel dataset of over 41, 000 labeled frames (Open
Mouth, Closed Mouth, Tongue Protrusion). On the collected im-
ages, we applied a strong data preparation procedure (including
mouth localization, cropping, and reorientation with models
trained on adults), an adaptive image normalization strategy,
and a proper data augmentation scheme. Thus, we trained
a convolutional classifier with a large number of trainable
parameters (i.e., ∼1.2 million), coupled with multiple criteria to
avoid overspecialization and consequent loss of generalization
capability.

This approach allows for highly reliable results (accuracy,
precision, and recall over 92% on unseen data) and generalizes
well to newborns with significantly different characteristics,
even without including time-dependent information in the anal-
ysis. Therefore, these results prove that proper data preparation
can narrow the gap between the classification of neonatal
and adult facial features, allowing the integration of methods
originally developed for adults into the complex setting of
preterm infant analysis.

I. INTRODUCTION

Children’s faces contain a wealth of valuable information
regarding their health. Indeed, certain pathological conditions
alter the expression or appearance of children’s faces due
to physiological or behavioral reactions [1], [2]. Contactless
approaches, such as computer vision methods, may detect
and analyze the most relevant facial features, thus providing
clinicians (or parents, teachers, caregivers, etc.) with un-
obtrusive and objective information about children’s health
status [3]. The developed methods range from classification
of infants’ facial expression configuration [4], assessment of
motor disorders [5], or even video-based behavior analysis
for autism diagnosis [6].

However, the challenge of this task increases as the age of
the newborns studied decreases, due to significant changes in

the morphology of the face compared to an adult face and in-
creased difficulty in data acquisition due to random changes
in their facial pattern and pose [7], [8]. Consequently, most of
the available datasets are focused on older infants (e.g., ≥6
months [9], [10], ≥2 years [11], [12]) or include only images
instead of videos [13]. Therefore, research problems that
focus on early newborns (i.e., less than 4 months from birth),
especially preterm and late-preterm infants, are particularly
challenging.

Among the research questions related to early newborns,
one open issue concerns neonatal imitation (NI), meant as the
existence of a primitive ability of infants to mirror the actions
of others [14], [15]. The question of whether imitation is
present from birth is still open and debated in the scientific
community, though being of great importance [16], as it can
foster a more nuanced understanding of how imitation serves
as a building block for later developmental outcomes. This
is especially important for preterm infants, being at risk of
impaired neurophysical development.

To support investigations into NI, a crucial task is to
detect and assess specific Facial Action Units (FACs, [17]) in
response to a matching stimulus. In this respect, the detection
and tracking of facial landmarks is a basic step; although
well-established tools can track facial gestures in adults [18],
they are not really effective when applied to the recognition
and tracking of facial gestures in newborns due to critical
differences in morphology and pose dynamics [19].

In this work, we approach the problem by analyzing videos
of newborns (8 preterm, 2 at term, ≤ 4 weeks post term
equivalent age) performing different tasks (tongue protru-
sion, mouth opening, etc.) to classify open/closed mouths.
The videos are analyzed at frame-level. First, we identified
mouth landmarks and cropped the images around the mouth,
then we applied a rigorous normalization procedure (mouth
orientation, resizing, brightness, and contrast enhancement)
to make the dataset homogeneous and guarantee better
classification performance. Appropriate strategies based on
resampling/data augmentation, and unequal class weights are
implemented to compensate for inhomogeneous acquisition
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Fig. 1: Setting of data acquisition. The image shows a 3D
render of the room showing the equipment used and its
positioning in relation to the operator and the infant.

lengths among subjects. A Convolutional Neural Network
(CNN), coupled with an appropriate early stopping strategy,
is trained using a ten-fold cross-validation to provide deeper
insight into classification capability.

II. DATA ACQUISITION AND PREPARATION

A. Ethical approval

The study was approved by the Tuscany Region Pediatric
Ethics Committee (123/2020, 12/2021) and conducted in
accordance with the ethical principles of the Declaration
of Helsinki. Families gave written informed consent before
participating in the study.

B. Inclusion criteria

Preterm infants were recruited according to the following
inclusion criteria: (1) born between 32 and 36 gestational
weeks, admitted to the Neonatal Unit of the University
Hospital of Pisa, Italy, (2) stable clinical conditions, and (3)
none or minor brain abnormalities on ultrasound (transient
flare, mild isolated ventricular dilation). Full-term infants
were recruited from the Baby Nursery of the same hospital,
according to the following inclusion criteria: (1) born ≥ 37
gestational weeks, and (2) absence of perinatal complica-
tions.

C. Data acquisition

The video recordings were conducted in a well-equipped
room located close to the neonatal unit, but far enough
away to allow for the absence of other newborns’ cries. The
entire recording session comprised three conditions: tongue
protrusion, mouth opening, and a control disk. During each
condition, an operator positioned in front of the newborn
alternated between presenting dynamic stimuli and static
face (or disk) periods at predefined time intervals and for
a total duration of 3 minutes. The order of conditions was
randomized across newborns. The entire recording session
lasted 9 minutes. The room was equipped with two light
points characterised by warm light, placed behind the neona-
tal station where the infant was placed as shown in Fig. 1.
This choice was made to prevent the light from creating

Fig. 2: Data preparation procedure: the original image is
processed using Face Landmarker of Google MediaPipe
Solutions to identify a rough contour of the mouth (a). This
imprecise contour is used to crop/reorient the image. An
adaptive brightness/contrast enhancement is applied to the
final image (b).

a point of attraction for the newborn and thus distracting
from the execution of the task, while at the same time
clearly illuminating the face of the operator performing
the predefined movements. The newborn was placed on a
bassinet equipped with a pillow to allow a comfortable and
inclined position to improve the operator’s visibility as show
in Fig. 1. The main video camera used was a Canon Legria
HFG70, a professional CMOS 4K 1/2.3 video camera, which,
thanks to its advanced autofocus, 20x optical zoom and 5-
axis stabilisation, was excellent for creating smooth, accurate
and high-definition video. The camera was placed on a tripod
and manually moved by a second operator to keep the lens
on the baby’s face as much as possible as show in Fig. 1. In
order not to interfere with the performance of the task and to
avoid distracting the newborn, a selected position was chosen
to the side of the neonatal bassinet and behind the operator.
A second camera was however set up on the other side of
the neonatal bassinet to allow another more focused shot of
the operator’s face.

D. Mouth identification

The collected recordings are divided into frames, which
in most cases include the whole face of the newborn and
the surroundings, but sometimes the face of the newborn
is covered. Therefore, as a pre-processing step, we want to
identify when the newborn’s mouth is visible and then crop
the image to include only relevant information to correctly
classify the open/closed mouth.

Although face detection and characterization in infants is a
challenging task in computer vision [19], methods developed
for adult facial landmark estimation are sufficiently accurate
to produce a reasonable crop around the mouth of newborns.
Our identification of the mouth exploits the Face Landmarker
of Google MediaPipe Solutions [20], which first uses the
Blazeface model [21] to detect faces, then uses a second
model to locate mouth landmarks on the detected faces.
These landmarks are used to define the mouth length and
rotation to the respect of the image horizontal axis. Frames
that do not contain mouth landmarks are removed from the
dataset.



Fig. 3: Scheme of the Convolutional Artificial Neural Network classifier.

In our experimentation, the infant generally moves and
rotates the head during the acquisition; then, in order to have
a collection of mouth more homogeneous, we extracted the
rotated bounding box of the mouth in each frame and stored
it. In other words, for each frame of a video sequence, we
saved a crop of the image representing the infant’s mouth,
and oriented in the direction {left mouth corner - right mouth
corner}, see Fig. 2a).

E. Image pre-processing

Cropped images were pre-processed to enhance their tex-
tural information while preserving their quality and facili-
tating the subsequent analysis, as reported in Fig. 2b). Pre-
processing steps were as follows:

• Image resizing: All images were reduced to a predeter-
mined size (128x128 pixels), to lighten the computa-
tional load of downstream analysis.

• Brightness enhancement: The brightness of each image
was first assessed according to [22]. In the case of low
values, the brightness was increased by a brightness
factor.

• Grayscale conversion: All images were converted from
RGB to grayscale images to reduce the number of
input channels of the model and drastically reduce the
trainable parameters.

• Contrast enhancement: A Contrast Limited Adaptive
Histogram Equalization (CLAHE) was implemented,
to improve visual discriminability and detail rendi-
tion without increasing the signal-to-noise ratio [23].
CLAHE, a variant of traditional histogram equalization,
operates by partitioning an image into smaller tiles and
redistributing pixel intensities within each tile to achieve
a uniform histogram. By constraining the amplification
of local contrast through adaptive clipping, CLAHE
mitigates the risk of over-enhancement and preserves
the natural appearance of images. Consequently, this
technique may improve the analysis of complex textural
features, particularly in those images characterized by
non-uniform illumination or low contrast gradients.

F. Data labelling

Images in which the mouth is totally covered (usually
by the newborn’s hand) or in those in which the automatic
detection of mouth landmarks fails are excluded from the
dataset. The remaining images are then consensus labeled
by 3 experts, classifying each image as Closed Mouth, Open
Mouth, or Tongue Protrusion. For this preliminary work, the
last two classes are collapsed to a single one, still called Open
Mouth. Images that do not have a consensus prediction are
excluded from the dataset.

III. MODEL DESCRIPTION AND VALIDATION
SCHEME

A. Model description

We applied a deep convolutional classification model to
identify open/closed mouths at frame level. As reported
in Fig. 3, the architecture includes a convolutional layer
followed by a batch normalization one to reduce internal
covariate shift. This layer, combined with a high batch size
(n = 40) and a reduced momentum (0.1), allows to maintain
a high learning rate and thus drastically speed up the training
phase [24]. Normalization is followed by average pooling
(kernel size 2) to reduce the image size and reduce the
degrees of freedom of the network.

The normalization block is followed by four encoding
blocks (made up of a convolutional layer (kernel size 5, stride
1, padding 2), a ReLU activation function, and an average
pooling (kernel size 2) that transforms the original 128×128
image into a 4× 4 one. These images are flattened to obtain
a one-dimensional tensor of 4096 elements.

The classification block of the network consists of two
dense layers of 32 nodes each, providing a single output.
Each of these layers is preceded by a dropout layer (Bernoulli
distribution, p = 0.2) to further reduce early overfitting
phenomena. Instead of applying a sigmoid transform, we
take advantage of the log-sum-exp trick of a Binary Cross
Entropy with Logit loss to increase numerical stability.

The final model, optimized using an ADAptive MOment
estimation method (ADAM), has 1,220,098 trainable param-
eters.



Fig. 4: Model convergence on training, validation and test
sets for the model with (a) and without (b) data preparation.
Values are reported as median and interquartile range among
the 10 folds.

B. Stratification, Data Augmentation, and Balancing of New-
borns

The labeled images are obtained from video acquisition.
Therefore, there is a very high similarity between consecu-
tive frames, which, if not addressed correctly, can produce
positively biased results. To overcome this limitation, we
stratified the dataset at subject-level. Images belonging to
a given newborn are never split between different sets
(training/validation/test), ensuring an unbiased evaluation of
model performance.

Providing slightly different consecutive images of the
same newborn can be perceived as data augmentation, but
this can reduce the ability to generalize to unseen data by
over-specializing the model to long series of similar images.

Therefore, we decided to add random perturbations to
the images to prevent model overfitting (data augmentation).
In particular, for each image, a value u ∈ U [0.7, 1] is
sampled from an uniform distribution. A sub-image with
area u · Original Area, same aspect ratio and center (cx, cy)
is extracted from the original image. The center is ran-
domly sampled to guarantee that the sub-image is completely
contained in the original image. A bilinear interpolation is
applied to the sub-image in order to map it to the resolution
of the original image. We also applied a standard horizontal

TABLE I: Model performance in validation and test set.
Results are reported as median and interquartile range for
both models (with and without data preparation).

Accuracy Precision Recall
Validation
(Data Preparation)

92.0%
[83.9, 97.3]

91.7%
[84.5, 96.9]

96.9%
[91.3, 97.5]

Test
(Data Preparation)

92.2%
[85.3, 96.0]

92.3%
[83.7, 96.6]

95.4%
[92.0, 97.0]

Validation 75.2%
[64.1, 78.3]

70.9%
[60.4, 77.9]

76.0%
[68.3, 87.4]

Test 72.5%
[61.5, 75.6]

65.0%
[59.1, 75.4 ]

77.9%
[63.1, 83.4]

flip (vertical axis of the simmetry) with a probability of 50%
to further balance image similarity.

The dataset is therefore expanded by a factor of 2 (hori-
zontal flip), and the same image is never given to the model
twice, as the random online sampling of subimages always
adds a certain amount of variability to the training data. In
addition, the batch operates on a shuffled version of the entire
image dataset to avoid providing similar images in the same
backpropagation step.

This dataset is characterized by strong heterogeneity
among labeled frames for each newborn (from a minimum
of 537 to a maximum of 8181). This can potentially affect
model performance, as newborns with a higher number of
available images will have a greater effect during training
than those with fewer images. Therefore, we applied a
weighted loss based on the number of available images for
each newborn to artificially inflate the impact on model
training of newborns with short video acquisition.

C. Training and validation scheme

To reduce the risk of early over-specialization of the model
at local minima, we define a triangular adaptive learning
rate that ranges linearly from an initial value of 0.01 to a
maximum value of 0.05 (warm-up steps). Next, the value is
linearly reduced from the maximum to 0.001 for 15 epochs
(to mitigate exploding gradient problems).

In order to take advantage of the structure of the database
(reduced number of newborns (10), but each with a high
number of labeled images (3278 median number of available
slices per newborn)), we implemented a leave-one-out (LOO)
cross-validation strategy at subject-level, which proves ef-
fective in determining model performances in biomedical
settings [25]. Each LOO fold divides the data set into training
(80%), validation (10%), and test (10%) sets. Accuracy on
the validation set is used as an early stopping criterion (the
best model is defined as the one that maximizes validation
accuracy after the warm-up steps), performance is then
evaluated on the test set. This procedure, even if costly in
terms of simulation, allows to obtain a low-biased estimate
on generalization capability of the model.

IV. RESULTS
A. Study population

Eight preterm newborns (7 male, 1 female) and 2 full-
term newborns (1 male, 1 female) were involved in this



Fig. 5: Examples of image post Data preparation. a,b) show frames with good model prediction, while c,d,e) depicts a
recently fed newborn, a mouth partially covered by the operator, and motion artifacts.

study. The preterm infants’ gestational ages at birth ranged
between 33+4 and 36+0 gestational weeks, and between
35+4 and 43+2 weeks at the time of their participation in
the video recording session. The two full-term newborns
were born at 39+1 and 38+4 gestational weeks, respectively;
and participated in the study at 39+6 and 42+1 weeks,
respectively. All infants were assessed before reaching 4
weeks post-term equivalent age.

B. Model convergence

The full evaluation of the model involves training 10
models (on an average of original 26,224 images before data
augmentation) with subsequent evaluation of performance on
the validation set, which is used to define an early stopping
criterion, and subsequent unbiased estimation on the test set.

Fig. 4 a) shows the median accuracies for training, vali-
dation, and test across epochs (and their interquartile ranges
over the folds). In particular, the early stopping criterion is
met after a median of 13 epochs (IQR [12, 15]) and is never
met before the first epoch or after the 18th epoch.

Indeed, after the 10th epoch (5 warm-up+5 decay epochs),
the models stabilize their performance and reach a high
accuracy in both validation and training. The comparable
performance (no statistically significant difference) on these
two sets proves the convergence of the model and ensures a
reduced risk of overfitting.

C. Classification results

The median models performance on the validation and
test sets are shown in Tab. I. Considering the high number
of degrees of freedom of the trained networks (1,220,098
trainable parameters), the training metrics are always around
100%. The trained model as an overall accuracy of 92.2% (on
unseen test data), with a very low number of false negative
(recall/sensitivity of 95.4%), i.e. open mouth classified as
closed ones.

It should be emphasized that in 40% of the dataset, the
validation/test performance reaches an excellent accuracy of
over 97/95%, while the median scores are lowered by a few
newborns (20%) with reduced model performance.

D. Subject-level analysis

A focus on newborns with out-of-distribution model re-
sults can be very helpful for subsequent improvement of
the classification model. In particular, two newborns had

unsatisfactory performance. These infants prove to exhibit
anomalous recording, with a noisy image quality (Fig. 5
e)and with most of the frames containing tools from the
acquisition settings that partially cover the newborn’s mouth
(Fig. 5 d). Similarly, even when performance is good, images
of newborns who have recently fed (resulting in milk bubbles
and residual regurgitation during recording, see Fig. 5 c)
exhibit poor automatic labeling.

E. Effect of data preparation

To evaluate the effect of data preparation (cropping, ro-
tation, adaptive enhancement, and ad hoc augmentation),
we applied the same ANN to the data without any kind
of preprocessing and preparation. The convergence curve
(Fig. 4 b) shows a similar behavior compared to the data that
underwent the full data preparation, but reaches a reduced
performance on the test data (accuracy 72.5%, precision
65%, recall 77.9%). These performances, which are stable
after the 10th epoch of training, prove the importance of
proper data preparation to clean the unnecessary information
from the images and maximize the network’s ability to
generalize to unseen data.

V. CONCLUSIONS AND FUTURE WORKS

In this work, we applied a convolutional neural net-
work coupled with a strong preprocessing procedure (mouth
identification with pre-trained face landmark model and
image normalization with adaptive brightness and contrast
enhancement) to classify open/closed mouths in newborns
undergoing tongue protrusion tasks.

After the data preparation procedure, based on automatic
cropping and reorientation of the frames using a method
pre-trained on adult facial features, we applied a robust
normalization strategy (adaptive brightness/contrast enhance-
ment). This procedure, combined with a very high degree
of data augmentation, allows us to obtain reliable results
(accuracy, precision and recall over 92% on unseen test
data). Furthermore, the models behaves coherent among most
of the newborns (accuracy over 90% for 60% of the test
data). On the contrary, providing the model with unprocessed
images leads to a reduced ability to discriminate open/closed
mouths due to the heterogeneous information content and
the dissimilarities between the frames. This demonstrates the
importance of robust data preparation and the potential use



of methods suitable for adult features as a preprocessing step
in the classification of newborn facial features.

Newborns with reduced model performance show anoma-
lies in the acquisition procedure (reduced resolution due to
the small area of the camera including the mouth and clas-
sification noise induced by frames with milk regurgitation),
which can be mitigated by slight changes in the experimental
setup. In fact, recording for automatic analysis is complicated
by the natural movement of the infant’s face that the operator
must follow, and obtaining an unobstructed camera line is
complex. Therefore, the recording cameras should not be
set at a fixed distance, as this setting may be effective
for behavioral purposes but not for automated analysis, and
should follow the infant’s face to ensure that the newborn’s
mouth covers a certain percentage of the recorded image. In
addition, recently fed newborns should be excluded from the
training procedure and thus from the automatic classification.

This approach is a first step towards defining a model ca-
pable of correctly classifying mouth-related facial features of
newborns/preterm infants from video sequences. Indeed, the
two main limitations of this preliminary work are: the single
frame-level analysis and the non-inclusion of the protruding
tongue class due to their under-representation in the study
sample. Therefore, future developments of this work will
focus on protrusion using temporal information both before
and after the frame under consideration (recurrent neural
network/long-term short-term memory model [26], [27]), not
only to improve the model’s predictive capabilities, but also
to define a reliability score useful for labeling the uncertain
transitions between states that characterize this type of data.
In addition, the database will be expanded to include more
newborns (4-10), at least doubling the number of images
available.

The uncertain class can also be derived from network train-
ing based on multiple labelings of the same video sequences
(e.g., from different research centers), thus incorporating
human classification variability [28]. The development and
integration of these methods into an already pre-trained,
downloadable package will allow the automation of this
labeling process in the analysis of infant imitation processes,
objectifying an otherwise very complex and potentially bi-
ased procedure.
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