Scaling law of diffusivity generated by a noisy telegraph signal with fractal intermittency

Paolo Paradisi!?, Paolo Allegrini®

Vstituto di Scienza e Tecnologie dell’Informazione “A. Faedo” (ISTI-CNR), Via Moruzzi 1, 56124 Pisa, Italy
2 BCAM - Basque Center for Applied Mathematics, Alameda de Mazarredo, 14 E-48009 Bilbao, Basque Country - Spain
3Scuola Superiore Sant’Anna, P.zza Martiri della Liberta 7, 56127 Pisa, Italy

Abstract

In many complex systems the non-linear cooperative dynamics determine the emergence of self-organized, metastable, structures
that are associated with a birth-death process of cooperation. This is found to be described by a renewal point process, i.e., a
sequence of crucial birth-death events corresponding to transitions among states that are faster that the typical long-life time of the
metastable states. Metastable states are highly correlated, but the occurrence of crucial events is typically associated with a fast
memory drop, which is the reason for the renewal condition. Consequently, these complex systems display a power-law decay and,
thus, a long-range or scale-free behavior, in both time correlations and distribution of inter-event times, i.e., fractal intermittency.

The emergence of fractal intermittency is then a signature of complexity. However, the scaling features of complex systems are,
in general, affected by the presence of added white or short-term noise. This has been found also for fractal intermittency.

In this work, after a brief review on metastability and noise in complex systems, we discuss the emerging paradigm of Temporal
Complexity. Then, we propose a model of noisy fractal intermittency, where noise is interpreted as a renewal Poisson process with
event rate r,. We show that the presence of Poisson noise causes the emergence of a normal diffusion scaling in the long-time
range of diffusion generated by a telegraph signal driven by noisy fractal intermittency. We analytically derive the scaling law of
the long-time normal diffusivity coefficient. We find the surprising result that this long-time normal diffusivity depends not only on
the Poisson event rate, but also on the parameters of the complex component of the signal: the power exponent u of the inter-event
time distribution, denoted as complexity index, and the time scale T needed to reach the asymptotic power-law behavior marking
the emergence of complexity. In particular, in the range u < 3, we find the counter-intuitive result that normal diffusivity increases
as the Poisson rate decreases.

Starting from the diffusivity scaling law here derived, we propose a novel scaling analysis of complex signals being able to
estimate both the complexity index u and the Poisson noise rate r,,.
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1. Introduction enough to maintain the self-organized structure almost stable
for a long-time period, after which a fast acceleration towards
an unstable region occurs. This is associated with a rapid
chaotic transition to another state. The transition is typically
characterized by low predictability and, then, by a fast drop in
memory and self-organization. From a phenomenological point
of view, the signature of this behavior is tracked in the abrupt
and rapid changes of some signal experimentally observed in
the complex system. In the following, these fast changes are
denoted as crucial or complex events.

Complexity is nowadays observed in many scientific disci-
plines, from nanotechnologies and cell biology to human social
activities. In all these fields, cooperative behaviors typically
emerge from systems composed of many degrees of freedom,
e.g., many individuals, functional units or nodes in a network.
Cooperative behavior means a dynamical interaction among the
system’s units, which are coupled with strong non-linear inter-
actions. In a complex system, such cooperative dynamics de-
termine the occurrence of self-organized or coherent structures,
which emerge at the global level or at some scale larger than the
typical scales of the micro-dynamics.

Brain dynamics is probably the most important example of
a complex system and it is a prototype of this kind of behav-
ior. In fact, metastability is a basic concept for the analysis of
brain data and in the modeling of the brain information pro-

1.1. Metastability and Temporal Complexity: emergence of — egsino 1t is nowadays well established that ElectroEncephalo-

fractal intermittency

In many complex systems such self-organized structures are
not associated with a long-time equilibrium, but with metasta-
bility. Metastable states have a relatively long, but finite, life-
time. After this life-time, the self-organization is quenched
by dynamical instabilities. Such instabilities increase slowly
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Grams (EEG) display these rapid changes, which are called
Rapid Transition Processes (RTPs) and mark the transition be-
tween two quasi-stationary periods in EEG traces [1, 2]. These
abrupt changes can be characterized as steep variations in the
signal or in its increments, corresponding to a discrete deriva-
tive, or as rapid changes in the topology of a network, where the
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topology could be evaluated, for example, as a functional con-
nectivity (e.g., by means of thresholded covariance matrix). In
the case of brain data, RTPs are a prototype of complex events.
RTPs have been recognized to mark passages between succes-
sive neural metastable assemblies and are the signature of self-
organization in the brain [3, 4]. Neural assemblies are associ-
ated with transient information flow among different neurons
with the goal of developing a specific brain function, such as
the processing of information coming from an external stimu-
lus and the response to it (e.g., Event Related Potentials).

A possible dynamical origin of metastability and of associ-
ated complex transition events is discussed in Refs. [5, 6, 7].
These authors propose a dynamical model for the brain infor-
mation processing, but the paradigm of metastability introduced
therein can be used also as a general paradigm for complex tran-
sition events. In fact, the authors model the brain dynamics by
means of a stable heteroclinic channel. This is essentially a set
of trajectories in the vicinity of a heteroclinic skeleton, consist-
ing of saddle points and unstable separatrices. As known, this
determine a slow motion towards the saddle points, which the
authors interpret as metastable cognitive states preserving co-
herence or self-organization for a long time period. When the
complex system approaches a saddle point, then a sudden accel-
eration occurs in which the system experiences a rapid motion
towards another saddle point (i.e., another metastable cogni-
tive state), whose neighbourhood is reached in a relatively short
time. This rapid transition is associated with a low predictabil-
ity and, then, with the drop of self-organization and memory
with the consequence that the self-organized structure is anni-
hilated and replaced by a new one.

These transitions are “rapid” or “fast” with respect to the
long life-time of the self-organized states. As a consequence,
the complexity of the system is, characterized by a birth-death
process of self-organization. Considering also the fast memory
drop, this process can be modelled through a renewal point pro-
cess [8] (see also [9, 10] for a brief introduction to renewal pro-
cesses). This stochastic process is a sequence of complex events
occurring randomly in time.! In the particular case of a pure
renewal processes, inter-event times, or Waiting Times (WTs),
are independent identically distributed (i.i.d.) random variables.
This means that there’s no statistical dependence among succes-
sive events and WTs. Then, the Probability Density Function
(PDF) of the WTs, denoted as (1), can be computed as the
histogram of the WTs without considering their chronological
order 2. However, it is worth noting that the renewal property
does not rule out the possibility of having strong memory in the
time interval between two events. The slow power-law decay
in the WT-PDF is associated with a relatively high statistical

lTheoretically, each event corresponds to a time instant, but in real data it
has a finite duration time. However, this time scale is so short with respect to
the long life-time of metastable states that it can be modeled as a time point
event.

2We note that, when a renewal process is perturbed by an external signal, it
looses its original renewal property. Then, a chronological order appears in the
event sequence. Nevertheless, the renewal condition plays an important role in
the theoretical modeling of these perturbed point processes, allowing to derive
both analytical and numerical results. (see, e.g., [10, 11, 12, 13, 14, 15]).

weight of long WTs, so that the time-averaged computation re-
sults in long-range correlations also in time series with renewal
events [16]. This is related to the time evolution of the rate of
event production r(t), which is essentially the mean number of
events per time unit [8, 10, 17]. In general, the rate is not con-
stant between two events, and it is renewed at its initial value in
correspondence of each event occurrence. This rate is also de-
noted as age-specific failure rate in the Cox’s book [8], where
the term age is referred to the time change of the rate, which is
measured from the occurrence of the last event.

It is easy to prove that the unique renewal process with con-
stant rate r(f) = r, is the Poisson process, whose WT-PDF is
an exponential function with decay rate r,: ¥(r) = exp(~r,7).
The Poisson process describes the transition events in a time-
homogeneous Markov chain, whose correlation is known to be
given exactly by the same exponential form of the WT-PDF
(7). Then, the Poisson process corresponds to Markovian dy-
namics, with exponential correlation function, and events occur
due to a total randomness in the underlying dynamics. In more
detail, the system’s local units are independent from each other
and, consequently, there’s no emergence of self-organization.
The events are simply related to the local dynamics and the
global events come from a totally random superposition of in-
dependent events, which it is known to give rise to a Poisson
distribution [8]. Consequently, the emergence of a Poisson se-
quence of events is associated with a lack of complexity .

1.2. Structural vs. Temporal Complexity: an intermittency-
based measure of complexity

At variance with Poisson systems, in a complex system the
typical experimental observation is that of a WT-PDF display-
ing a inverse power-law in the long-time tail. The emergence of
arenewal point process with power-law decay in the WT-PDF is
a condition denoted as fractal intermittency [9, 18, 19, 20, 21],
being the inverse power-law tail a signature of self-similarity in
the long-time behavior of the WT-PDF. As said above, this re-
newal process with power-law intermittency is associated with
the birth and death of self-organized metastable states. the
power exponent can be used as a measure of the self-similarity
scaling and it is denoted as complexity index and it is essen-
tially based on the intermittency emerging in the time evolution
of metastable structures.

There are several examples of complex systems displaying
a fractal intermittent behavior: ecological systems [22], neural
dynamics [23], blinking quantum dots [24, 25, 26], social dy-
namics [27], brain information processing [28, 29, 30, 16, 31,
32, 18, 19, 33, 1, 3, 4], atmospheric turbulence [34, 17, 35, 9],
earthquakes [36], single particle tracking in cell biology [37],
molecular biology [20].

This kind of complexity has been recently denoted as Tempo-
ral Complexity (TC) [38, 39] to distinguish it from the more ex-
tensively investigated Structural or Spatial Complexity, which

3We note that an observed Poisson behavior of intermittent events, even if
plausible, could be sometimes erroneous, especially in presence of perturbing
signals, and a genuine complexity could be hidden under the Poisson behavior
(see, e.g., [14])



is characterized through topological measures of network con-
nectivity structures, such as the degree distribution [31] or the
avalanche size distribution [40]. TC is essentially related to
fractal intermittency and it has been evaluated through the com-
plexity index. Theoretically, Temporal and Structural Complex-
ity are different properties that can emerge indipendently from
each other, and it is not clear if they are always linked or not.
About this aspect, an interesting result was found for critical
phenomena [41], which are known to display spatial complex-
ity [31, 40]. A less known, but well-established finding is given
in Ref. [42], where the authors proved that the fluctuations of a
random field at the critical point, which is the order parameter,
are described in terms of a Type-I intermittent dynamical map
similar to the well-known Manneville map [43]. This is the
same as fractal intermittency, essentially defining TC. Conse-
quently, these authors proved that, in critical phenomena, spa-
tial and temporal complexity are strictly connected. More re-
cently, emergence of TC was found in some network models at
the critical point, such as neural networks or a decision mak-
ing model, which is basically a 2D version of the Ising model
[38, 44, 45]. This is a strong indication that critical systems
are also complex, not only in the topological sense, but also
according to TC. An explicit analytical relationship between
Temporal and Structural Complexity is given in the case of a
random walker on a complex network [48]. Then, the estima-
tion of the complexity index related to TC is also the signature
of criticality and of spatial complexity.

Following the RTP concept and exploiting the associated al-
gorithm for the processing of EEG signals [2], the evaluation of
the complexity index in brain data can be found in Ref. [16],
where a concept of global event has been used in order to char-
acterize the overall brain complexity of healthy people. These
findings are in agreement with other, better known, complex-
ity measures, such as the long-range (power-law) correlations
in both time and space [16]. The complexity index was not
estimated directly from the WT-PDF, but through a different
approach, which will be denoted here as Event-Driven Diffu-
sion Scaling (EDDiS). For the sake of clarity, this is briefly de-
scribed in Appendix A. In synthesis, the main idea is to use a
random walk to study long range correlations. This idea, dating
back to the works of Hurst, was made popular in the nineties
by Peng et al. [49]. The EDDiS method studies both the long-
range correlation index through second-moment analysis (Hurst
index H) and the rescaling properties of the resulting diffusion
(scaling index 6) [50]. The relations between H and ¢ depend
on the particular process under study: For example, they coin-
cide in the case of fractional Brownian motion and differ in the
case of Lévy diffusion [51]. Among the many studies adopting
diffusion to detect anomalies, it is worth mentioning the work of
Scafetta et al., where the two indexes were confronted to check
for hidden renewals [52]. The EDDIiS method rests on this idea,
with the adoption of more walking rules. Details can be found
in Refs. [16, 9] and references therein. Most of the analytical
results this method is based on were originally reported either
in [46] or in [47]. In Appendix A we adopt the terminology
introduced in the work of Raffaelli et al. [47]. EDDIiS approach
was used because the direct estimation of the complexity in-

dex from the WT-PDF is not reliable, as it was shown in Ref.
[53]. For intermittent systems, this is related to the presence of
secondary events, which can be considered as a sort of noisy
sequence added to that of genuine complex events. The WT-
PDF is affected by the blurring effect of noisy secondary events
and it is often difficult to derive the complexity index from the
WT-PDFE. Even more, the added noise can also determine the
emergence of an effective complexity index that is completely
different from the real one [53].

On the contrary, it has been proved that the EDDiS approach
is able to separate different regimes of both diffusion scalings
¢ and H, but only for the Asymmetric Jump (AJ) and Sym-
metric Jump (SJ) walking rules (see Appendix Appendix A)
[15, 17, 9]. This is a crucial property when noise affects the
recorded time series. In general the power exponent of the
WT-PDF is different from the one of the underlying complexity
when detected events are not renewal, as in the case of super-
position of independent processes [53]. This discrepancy also
occurs when renewal events trigger or deterministic or quasi-
deterministic pseudo-events [54]. Also in these cases the in-
direct method, similar to the EDDIS approach, is cabable of
revealing the underlying renewal complexity [54].

1.3. Noise in complex systems

Noise has different roles in complexity. Here, the term noise
denotes random fluctuations with rapidly decaying memory and
spatial coherence and, then, with short-term and spatially local
correlations. This means that the dynamics of the noise is ap-
proximately Markovian, or even without any memory, and con-
sequently, it is not a direct manifestation of self-organization.
Even though, noise can play a fundamental role in complex
systems and, in some cases, can also trigger the emergence of
complexity itself (see, e.g., [45]).

However, the presence of noise, especially if the conse-
quence of interactions with the external environment, could be
a disturbance to the clear emergence of complex behavior. Fol-
lowing this interpretation, the role of added noise in complex
systems has been extensively investigated by many authors, as
it can affect the observed scaling properties [55, 53, 15, 56, 57,
58, 59, 60]. In particular, many authors have studied the ef-
fect of added noise on monofractal and multifractal signals. In
Ref. [56], the authors applied Detrended Fluctuation Analysis
(DFA), in the multifractal version (MF-DFA) to a mono-fractal
signal with an additive white noise and found that the analy-
sis shows a spurious multi-fractality. In particular, they found
an underestimation in the generalized Hurst exponents /(g) and
pronounced crossovers in the generalized fluctuation functions
F,(s) at positions decreasing with the increase of the moment
order ¢.* In order to solve the discrepancy between simulated
and real data, the authors of Ref. [57] compared two different

4These authors investigated also the effect of periodicities, such as seasonal
trends. In renewal processes, the effect of external periodic perturbations was
also extensively studied in Refs. [11, 13, 10, 14]. This aspect also deserves
some care in time series analysis, as it affects the observed correlation proper-
ties of the signal [56, 11].



approaches to study the predictability of extreme events in sim-
ulated multifractal records with added white noise. With this
approach, these authors could explain some findings in physio-
logical and financial records.

Further, the presence of short-term noise can affect the calcu-
lation of long-range correlations [55, 58] and of intermittency
features [53, 15]. Recently, the presence of added Gaussian
noise, white or exponentially correlated, has been recognized
to play a crucial role for the interpretation of single particle
tracking of biomolecules in the cell [59].

1.4. Poisson noise in fractal intermittency

As said above, both AJ and SJ rules are able to separate dif-
ferent regimes in the diffusion scaling. A common assumption
for these different regimes is that of a multi-fractal or multi-
scaling signal. However, an alternative hypothesis is that the
emergence of different diffusion scalings is related to contri-
butions coming from different kind of events in the intermittent
time series. Actually, two contribution are sufficient to explain a
mistaken multi-scaling behavior: a genuine complex sequence
superposed to secondary events related to short-time effects. In
particular, the presence of a normal scaling in the short-time
range of the AJ diffusion process mark the presence of noisy
secondary events [16, 17] . It is well known that the normal
scaling corresponds to a complexity index y > 3 (see Appendix
A), which is always a power-law decay, but this range of u is
considered outside the long-range regime, as it admits a finite
correlation time for both stationary and aged correlation func-
tions [61].

When noisy secondary events are present in the time series,
the emergence of normal scaling (H = 6 = 0.5) in the short-
time range for the AJ and SJ rules is not surprising as second
moments and statistical distributions are, in this case, linearly
superposed. More surprisingly, normal scaling emerge also in
the Symmetric Velocity (SV) rule, which is dichotomous fele-
graph signal (see Appendix A), but this normal scaling is seen
in the long-time range [16, 15]. This is related to a non-linear
superposition of effects and, for this reason, the estimation of
the diffusion scaling is often not reliable for the SV rule.

In this work, we give a theoretical explanation for the emer-
gence of the long-time normal scaling in the SV rule Following
Ref. [53], we can assume that noisy secondary events are gener-
ated by a Poisson process. In the following, this component of
the signal will be denoted as Poisson noise. This Poisson noise
is superposed to the genuine complex signal, which is given by
a sequence of complex events with fractal intermittency. The
two components are independent from each other and each one
is a renewal process by itself °>. In Section 2 we recall the
derivation of the effective WT-PDF (1) of the point process

5In the case of the superposition of independent renewal processes, the total
rate of the global point process is given by the sum of the single rates [8].
Further, when the single renewal process are all Poisson processes, the resulting
process is again a renewal Poisson process whose total event rate is given by
the sum of the single rates. Surprisingly, when at least a single renewal process
Ni(z) is Non-Poisson, the renewal condition is no more garanteed for the global
process. This is due to the dependence of the rate on the aging time, i.e., the

resulting from the superposition of a complex signal with the
Poisson noise [53, 15]. In Section 3 we derive the asymptotic
regime of normal scaling for the diffusion generated by the tele-
graph signal, i.e., the SV walking rule, associated with the noisy
fractal intermittency. In particular, an analytical expression for
the long-time diffusivity is derived in the limit of small Poisson
event rate. Based on the results of Section 3, a scaling anal-
ysis characterizing the complexity of intermittent signals with
added noise is proposed in Section 4. Finally, in Section 5 some
conclusions are drawn.

2. Fractal intermittency with Poisson noise:
effective WT-PDF

A point process is defined as a sequence of events occurring
randomly in time, whose main feature is the probability distri-
bution of inter-event times /(7). The WTs can be correlated or
statistically independent and, in the last case, the process is re-
newal and the events are mutually independent. For a Poisson
process, the WT-PDF:

l//p(T) =Tp eXP(—”pT) €))

The parameter r, is the Poisson rate of event production, i.e.,
the averaged expected number of events per time unit and is
given by the inverse of the average time:

rp, = L ;o ()= f T, (T)dr . 2)
<Tp> 0

A sequence of events can follow from the superposition of two

or more point processes. A superposition of independent Pois-

son renewal processes is again a Poisson process, whose global

rate is the sum of rates of the single Poisson processes [8].

As anticipated in the Introduction, we assume that the ex-
perimental sequence of events is given by the superposition of
two independent sequences: the first is generated by a Poisson
process and the second one by a Non-Poisson process, where
the first one models the Poisson noise component and the sec-
ond one is the genuine complex signal. This model, originally
denoted as Copy and Mistake Map (CMM) and proposed for
modeling DNA sequences in Ref. [63] and in linguistics [48],
is here denotes as Temporal Mixed Model (TMM). In Fig. 2 a
sketch of a possible sequence coming out from the superposi-
tion of two point process is displayed. The two series of events
are represented by the associated sequence of occurrence times:
{ tfp ) } and {tl(.")}, i =1,2,..., for the Poisson and Non-Poisson pro-
cesses, respectively. Both processes are assumed to be renewal
processes homogeneous in time, i.e., with both WT-PDFs not

time passed from the last event of that Non-Poisson single process. In fact, let
us assume that an event of another renewal process N () occurs after that of the
Non-Poisson process. Independently from assuming the N(#) to be Poisson or
not, the occurrence of this event reset the aging time and the rate of N,(z), but
not the rate of N;(#). Consequently, the total rate has a different shape after this
event and, then, the process is not renewal, because the rate is not always reset
to its initial value.
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Figure 1: Sketch of the superposition of two point processes. Note that the the
observer is not able to distinguish a priori the two hidden processes and the two
kinds of events.

changing in time. The inter-event times or Waiting Times (WT)
are given by:

=P P = =12, ()

i i-1° i i i-17
The WT-PDF of the Poisson process is exactly the exponen-
tial distribution ¢ ,(7) of Eq. (1), while the WT-PDF of the
Non-Poisson process i,,(7) is non-exponential. Here we focus
on an inverse power-law asymptotic behavior in the WT-PDF:
U(t) ~ 1/7. A simple prototype of this behavior is given by
the distribution:

u-1

Yn(0) = (=1 “

(T +71)
where the multiplicative factor is due to the normalization con-
dition. This Non-Poisson process with power-law decay of WT-
PDF is a prototype of a complex system generating renewal
events. The time scale T is the time needed to reach the asymp-
totic inverse power-law behavior and is here denoted as com-
plexity emergence time. The complexity index u is the main
feature of fractal intermittency generated by the system’s dy-
namics. The average time is given by:

o ifu<?2
(ta) = @)
;% ifu>2
It is interesting to note that, even if the two processes are re-
newal, the resulting global point process is no more renewal
in general. The only exception is the sum of Poisson renewal
processes [8]. This is easily seen by introducing the Cox’s age-
specific rate of event production, defined as the (conditional)
probability density that an event occurs in an infinitesimal time
interval [z, ¢ + dt], given that no events occurred in the time in-
terval [#;,1], being ¢#; the occurrence time of the last observed
event. This is proved to be given by [8]:

IEON (U]

0= 50T 90

(6)
where

¥(r) = f y(Hdr @)

is the Survival Probability Function of the WTs (WT-SPF). The
Poisson rate r, is constant in time, but the rate r,(¢) of a Non-
Poisson process is, in general, a decreasing function in the time
interval between two events. In a renewal process, the rate
restarts always from the initial value r(0) in correspondence of
an event. In the superposition of two renewal processes, the
global rate is the sum of the two single rates. It is easy to see
that, in the global sequence of superposed events, the global
rate r(t) restarts from the value r(0) = r,, + ,(0) in correspon-
dence of a Non-Poisson event. On the contrary, when a Poisson
event occurs, the Non-Poisson rate does not restarts from the
resetting value r,(0) and the value of the global rate is given
by r(t.) = r, + r,(t.), where t, is the time since the last Non-
Poisson event. It is worth noting that, in an experimental event
sequence, the time 7, is not directly observed.

Even if, in the TMM, the total sequence of event is not re-
newal, it is possible to derive an analytical expression for the
global (1), independently from the particular shape of ¥, (1),
but assuming that both processes are stationary. This is done as
follows.

The occurrence of an event can be divided into four com-
plementary situations, depending on the fact that the initial and
the final instants of the inter-event time interval can be either a
Poisson or a non-Poisson event. By denoting with n(¢) (p(¢)) the
presence of a non-Poisson (Poisson) event at time ¢, we have:

(i) the occurrence of a Non-Poisson event after a Non-
Poisson event (n(z), n(t + 1));

(i1) the occurrence of a Poisson event after a Non-Poisson
event (n,p) (n(?), p(t + 71));

(iii) the occurrence of a Non-Poisson event after a Poisson
event (p,n) (p(2), n(t + 1));

(iv) the occurrence of a Poisson event after a Poisson event
(p.p) (p(1), p(t + 7).

Being these four situations a complete set of non-intesecting
subsets of the probability space, it is possibile to apply the sum-
mation of the single probabilities:

(1) = (P[n(®), n(t + 7)] + P[n(1), p(t + 7)]
+P[p(@®),n(t + 7)1 + P[p@), p(t + D)), , (8

where P[a, b] is the joint probability density for both event a
and event b and 7 the Waiting Time (WT) between the two
events. The time-average ...) is needed as ¥(7) is the effective
WT-PDF, experimentally estimated from the entire sequence,
and not a probability conditioned from the particular time in-
stant. This is often the only reliable WT-PDF that can be esti-
mated from an experimental time series, but it is also the most
useful property in the stationary case. The stationarity assump-
tion allows us to compute the probabilities (P[a, b]), in Eq. (8)
by using the time-average probability for an event to belong to
the Poisson, P, or to the Non-Poisson sequences, P,. As an
example, the first term in the r.h.s of (8), P[n(?),n(t + 7)], is
the joint probability of first having a Non-Poisson event (P,),
then a Non-Poisson event after a time 7 and no Poisson events
in between, which becomes

(Pln(),n(t + D), = Py¥p(0(7) = Pue™"Yu(7),  (9)



The stationarity assumption is encoded in the coefficient P,,. We
have also used the fact that the Poisson process has a constant
rate and, consequently, no aging [61, 25, 62].

In order to evaluate P, and P, it is enough to observe that the
probabilities P, and P, are inversely proportional to the respec-
tive average times:

1 1 0
P, < H, Py, H’ (Tpn) = fo T, (T)dT . (10)

Note that, being 7, = oo for u < 2, {(r,,) can be defined only in
the range « > 2, so that our calculation applies only in this range
of u. This also corresponds to the fact that, in a Gibbs ensemble
of independent realizations of the renewal process, all prepared
in the same way at some initial instant 7y, the stationary regime
is not possible for u < 2 because the time needed to relax the
initial condition is infinite. After normalization,

<TP> . P = <Tn>

:M’ P—m, P,+P, =1.(11)

n

As above, the property of Poisson processes, i.e., the constant
rate, can be used to compute P[n(f), p(t + 7)]. This is the joint
probability of first having a Non-Poisson event (P,), then a
Poisson event after a time 7 and no Non-Poisson events in be-
tween, which becomes

Pln(), p(t + 7)] = P,Y,(t)re”"»". (12)

As above, the property of Poisson processes, i.e., the constant
rate, was used. Next, we could use the equality P[p(¢?), n(t +
7)] = P[n(?), p(t + 1)], a consequence of the time-reversal sym-
metry of both processes and, consequently, also of the global
process. We prove this fact by deriving P[p(?),n(t + 7)] in a
direct way, namely by writing

Plp(®),n(t + 7)1 = Ppe """y, (1), (13)

where ,’(7) is the infinitely-aged waiting time distribution
[61]. In the right-hand side of this expression the first factor
denotes the probability of starting from a Poisson event, the
second one denotes the fact that no Poisson events occur, while
the third term, in line with the other cases, is the probability
density of a Non-Poisson event occurring after a waiting time
7. Notice that we have lost track of the previous Non-Poisson
event, and this forces us to use an aged . Due to stationarity
assumption, this term is given by the infinitely-aged one. In
detail [61],

“(r) = ﬁ R + t )W, (t —t")dt’, where
RO =Y 0. w0 = [ aruia- o, s
i=0
YO(#) = 6(1), a Dirac 6. For t, = oo, R(c0) = 1/{1,,) [61], so that

1 ¥,
= [ wn(T—t')dt’:—<T(;). (15)

vy (1) =

Substituting this relation and the expression for P, given in Eq.
(11) into Eq. (13), we get:
(Tn) Wa(7) —rpt

PO )= e ey G ¢
<Tp>

T Ty + ()

identical to P[n(t), p(t + 7)], where we used Eq. (11) for P,
and r = 1/(7,). Finally, the probability of having a Poisson
event (P,), and then a Poisson event after a time 7 with no non-
Poisson events in between is

Y, (t)re """ = P, (T)re """, (16)

Plp(0), p(t + 7)1 = Ppre” "™, (1), a7
where, again, the aged ¥, has to be used. Inserting
9),(12),(13),(16) and (17) into (8) yields

YO=APuYn() + 2r'¥, (D] + Ppr¥y (m)le™ 7" (18)

and the survival probability ¥(¢) = ft * Y(T)dTt can be calculated
by direct integration. The result is

Y(1) = (P, ¥u(1) + P, (D)7 . 19)

Notice that before the exponential cutoff in (18) we have the
joint action of two inverse-power laws, with indexes y and pu—1,
being ,,(1) given by Eq. (4) and:

"
D =Wu-2)———. 20
Y, (1) = (u )(T+T)“" (20
The same observation applies to the SPF ¥(7) of Eq. (19), but
with indexes y — 1 and u — 2, being:

\Pn(r>=(TL+T)”_1 : \If;’f(r):(TiT)”_2 I

If r were vanishingly small, the asymptotic behavior of (1) and
Y(7) would be dictated by the index p and u — 1, respectively.
We recall that the theory rests on the case y > 2.

In Ref. [53] it was shown that the fit of EEG data with the
WT-PDF of TMM, given in Eq. 18, is more reliable of the pure
inverse power-law fit. Further, the estimated value of y is in
agreement with the EDDIiS analysis (u > 2). On the contrary, a
power-law fit gives an erroneous value y < 2. Further, WT-SPF
was also shown to mimick a strecthed exponential decay, which
is probably due to the superposition of two inverse power-law
decays.

3. Diffusivity scaling law of the noisy telegraph signal

The telegraph signal &(¢), or SV rule, is built starting from
the sequence of events as explained in Appendix A. It can
take alternative values +1, with sign selection, according to a
coin-tossing procedure, in correspondence of event occurrence
times. In absence of Poisson-like noisy events, or for low rates
of the Poisson noise, the SV rule is accurate as the other walking
rules. However, as already said in the Introduction, the SV rule
is often not reliable due to the presence of spurious Poisson-like
events in the time series, which determine the emergence of a



long-time normal diffusion scaling Hgy, = dsy = 0.5. One of
the reason for this collapse is the vanishing of the anomalous
ballistic peaks. The ballistic peaks, corresponding to walkers
never changing their velocity are asymptotically proportional
to the velocity autocorrelation function [70] and, in the absence
of noise, are responsible for the difference between 6 and H,
as the diffusion process becomes bi-fractal [71], the two di-
mensions corresponding to ¢ (scaling of the central body, high-
lighted by small moments of the diffusion) and H (driven by
the ballistic peaks, highlighted by large moments). In general
the central body is built up according to the convolution of the
“flights” (distributed as ), while the ballistic peaks follow, as
mentioned, the autocorrelation function. When noise is super-
imposed both functions decay exponentially, so the body be-
comes Gaussian and the peaks tend to vanish. This leads to
0 = H = 0.5, i.e. standard diffusion.

From the SV walking rule given in Appendix A, the fluctuat-
ing velocity can be written in the following way:

ax(1)

i =& = +1;

f; <1<ty (22)

and, integrating with respect to time as in Eq. (A.1), we get:
X(0) = £(t - 1;) + X(1;) for t € [1;, ti11] (23)

where #; is the occurrence time of the i-th event.

From Eq. (A.1) it is possible to derive the following ex-
pression for the second moment under a stationarity assumption
[64]:

2 2 2 ! ’ g 77 ”
(1) = ((X(H)-X(0))) = 2% fo dt fo d" De(") ,(24)

where ®,(1"") is the stationary auto-correlation function of the
signal £(7). For a point process with WT-PDF /(1) and WT-SPF
Y(7) it is possible to apply the Geisel-Zacherl-Radons formula
[65]:

1 0 1 ©
= ’ /_ ’ — /‘{’ ’ . 2
@)= f ar - i) = f 4wy @5)

Subtituting Eq. (25) into Eq. (24), the variance can be com-
puted by knowing the WT-SPF of the process:

2
0'2(t) _ 2(6 > f dr f dtuf dt///\{,(t///) (26)

Being the Geisel’s formula, Eq. (25), independent from the
renewal assumption, the same applies for Eq. (26), which is
the mathematical expression for the second moment. Conse-
quently, an important aspect of this analytical derivation is that
the scaling H does not depend on the renewal property, but only
on the WT-PDF /(7).

From the direct evalutation of the second moment by means
of Detrended Fluctuation Analysis (DFA) [49] it was found a
normal diffusion scaling in the long-time range:

((X(1) - X(0))*) ~ 2Dt . 27)

This can be proved considering the exponential cutoff in the
WT-SPF given in Eq. (19), which determines a finite correla-
tion time for the signal &£(#). The emergence of a normal diffu-
sion scaling in the long-time limit allows to define a long-time
diffusivity coefficient:

. Ld{(X(@®) -
D =lim =
tg?o 2 dt

which is well-defined for times longer than the correlation time,
i.e., the time scale characterizing the transition to the normal
scaling.
Applying Eq. (26) to the definition of diffusivity D, it results:
2 ) )
= @ dt f dry(t) . (29)
() Jo t

Substituting Egs. (19) and (21) in the previous one and applying
the substitutions y = r,¢ and z = r,t’ in the integrals:

X)) 08)

D(u,rp, T) =Dy + Dy ; (30)
P&
D=0 i, (1)
(1)
o T) = f dy f SR . (3
(1+2/G,1))"
=u-2 ; a (33)
Now, it is p0351ble to prove the following crucial result:
rT << 1= I, ~ 2T (34)

This can be proved in two different ways.

First Proof
The integral I, in Eq. (32) can be splitted into two contribu-

tions: 5
_exp(=z)

= 32 f f (1+ z/(rT))

rdr Ty (14 z/(rT))
Under the assumption 7T << 1, the first contribution is negligi-
ble. In the second term, it is possible to neglect 1 with respect
to z/(rT) in the denominator, being z/(rT) > y/(rT) > 1. Fur-

ther, the lower limit y = r7T" can be approximated with 0, so that
it results:

Iy~ Co®T" 3 Cyp= f dy f EPCD (35
O y Zﬂ/

This proves the relationship given in Eq. (34).

Second Proof
In Eq. (32) the order of the integrals can be exchanged by
taking some care in rewriting the integration domain:

_f f _exp(=2)
1 +z/(rpT))

f zexp(—z)
== | de——,
pJdo (14 2/G,T)

Lo



and substituting z = r, T x in the integral:
—(r,,T)x

I —T2fmdxM— f (36)
“ o (1+x)® d(rpT) (1+ (1 +x7 "

This expression is in the form of a Laplace transform with

Laplace variable u = r,T, so that a Tauberian theorem can be
applied [66]:

)  ~

& fu)~1-Au"" (u=r,T —0),

1
— +00) &
= (x > +00)

where f(x) = (1+x)7™“.
expression:

This results in the following asymptotic

d -
L(rp, T) —T2;<1 — A(r, 7)) =
p

aATZ(rp 7Y 2 r(;_z T?, (37)

then again proving Eq. (34).

Now, substituting Eq. (35) into Egs. (30-30) and considering
that (¢2) = 1 for a dichotomous signal:

D(,U, Tp, T) = (‘r,)) Cal,r T(Ip + _HC(t,l Fon~ Ta/,, —

<T> ﬂ 2?‘“ T+ _2+ - 17‘” T+ 1, (38)

where also Eq. (33) for @, and «, is used. Note that () is
the average waiting time of the entire sequence and 1/(7) is the
global rate (i.e., total number of events per time unit). The total
number of events is clearly the sum of the number of events
of each single process (Poisson and Non-Poisson), i.e., it is the
sum of the two single average rates:
1 1 1 u=2

<T>_Tp+Tn_rp+ i 39
Finally, substituting this expression and Eq. (11) into Eq. (38),
it results the following asymptotic expression for the diffusivity
coeflicient:

D(u,r,, T)=A rg_3 ™2 r,T<l1l; pu>2 (40)
with
A=Cyur+u—-2)C, . 41)

Eq. (40) is a power-law relationship giving the scaling law of
the long-time diffusivity coefficient with respect to the Poisson
noise rate r, and the time scale T of the complex component,
with power exponents dependent on the complexity index p.
Finally, it is worth noting that the regime r,7 < 1 is the
same as 7, > T. Considering Eq. (5) for u > 2, we get
T, < 7,/(u — 2). Apparently, for fixed average times 7, and
7, this condition is more easily fulfilled when u approaches 2.
However, in this limit, a constant 7, is obtained if T — 0% as
u — 2%, which corresponds to a Dirac delta function for the
WT-PDF and to a step function in O for the WT-SPF, which
does not seem a realistic approximation. This means that the

time scale 7' of Non-Poisson complex events is more important
than the average time 7,,.

Fig. 2 illustrates a numerical validation of Eq. (40). We
generated TMM sequences with varying poisson rates r super-
imposed to a non-Poisson distribution obeying Eq. (4) with
p =23and T = 1.0 (arbitary time units). The total duration
of each sequences was 100 millions of units. We see that the
diffusion coefficients rescale according to r with the predicted
behavior, highlighted by the dashed curve.
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Figure 2: Asymptotic diffusion coefficients of TMM (u = 2.3, T = 1.0) as a
function of supermposed Poisson rate.

4. Proposal for a novel scaling analysis of complex signals

The diffusivity scaling law, Eq. (40), can be exploited to
develop a statistical algorithm of time series analysis. In par-
ticular, let us assume that a time series is characterized by par-
ticular time point events that can be detected with some event
detection algorithm. In the case of a complex system, the re-
sulting event sequence is expected to display Temporal Com-
plexity in the form of a renewal point process with fractal inter-
mittency. However, due to the reasons explained above, noisy
secondary events are typically present in the time series. The
secondary events are generated by the superposition of inde-
pendent sources, which are typically not a part of the coopera-
tive dynamics determining the emergence of the self-organized
structures. Then, the temporal structure of the secondary events
can be treated as a Poisson noise with constant rate r,,.

It is also known that the superposition of two independent
renewal Poisson processes with rate r; and r; is again a renewal
Poisson process with total rate r; = r; + rp. This important
property can be exploited in the following way:

(1) Given the experimental sequence of event occurrence
times {#;}, i = 1,2,3,..., let us evaluate the total average
time (7). This is clearly given by T,/N,, being the T, the
total duration time of the experimental time series and N,
the total number of observed events.

Further, the EDDiS method can be applied to get the diffu-
sion scalings H and ¢, different estimates of the complex-
ity index p and, if possible, to verify the renewal condition.



(2) Let us generate N random sequences of Poisson events
{t}}k, j = 1,2,3,... with the constrain that the occurrence
time of the last event must be less than the total dura-
tion time T,. Each sequence has a different Poisson rate
Fies k = 1, ,N

(3) Then, for each £, let us build sequences that are given by
the superposition of the experimental sequence {#;} and of
the artificial Poisson sequence with rate ry: { t}}k.

(4) The artificial Poisson sequence, when it is added to the ex-
perimental sequence, behaves exactly as explained in Sec-
tions 2 and 3. Thus, it is possible to sum the different rates
and, if a real Poisson noise with rate r), is present, then the
new Poisson rate is given by the sum of the real rate r,
and of the artificially generated rate r;. Consequently, the
diffusivity scaling law, Eq. (44), can be rewritten in the
following way:

D(r) = Dty 1y + 1, T) = BO) (rp + 1) 3 > 2, (42)
where
B(T) = A TH? (43)

and A is the constant given in Eq. (41). The function
D(ry) has been introduced to underline the functional de-
pendence of the effective diffusivity D on the set of rates
rr, which is a set of known parameters of the analysis.

(5) For each k, it is possible to apply the SV rule on the gen-
erated sequence of events (real+artificial Poisson) and the
DFA can be applied on the generated diffusion process to
get a numerical estimate Dy of the long-time diffusivity
coefficient D(ry) = D(u, 1y + 1y, T).

(6) Finally, a set of couples (D, ry) is obtained, and these cou-
ples can be plotted, thus giving a discrete version of the
function D(ry) given in Eq. (42). A best fit procedure with
the function D(7), Eqgs. (42-43), with respect to the three
parameters u, r, and T can be performed.

It is also possible to apply a best fit with respect to only
two parameters: 7, and T'. In this case, y is evaluated from
the EDDiS method.

It is important to stress that the estimation of the complexity
index u, the Poisson rate » and of the complexity emergence
time T, being based on the SV rule, does not depend on the
renewal assumption, but only on the functional shape of /(7).
This means that the method is only based on the existence of
a sequence of crucial events, i.e., a point process, without any
need of the renewal assumption. Even though, our proposal,
based on the diffusivity scaling law given in Eq. (40), can be
exploited not only to estimate y, r, and T, but also to check if
the complex events are in agreement with the renewal assump-
tion. This can be done coupling this analysis with the EDDiS
approch and compare the estimated values of u.

5. Discussions

Eq. (40) is the main result of the paper. This formula re-
lates the long-time diffusivity, generated by the integration of
the telegraph signal, to the rate of the Poisson noise r,, and, sur-
prisingly, also to the parameters of the complex component of
the signal, i.e., the time scale T to reach the asymptotic power-
law, self-similar, regime, and the complexity index u, which
characterizes the system’s self-similarity.

The power-law dependence of long-time diffusivity coeffi-
cient D on the Poisson rate r, is a counter-intuitive result. A
linear relationship would be expected, but the mathematical cal-
culations show that the dependence of diffusivity D on the Pois-
son rate 7, is mediated by the complex component of the signal,
thus giving the following power exponent:

B=u-3. (44)

Let us also note that 8 < 0 when u < 3, so that, in presence of
complexity, the diffusivity coeflicient increases as the Poisson
rate decreases, which is again a counter-intuitive result.

This result was obtained considering the TMM, a point pro-
cess consisting of two independent renewal processes. The first
is a renewal point process with fractal intermittency, which is
a prototype of Temporal Complexity [38, 39]. The second
one is a Poisson noise, i.e., a sequence of events with Pois-
son statistics, whish is superposed to the complex component.
In analogy with the concept of white noise added to mono-
or multi-fractal signals, which was discussed by many authors
[55, 56, 57, 58, 59, 60], the Poisson noise can encode the ef-
fects of the external environment, or it can represent the source
of errors in a statistical algorithm for data analysis, or it can be
even a sort of residual of the cooperative dynamics, which, in
this case, would generate both self-organization and uncorre-
lated noise. It is not always clear a priori if the noise compo-
nent in a complex signal is due to the external environment or a
sort of residual manifestation of non-linear interactions, which
determine also the emergence of cooperative behavior. Linear
superposition and independence is ensured in the first case. In
the second case, it is difficult to understand if the two compo-
nents (noisy and complex) are linearly superposed, if they are
independent from each other and which are their contributions
to total energy and total entropy of the signal. In this paper
we did not discuss deeply the origin of noise, which need fur-
ther investigations, and we followed essentially the approach of
other authors by considering a linear superposition of noisy and
complex signals. Even in the second case, it is reasonable to
assume a linear superposition when the source of noise comes
from dynamical scales much faster and smaller than the tem-
poral and spatial scales of the cooperative components of the
non-linear dynamics, i.e., those giving rise to metastable self-
organized structures.

Interestingly, the TMM includes not only the complexity in-
dex u and the Poisson noise rate r,, but also a time scale 7.
As said in Section 2, T is the time needed to display a clear
complexity behavior, i.e., the time above which the inter-event
times are distributed according to a inverse power-law function



with a well-defined exponent . This time scale is not a sec-
ondary parameter. On the contrary, it could play a crucial role
in the characterization of complexity emergence in cooperative
systems. For example, in the TMM, this is underlined by the
relationship r,T < 1, which is the basic condition necessary to
derive the scaling law for the long-time diffusivity, as given in
Eq.(40).

Appendix A. Analysis of Event-Driven Diffusion Scaling

The EDDiS method as described herein was applied for the
first time in Ref. [16] to evaluate the complexity index of brain
EEG data in the basal, or resting state, condition.

The basic ingredient of EDDis method is the generation of
three different diffusion processes that are driven by the same
experimental sequence of events and, then, the evaluation of
two different scaling exponents. In the case of renewal events,
the relatiohships among the different scaling exponents and of
these exponents with the complexity index are known. Then,
it is possible to derive independent estimations of the complex-
ity index associated with events driving all the diffusion pro-
cesses. When the evaluations of the complexity index, obtained
through these different scaling analyses applied to different dif-
fusion processes, are compatible with each other, the renewal
condition is reasonably proved and, further, a robust estimation
of the complexity index is obtained.

Let us assume that the event sequence is the manifestation
of Temporal Complexity, which is described through a (long-
range) power-law decay in the WT-PDF and by a complexity
index u < 3: ¥(1) ~ 1/7. Then, given the sequence of events,
the three different diffusion process are generated by means of
three walking rules 6. The walkers are allowed to move only
in correspondence of an event occurrence, thus generating a
event-driven diffusion process. In general, starting from the
same event sequence, different walking rules can give differ-
ent scaling properties. Given the sequence of event occurrence
times ¢,, f,, t,,... corresponding to the events 0, 1, 2, ..., we
have the following walking rules:

(a) Asymmetric Jump (AJ) rule:
the walker makes a positive jump (£(,) = 1) in correspon-
dence of each event n, otherwise it stands (£(¢) = 0). In
other words, £(¢) is a sequence of pulses of constant inten-
sity.

(b) Symmetric Jump (SJ) rule:

as in the AJ rule, but the walker can make positive or nega-

tive jumps in correspondence of an event: &£(¢,) = +1. The

sign =+ is chosen with a coin tossing prescription.

(c) Symmetric Velocity (SV) rule:
the walker moves with constant velocity towards a given

direction, in the time interval between two events, then

These walking rules, and the associated diffusion processes, are essentially
particular cases of a more general model known as Continuous Time Random
Walk, which was extensively studied by the sixties [67, 68].
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a new random direction (positive or negative velocity) is
chosen in correspondence of an event:

&) = x1; t, <t < tyy1. Asin the SJ rule, the sign is
chosen with a coin tossing prescription.

Each random walk is then defined through a signal &(¢), which
is a kind of random discontinuous velocity, taking two or three
different discrete values (two for AJ and SV and three for SJ).
The diffusion variable of the random walk is computed by sim-
ply integrating the signal &(7):

!
X(@) =X, +f E@Hdr (A.1)
0

In the AJ and SJ rules the diffusion variable X(7) is a piecewise
constant function with finite discontinuities in correspondence
of the events, and the integral in Eq. (A.1) can be reduced to a
discrete sum. On the contrary, in the SV rule, X(¢) is a increas-
ing or decreasing function depending on the sign of the velocity
&. X(¢) is a continuous function, but with discontinuous deriva-
tive in correspondence of the events.

The scaling properties of these random walks were exten-
sively investigated in several papers (see [16, 9, 47, 72] and ref-
erences therein). In particular, two scaling indices were found
in the asymptotic long-time limit: the self-similarity index ¢ of
the diffusion probability distribution, defined by:

1 x
P(x,1) = p F(t_a) , (A.2)
and the scaling exponent H of the second moment:
—\2
o) = (X0 - X) ) ~ £, (A3)

where X is the mean value of X(r). These scaling exponents
have been computed in the case of renewal power-law events,
i.e., fractal intermittency, with complexity index, 4. The ana-
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Figure A.3: Scaling 6 vs. complexity index u for the three walking rules: AJ
(continuous line), SJ (dotted-dashed line) and SV (dashed line).

Iytical expressions for the diffusion scaling exponents § and H
as a function of the complexity index u are plotted in Figures
A.3-A.4 and summarized in the following:
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Figure A.4: Scaling H vs. complexity index u for the three walking rules: AJ
(continuous line), SJ (dotted-dashed line) and SV (dashed line).

u—1; l<u<?2
S, =1 Yu-1: 2<u<3 (A4)
1/2; u=3
u/2; l<u<?2
H,(u)=4q 2-p/2; 2<pu<3 (A.5)
1/2; u=3
1; l<pu<?2
O, =9 /u-1; 2<pu<3 (A.6)
1/2; u=3
2—u/2; l<u<3
H, (1) = (A7)
s 1/2: w3
w-1)/2; l<u<?2
1) =H = A8
s,/ = Hy, (1) 12 432 (A.8)

The three rules give a normal scaling 6 = H = 1/2 for u > 3,
corresponding to normal (Gaussian) diffusion. This is a conse-
quence of the generalized limit theorem for Lévy stable dis-
tribution [69]. For the SJ rule this is true also in the range
2 < u < 3, while AJ and SV rules are super-diffusive (H > 1/2)
in all the interval 1 < u < 3. On the contrary, the SJ rule is sub-
diffusive (H < 1/2) for 1 < u < 2. Regarding the AJ rule in the
range 1 < p < 2, it is interesting to observe that, while being
super-diffusive (H > 1/2), the scaling 6 becomes less than 1/2
for u < 3/2. For pure Poisson events, the values of ¢ and H are
again 1/2 and, in the long-time, we get a Gaussian diffusion.
This is not surprising as the Poisson process corresponds to the
limit g — oo.

Finally, it is worth noting that, when the values of u evaluated
using the two scaling analyses, DE for 6 and DFA for H, are in
agreement with each other, then the EDDis approach can also
give a reasonable justification of the renewal assumption [52,
9].
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