
1

Authoring Context-dependent Cross-device User
Interfaces based on Trigger/Action Rules

Giuseppe Ghiani, Marco Manca, Fabio Paternò
CNR-ISTI, HIIS Laboratory

Via Moruzzi 1, 56124 Pisa, Italy

{giuseppe.ghiani, marco.manca, fabio.paterno}@isti.cnr.it

ABSTRACT

Current authoring environments provide the possibility of

developing user interfaces with limited adaptation capacities. The

most widely adopted tools follow the responsive design approach

and allow developers to obtain user interfaces that can adapt

mainly to the screen size and orientation. We present a solution

able to support development of user interfaces able to adapt to the

various types of contextual events (that can be related to users,

devices, environments, and social relationships), with the added

possibility of distributing the user interface elements across

multiple devices. The context-dependent behavior is modelled

through trigger / action rules, according to the event-condition-

action (ECA) paradigm, and can even be applied to Web

applications that were not originally designed to be context-aware.

This paper describes the design and main features of the novel

authoring environment and reports on a first user study.

Categories and Subject Descriptors

D.2.2 [Software Engineering]: Design Tools and Techniques.

D.2.6 [Programming Environments]: Interactive environments

D.2.11 [Software Architectures]: Domain-specific architectures.

H.5.2 [Information Interfaces]: User Interfaces –
Evaluation/methodology; Prototyping.

General Terms
Design, Experimentation, Human Factors.

Keywords

Ubiquitous Computing, Context-Awareness, Cross-device User

interfaces, Rapid Application Development

1. INTRODUCTION
Ubiquitous computing is becoming reality, however developing

applications that can actually exploit the rich technological offer

in terms of devices and sensors and improve user experience is

still difficult. Herein we focus on Web applications that can be

accessed from any browser-enabled device, and currently the

main approach for addressing the variety of possible devices is

responsive design [11], which mainly consists of showing, hiding

or changing user interface elements depending on the screen size

of the available device or windows detected through media

queries. However, this seems too limited since there can be

various contextual changes that may require adapting the

interactive application and, in some cases, it can be useful to

distribute its user interface across different devices to facilitate

transferring and sharing of information.

We consider the context of use structured along four main

dimensions: the user (the tasks, the preferences, the emotional

state, etc.), the devices (their interaction resources, connectivity,

multimedia support, etc.), the environment (noise, light,

temperature, etc.), and social relationships (friendships, groups,

etc.). The first main attempt to provide support for the

development of context-enabled applications was the context

toolkit [17], which provided a library aiming to hide the

complexity of the actual sensors. However, it considered a limited

set of events and required a programming style that could be

difficult to apply because it required developing code that is

deeply intertwined with the application. We propose a more

modular approach, with a clear separation of concerns, in which

the role of application, context management and context-

dependent adaptation are clearly distinguished, and their

integration is precisely defined. Indeed, our approach is based on

an authoring environment that allows developers and designers to

interactively add adaptation rules modelled in terms of triggers

and consequent actions, which can even be defined incrementally

by people other than the original application developers in order

to create different versions for context-dependent customizations.

For example, it is possible to define versions that provide different

customizations depending on the users’ roles. In addition, with

such context-dependent behavior it is also possible to make the

user interface cross-device (with synchronized elements

distributed across multiple devices) in such a way to exploit

devices that are encountered while freely moving about, the

typical example being when users find a public display and want

to exploit it to share information from their personal device with

others.

We envision various application domains that can benefit from

such possibilities: for example, smart retail in which large shops

can customize real-time support for the shoppers, city or museum

guides in order to facilitate group visits with context-dependent

information and games, learning applications with the possibility

to adapt the contents and the way of presenting them depending

on dynamic information on available devices and nearby people,

and personal state.

In the paper, after discussion of related work we introduce

example scenarios that can be addressed with our solution,

followed by the main features of the authoring environment, we

then illustrate the underlying software architecture and indicate

how it is integrated with a context manager infrastructure and how

the adaptation rules are applied to the corresponding applications.

We also report on a first user test and discuss the positive aspects

along with some suggestions for further improvements. Lastly, we

draw some conclusions and provide indications about future work.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.
Conference’10, Month 1–2, 2010, City, State, Country.

Copyright 2010 ACM 1-58113-000-0/00/0010 …$15.00.

DOI: 10.475/1234

2

2. RELATED WORK
Our work draws from research on context-aware adaptation,

multi-device design tools, and cross-device user interfaces.

2.1 Context-aware Adaptation
Providing context awareness to computer applications has been a

challenge for decades. Stick-e notes [1] was one of the first

approaches proposed to make applications able to adapt to the

context of use by specifying conditions. To this end, the authors

relied on novel native applications structured as Web sites. With

the maturation of technology, customizing user interaction in

smartphones has quickly raised interest. For example, an early

proposal [10] provided the possibility of defining context-action

rules through which users can connect interaction inputs

(contexts) to application actions in Symbian devices (e.g. when

the user performs a circle gesture then the smartphone becomes

silent). Various studies have shown that even the interaction

modalities can change according to the context of use in order to

better support users. Some of them are reported in [4], where they

are classified depending on aspects related to environment (e.g.

brightness, noise), social conditions (e.g. stress, social interaction,

and location). The possibility of going beyond responsive design

in order to consider various possible contextual events and then

adapt the level of multimodality accordingly has been proposed in

[6], in which rules expressed in terms of event / condition /

actions were exploited for this purpose. A similar format has been

exploited in Keep Doing it [13], a mobile application that

continuously records users’ interactions in such a way to allow

users to automate a task based on their latest actions in a kind of

programming by example approach. The contextual events that

can be managed by this approach are those that can be detected

through the sensors and peripherals of modern smartphones. In

general, this type of approach has limited applicability, so it can

be useful to automate short sequences of actions but cannot

support more generally the development of context-aware

applications. This type of issue has been addressed in [16] through

an event-driven workflow framework to develop context-aware

mobile applications. The types of events that it can detect are

limited to locations, QR-codes, and time and they are used to

trigger activities described in the workflow. Thus, overall it still

does not support the authoring of various types of context-

dependent applications. On the other hand, we can notice that

there is a general trend to consider trigger / action programming to

facilitate the development of applications reactive to contextual

events. Indeed, there is the IFTTT environment1 that facilitates the

creation of recipes that indicate actions to perform when some

change occurs in frequently used social network applications.

IFTTT only supports recipes composed of one event and one

action. A recent study [18] has also found that users found an

extension of such language easy to use to model small contextual

home applications even by people with limited programming

experience.

2.2 Multi-device Design Tools
One of the first tools addressing authoring of multi-device user

interfaces was Damask [9]. It used the concept of layers to

indicate parts of the user interface that can be associated to either

one specific device type or to all device types, and exploited a set

of patterns with the possibility of sketching the desired user

interface in order to facilitate its development. Another tool in this

area was Jelly [14] that did not use layers but still enabled

1 https://ifttt.com/

designers to copy components across devices, and when an

element was copied designers could select from a list of available

widgets how it should look on the other device. Another

difference was that Jelly focused on creating running user

interfaces on top of existing toolkits instead of sketching low

fidelity prototypes.

In the meantime, with the advent of responsive design various

tools for creating applications according to this approach have

been put forward. An example is Webflow2 that facilitates the

specification of different stylesheets depending on the media

queries and provides a number of responsive website templates. In

general, these approaches have mainly considered multi-device

applications in which the user actually exploits only one device at

a given time to access the application. An attempt to address even

the authoring of distributed user interfaces in which at a given

time the user interface is distributed across multiple devices is

XDStudio [15]. It supports two complementary authoring modes:

simulated and on-device. In the former mode, authoring is carried

out on a single device in which the user interfaces distributed on

other devices are simulated. In the latter mode, design and

development actually takes place on the target devices

themselves. However, this type of authoring environment does not

provide support for specifying context-dependent behavior, which

is an important feature supported by our environment.

2.3 Cross-device User Interfaces
In recent years some frameworks that provide useful support for

developing cross-device user interfaces have been proposed. The

proximity toolkit [12] simplifies the exploration of interaction

techniques by supplying fine-grained proxemics information

between people, portable devices, large interactive surfaces, and

other non-digital objects in a room-sized environment. It

facilitates rapid prototyping of proxemic-aware systems by

supplying developers with the orientation, distance, motion,

identity, and location information between entities, including a

visual monitoring tool that allows developers to visually observe,

record and explore proxemic relationships in 3D space. Its

architecture separates sensing hardware from the proxemic data

model derived from these sensors, which means that a variety of

sensing technologies can be substituted or combined to derive

proxemic information. We adopt a similar separation in order to

gather contextual information from a variety of sensors.

A framework supporting user interface distribution in multi-

device and multi-user environments with dynamically migrating

engines has been proposed [5]. It does not require a fixed server to

manage the distribution. The elements of the UI can be distributed

by specifying specific device(s), group(s) of devices, specific

user(s), and groups of users according to roles. Panelrama [19] is

a solution able to categorize device characteristics and

dynamically change UI allocation to best-fit devices. For this

purpose, this framework lets developers to specify the suitability

of panels to different types of devices. This allows its

optimization algorithm to distribute panels to devices that

maximize their match for the developer’s intent; as devices are

added or disconnected, panels are automatically reallocated

according to its optimization scheme. The increasing availability

of wearable devices in the context of cross-device user interfaces

has been addressed by Weave [3], a framework for developers to

create cross-device wearable interaction by scripting. It provides a

set of JavaScript- based APIs to easily distribute UI output and

2 https://webflow.com/

3

combine sensing events and user input across mobile and

wearable devices. It also has an integrated authoring environment

to program and test cross-device behaviors and, when ready,

deploy such behaviors.

Our authoring environment draws inspiration from all these

works, but extends existing concepts for context-dependent cross-

device user interfaces through contextual trigger / action rules that

can be edited by direct manipulation even on existing Web

applications, and can also be exploited to obtain dynamic user

interface distribution across multiple devices.

3. SCENARIOS
In this section we describe two possible scenarios supported by

our solution. In both scenarios, run-time context-awareness is

addressed by a rule-based approach at authoring time. However,

they are different since in the first scenario a single mobile device

with context-dependent behavior is involved at run-time, while

the second is characterized by cross-device interactions triggered

by contextual events or on user request.

3.1 Walking Shopping List
A large supermarket provides its customers with a mobile

shopping list application. Users can install the app in their

smartphone and define the shopping list by selecting items

available in the store before leaving home. When walking through

the store in search of such items, the app provides various

information on the items, such as position (e.g., the shelf number),

price, ingredients, alternative and complementary products.

The marketing manager of the store is in charge of improving user

experience and increasing sales. To this aim, s/he relies on a

developer using the authoring tool for adaptation rules that allow

them to define how the shopping list application will adapt

according to contextual factors. One rule takes into account the

customers’ physical activity (detected by the device

accelerometers) and shows additional information about the

desired items (e.g. allergens, suggested recipes) or alternatives to

them when the user walks slowly (indicating that they have time

and interest to get additional information). When the walking

speed increases, indicating that the user is in a hurry, the rule

hides any additional content and emphasizes the most relevant

information: the exact location of the currently selected item is

displayed and the item picture is enlarged in order to facilitate the

search in the shelf.

The application can also take into account additional contextual

aspects, such as the proximity of an area (detected by monitoring

the Bluetooth beacons nearby), in order to display advertisements

“tailored” to the user profile. For example, personalized

graphical/vocal advertisements about an aftershave, a shampoo or

a perfume (depending on customer’s gender, age) on discount are

triggered when the customer walks slowly along the cosmetics

aisle.

3.2 Tourist City Guide
A tourist guide regularly brings groups of people across an

historical town and relies on an interactive application that acts as

a multimedia support. The application contains information about

aspects of interest related to the town (events, dates, famous

people, pictures and videos, etc.). When organizing a tour, it is

possible to create a set of custom adaptation rules taking into

account the type of audience (adults, children, students) and their

interests in order to define how to adapt the application to better

exploit public displays deployed in the main points of interest

such as the town hall, the archeological museum and the modern

art gallery, and to show customized content to the tourist version

of the mobile guide. For each point of interest with a public

display, the designer creates a rule that will trigger the distribution

of parts of the application from the mobile device to the public

display, in order to provide the audience with additional

multimedia resources. The rule trigger is the vicinity of the public

display. For instance, resources about the history of the

municipality will be shown in the public display of the city hall as

soon as the user mobile device detects the Bluetooth of the public

display. Different sets of rules, with the same trigger but differing

in the actions, can be defined for different classes of visitors. For

instance, while texts and images could be distributed in case of

adult audience, entertaining videos will be distributed instead if

the audience is made up of schoolchildren. In addition, the guide

version of the application can push some specific content to the

tourists, if they so wish.

4. AUTHORING TOOL
The authoring tool was specifically designed for supporting the

development of context-dependent cross-device user interfaces by

defining rules for the application adaptation and distribution. The

authoring environment is based on three main features: first, there

is a clear distinction between the part dedicated to the user

interface composition and that for the specification of the

contextual rules. Second, the rules are structured in terms of

triggers and associated actions, with the possible events and

conditions defining the triggers classified according to four

dimensions (user, device, environment, social), and the actions

indicating how the user interface should change for the platform

considered (so far we consider smartwatch, smartphone, tablet,

PC, wide screen). Third, dynamic distribution of user interface

across various devices can be indicated. Such distribution can be

triggered by contextual events (e.g. when the user is close to a

public display then some parts of the user interface are shown on

it as well) or on explicit user request (UI events).

4.1 Tool Walkthrough
Figure 1 shows the overall authoring environment in two typical

use cases. The main central area is where the user interface is

composed for the currently selected platform. It shows the

platform screen with inside the application user interface, which is

adapted accordingly because the application version loaded is the

one related to the chosen platform. Currently, five platforms

(desktop, smartphone, tablet, smartwatch, and public display) are

supported and those relevant can be selected in the graphical

vertical menu on the left. In the application under development

some scripts are included in order to facilitate the selection of the

user interface parts to be adapted by direct manipulation.

On the right side there is the part of the authoring tool dedicated

to the editing of the trigger / actions rules. The trigger / action

rules approach is consistent to the event-condition-action (ECA)

paradigm. There are two main types of events: the standard events

that can be generated by a Web user interface (click, focus, mouse

enter, change, etc.) and the contextual events, which are those

mainly considered in this paper. As we mentioned, the aspects

related to such contextual events are grouped along four

dimensions: users (knowledge, task, disability, position, personal

data, physical activity, proximity, etc.), environment (light, noise,

4

temperature, structure, etc.), technology (devices, screen sizes,

battery, connectivity, relative position, etc.), social (group

memberships, level of friendships). Thus, developers can freely

choose some contextual event and then indicate the possible

effects. The top part of Figure 2 shows more in detail the

selectable users dimension aspects. The elements with folder-

shaped icon are entities (e.g. “disability”) and contain attributes

(e.g. “blindness”) which have a sheet-shaped icon.

For specifying the actions the users can interactively select a part

or an element of the user interface and indicate on which device

types it should be visible or not or how some user interface

attributes (such as colours, fonts, etc.) should change.

Alternatively, a possible action can be the loading of a new page

or the change of the content shown in the user interface part

selected.

The rules edited can be saved and associated with the application,

so that the developer can at any time preview the effect of their

performance. For this purpose on the top part of the environment

there is a list of rule triggers currently defined for the application

under development, and by selecting one of them it is possible to

simulate the contextual event and get a preview of the effect on

the user interface. If the action of a rule specifies a distribution,

then the main area is divided by the number of device types

involved in order to show how the user interface is distributed

across them. By selecting the triggers in the top part it is possible

to see the effects in any of them. In this case, on the bottom side

the authoring tool also shows the distribution profile, which

consists in the indication of the device types involved.

The upper side of Figure 1 shows an example of adaptation rule

definition for a smart shopping application. The user has selected

the upper container (identified as “shoppingListContent” under

the Actions part) and has set “font-size:25px” in the Update UI

field. At run time the rule will increase the font size of the texts in

the shoppingListContent element.

An example UI distribution definition for a tourist guide

application is shown in the bottom side of Figure 1. The main part

of the authoring tool displays the preview of a previously defined

distribution rule, triggered by selecting the button in the top-left

part of the interface (“Point_of_interest = Piazza della Signoria”).

The distribution takes place when the vicinity to the point of

interest is detected, and consists in some content (a textual

description of the square) being distributed from the tablet device

of the tourist guide to the smartphones of the group of tourists.

Figure 1. The authoring environment for context-dependent user interfaces: adaptation rule (top) and distribution rule (bottom)

editing

5

4.2 Implementation
The authoring environment is Web-based. On the main screen, the

user can load an existing Web site via local or remote URL, which

will be used as the source interface to define the context-

dependent adaptations and distributions. We also defined a

Chrome Extension (similar extensions can be implemented also

for other browsers), which allows the tool to load an application

user interface inside an Iframe in the Authoring Environment. The

browser extension changes the User Agent of the Iframe

depending on the currently selected platform. It is thus possible to

present the different (and adapted) versions of the user interface

according to the virtual device in use. Selection of the user

interface elements to be adapted by a rule is managed by a script

injected in the Iframe by the browser extension. This strategy

avoids possible problems due to violations of the same origin

policy, i.e. it allows the environment to interact with the Iframe

content/functions also when it has a different domain from the

authoring tool (e.g. when the application loaded in the Iframe is

hosted in a different server).

When an element is hovered by the mouse pointer, the injected

script sets its background to red and, if the element is selected,

sets its border to red (see for example Figure 1, top-left, in which

an item of the shopping list has been selected). The identifier of

the selected element is shown in the “What” field of the “Actions”

part (see Figure 2). The element selected is the one that will be

affected by the updates specified in the “Actions” part.

Figure 2. Detail of the part for editing triggers and actions.

The developer defines the adaptation/distribution trigger by firstly

selecting an attribute from the contextual aspects tree. Such a

structure is dynamically generated by the authoring tool according

to the context schema retrieved in real time from the context

model manager. The context schema is an XML Schema

Definition (XSD) file describing the contextual resources in terms

of the data type of the attributes contained in the various entities

involved and in terms of the connections between the entities. The

tree is dynamically generated every time the authoring tool is

opened. This allows, in case of modifications of the context

schema, to have the tree in the authoring tool consistent with the

context model manager automatically. Modifications in the

context schema can be due to upgrades devoted to manage novel

sensors embedded in newer smartphones (e.g., temperature,

altitude, etc.) and/or additional user profile attributes, for example

relevant for marketing aims.

5. RUN-TIME ARCHITECTURE

In order to correctly execute the applications according to the

adaptation rules specified it is necessary to have a specific support

at run-time. The main goals of such support are to manage and

apply the adaptation or distribution rules, and detect the events

that trigger their performance. Such run-time support exploits the

functionalities of three components:

 The context model manager is composed of a context server

and a set of external modules delegated to monitor relevant

parameters of the context of use (e.g. environmental noise,

device coordinates, user physical activity). The purpose of the

context model manager is to detect contextual events and

inform those modules that subscribed to them. The context

model manager shares the context schema with the authoring

tool. This enables the authoring tool to display (see the upper

part of Figure 2) exactly the contextual aspects that can be

tackled at run time, so that the developer can define effective

triggers;

 The distribution manager, which manages user interfaces

distributed across multiple devices in order to allow dynamic

migration of components and keep their state synchronized;

 The adaptation engine, which stores and manages the

adaptation rules.

Figure 3 shows how such components interact with each other.

The adaptation engine subscribes to the context model manager in

order to be informed of the occurrence of the events relevant for

the rules associated with the active applications. When one or

more of such events occur, the adaptation engine sends the actions

to the Web applications in order to perform the corresponding

adaptation. Such updates commands are JSON encoded and are

interpreted by the scripts included in the Web application by the

authoring environment. They can modify properties of user

interface elements or content, activate functions or navigation, etc.

Some of such actions can even change the distribution of some

user interface parts across devices, in this case the script in the

Web application sends a corresponding command to the

distribution manager, which notifies the involved devices. Such

distribution manager contains the current distribution profile,

which indicates how the various parts of the user interface are

currently distributed across the devices that have subscribed to the

environment. A distribution command mainly indicates that a user

interface element or the elements included in a container should

be visible or not on one specific device or a group of devices that

have the same role or on all devices of a given platform.

6

Figure 3. The architecture of the run-time support.

6. DOMAIN-DEPENDENT EXTENSION

In order to facilitate the adoption of our authoring environment

even by people who are not particularly expert in programming,

we have also created an additional layer that provides support for

creating rules that are particularly relevant in specific domains.

The basic idea is that the structure of a set of rules that can be

frequently used in the considered domain is already defined and

the application designer has just to specify the values for the

specific case under consideration.

We have created an example of this domain-dependent extension

for the smart retail area. The idea is to facilitate the creation of

applications that can be exploited by shoppers while freely

moving. Figure 4 shows on the right a set of predefined rule

structures that can be selected: “when the user is near …”, “when

the user is moving …”, “when the user is entering-exiting …”,

“when the weather is …”. Once the designer selects one of them

then the specific parameters to define are graphically represented

in the main central area. For example, if the rule selected was

“when the user is near …” then the choice between a point of

interest or a product or a store aisle is proposed, and after

selection of one of them the available options in the current

applications are indicated for completing the definition of the

trigger. Then, the possible meaningful actions for the considered

rule are shown. In the example they can be showing a video or a

promotion or a message, and again the user can then complete the

rule composition by selecting the relevant values.

Figure 4. The domain-dependent support for the smart retail.

7. USER TEST
The user test aimed to assess usability, usefulness and

completeness of the environment. It did not consider the domain-

dependent part, and thus it involved people with medium-high

Web programming abilities.

7.1 Set up
Before interacting with the authoring tool, the participants could

read an introduction about it, describing both the aims and the

way the tool works. Then they watched a three minute video

showing some examples of how the authoring tool can be used.

After that, they were allowed to freely interact with the authoring

tool for creating some rules (without any constraint on the triggers

nor on the actions). Finally, they were asked to carry out the tasks

related to two scenarios, one implying UI adaptation and one

implying UI distribution.

The adaptation scenario was about an interactive shopping list

application that had to be made adaptive according to the

customer’s physical behaviour. The users created two adaptation

rules taking into account the customer’s walking speed. The first

rule, triggered when the customer walks fast, hides the additional

products information and increases the font size of the main

product information. The second rule is triggered when the

customer walking speed is low. It restores the original layout and

content, i.e. shows the additional information section and

decreases the font size of the main information part.

The distribution scenario regarded the e-learning domain and was

carried out on an online course hosted by Moodle3 (which is the

most popular Learning Management System). The main content

of the course had to be made distributable based on two

distribution rules taking into account the teacher position. In the

first rule, one relevant part disappears from the teacher’s

smartphone and appears on the large screen of the classroom

when the large screen is in proximity. The second rule restores the

initial configuration, i.e. hides the distributed part on the large

screen and makes it visible again on the smartphone when the

system detects that the teacher has entered the teachers room.

The total test duration (reading instructions, watching video,

familiarizing with the authoring tool and performing the requested

tasks) was recorded for each participant, as well as the time taken

for carrying out each one of the two scenarios.

3 https://moodle.org/

7

After the interaction, the participants were requested to fill in an

online questionnaire providing personal data including education

and technical background, and a feedback on the tool.

Quantitative ratings were given to assess the tool usability,

usefulness and completeness, while some open-questions allowed

to provide more general considerations and recommendations.

7.2 Participants
Twelve individuals were involved in the test, 5 female and 7 male

with age between 26 and 45 (mean: 32.3, std. dev.: 5.12). One of

them held a PhD, 4 a Master Degree, 6 a Bachelor and one a High

School diploma. They were recruited in our Institute but were not

involved in the design and development of the authoring tool, and

the test was for them the first chance to try it. They rated their

skills in Web programming on a 1 to 5 scale (5: excellent; 4:

good; 3: average; 2: low; 1: none), between 2 and 5 (mean: 3.5,

std. dev.: 1.0). Half of the participants performed first scenario A

and then scenario B, while for the others the order was inverted.

This was done in order to reduce possible biases due to the

learning effect when analysing users performance on the two

scenarios (i.e. adaptation vs. distribution).

Three users had previously used an authoring tool and, among

them, only one had used an environment for allowing UI

distribution over multiple devices based on the context of use

(Atooma for Android).

7.3 Results
We logged the total test duration for each user as well as the time

taken for performing the two scenarios. All values are expressed

in minutes. The total duration (including reading the instructions,

watching to the video tutorials, familiarizing with the authoring

tool and performing the two scenarios) varied between 26 and 49

minutes (mean: 37, std. dev.:7). The time to complete scenario A

was between 4 and 15 (mean: 9, std. dev.: 3), while for scenario B

it varied between 2 and 5 (mean: 4, std. dev.: 1). On average, the

time spent to perform the distribution scenario was less than half

of the time taken by the adaptation one. We did not run tests for

proving statistical difference in the times, which would have been

questionable due to the small sample size. However, we can

motivate such a difference by observing that users had to

explicitly write down the actions in the adaptation scenario (and

this implied to focus on the proper CSS syntax). In the distribution

scenario, they had simply to select some elements and then press

some buttons to define elements (in)visibility in the various

devices.

We asked users to rate, on a 1 to 7 Likert scale (with 7 as best

score), the following aspects characterizing the proposed approach

and the associated tool:

 Usability of the mechanism for selecting the rule trigger; min:

3, max: 7, mean: 5.3, med.: 6, std. dev.: 1.2;

 Usability of the system for defining rule actions; min: 2, max:

6, mean: 4.8, med.: 5, std. dev.: 1.2;

 Usability of the rule-based approach, in general; min: 4, max:

7, mean: 5.8, med.: 6, std. dev.: 1.0;

 Completeness of the set of events and actions that can be

chosen; min: 3, max: 7, mean: 5.6, med.: 6, std. dev.: 1.0;

 Usefulness of the proposed approach for enhancing

applications with context-awareness; min: 4, max: 7, mean:

5.8, med.: 6, std. dev.: 1.1;

 Usefulness of the proposed approach for making applications

cross-device; min: 4, max: 7, mean, 5.3, med.: 5, std. dev.:

0.9.

Thus, overall the ratings were positive. The most appreciated

aspect was the usefulness for obtaining context-aware

applications, the lowest ratings were given to the usability in

specifying the actions associated with the rules.

The participants could also provide observations and

recommendations by answering to the following open questions.

What would you suggest to improve the usability of the proposed

approach?

Three users noticed the lack of a clear feedback during rule

creation, and recommended to show the updated list of actions

attached to the rules as soon as they are specified. Another issue

was due to the lack of a support for editing previously defined

rules.

One user would simplify the entire interface because she

considered it to be too cumbersome, for instance by allowing the

selection and binding of multiple elements to one action. Another

user would make the contextual entity names displayed on the tree

structure more intuitive.

Would you add or remove any element from the set of events and

actions?

One user declared she would add contextual information about the

gyroscope to the context model.

Regarding the event definition, one user would like the list of

operators for defining event constraints to be filtered according to

the semantic of the aspect involved in the condition. For instance,

the operators “lower than” or “greater than” may not be used for a

condition on the identifier of a Point of Interest, and the operator

“equal to” should be used instead.

Please cite example applications for which this approach can be

particularly useful.

The participants mentioned applications that optimize online

published content (e.g. books, newspapers) for the device in use,

city/museum guides, supports for meeting presentations, systems

for e-learning and professional training, domotics, healthcare (e.g.

services for the elderly), online shopping and smart retail were

among the various examples provided.

We asked the participants to mention three positive and three

negative aspects of the authoring tool, including recommendations

for general improvements.

Among the positive aspects, seven users mentioned the ease of

use, five the adaptation/distribution preview capabilities, three the

ease of device-oriented selection for specifying UI elements

(in)visibility, and three the flexibility of the rule-based approach

and the large field of application.

Most of the negative aspects were due to small lacks in the user

interface layout or in the set of functionalities of the Authoring

Tool. For instance, few users did not find intuitive the operators of

the conditions because abbreviations were used, e.g. gt, lt, eq, etc.

The absence of tips for specifying the UI updates based on CSS

property changes was an issue for some users that would like to

see a list of possible properties. Some users complaint about the

8

lack of continuous feedback during the rule creation phase (e.g.

chosen trigger, defined actions). One user mentioned the

impossibility of seeing the value of the property in the current

interface while specifying the action to modify it (to this aim he

relied on the browser debugger). The need for defining the same

action for several elements instead of applying the same action

once to a multiple selection of elements was also seen as

problematic.

Besides the indications for improvements in the UI layout of the

authoring tool, we collected an observation from one user

regarding the UI state during multiple adaptations, i.e. sequential

trigger of several rules. The user proposal was to have an

automatic restoration of the original UI state just before triggering

a rule. The aim would be to apply the actions of the rule to the

original version of the UI, rather than on the current state (that

may result from actions of previously triggered rules).

The following were among the most positive and encouraging

comments: “It looks like a very good approach for managing

context-awareness as it is intuitive and easy to use.”, “The tool

seems to be effective and quite easy to use.”, “It is easy to use and

lets you see the effects of your choices immediately in order to

modify them if something is wrong was done.”, “It is intuitive and

has high potentials for speeding up programming.”, “It is easy to

learn the mechanisms and the UI is intuitive.”

We have saved the adaptation and distribution rules created

during the test in order to subsequently analyse them. Regarding

the trigger, the users could freely choose a contextual attribute and

set a condition on it for triggering the rule.

We looked at the users’ choices in order to quantify how many of

them had actually created semantically valid conditions for the

trigger.

In the adaptation scenario, seven users relied on the “steps per

minute” attribute for expressing the walking speed, indicating a

numerical threshold (e.g. greater or lower than 100). Four users

chose the “activity type” attribute and picked “walking (slow)” or

“walking (fast)” predefined values. One user used both attributes.

All the users were thus able to create meaningful triggers in the

adaptation scenario.

In the distribution scenario, the users were supposed to consider

proximity of a large screen device in the first rule, and proximity

of a point of interest in the second. Six users chose the right

attributes for both rules. One specified the first rule correctly but

selected the “task name” attribute for the second, and three

selected “task name” for both rules (e.g. “task name = lecture”,

“task name = breakout”), which would be a different way to

model the expected behaviour. Two users made invalid rules for

detecting the entrance in the teachers room, considering proximity

detection of a user or a device instead of a point of interest (the

teachers room). Such mistakes were probably due to low

confidence with the context model schema, and we believe that

some short annotation of the context entities and attributes can

better support novices in choosing the proper context aspect for

the rule trigger.

During the test, we observed the participants interacting with the

authoring tool and took note of the major issues they experienced.

The mistakes that often led to malfunctioning rules confirmed the

difficulties that some participants mentioned in the open questions

of the questionnaire. For instance, at the first attempt, some

participants created rules that did not apply the desired updates to

the UI as expected or that did not work at all due to one or more

missing actions. The reason was that they forgot to add the action

to the rule and saved the rule with a trigger but without actions, or

used a wrong syntax in the action (e.g., “font-size=10px” instead

of “font-size:10px”).

Most errors occurred during the initial familiarization phase the

users had with the system, just before starting the real test session.

However, by considering these problems and users’

recommendations, we assume to be able to make the authoring

tool easier to use also for novices and more robust with little

effort. To this end we will enhance the system feedback at rule

creation time, and add a syntax checker for the actions.

8. DISCUSSION
By looking at the results of the user study reported above, we are

quite optimistic for future releases of our authoring environment.

Although several participants complaint about missing

functionalities and recommended some improvements, it appears

that all of them were able to understand the main points of the

approach. They indeed understood the semantic of the

adaptation/distribution rules and were finally able to carry out the

steps for their creation, namely trigger and actions definition. It is

worth considering that 9 out of 12 participants declared not to

have previously used any authoring environment, even if all of

them had some skills on Web programming.

Other aspects that is worth to mention are expressivity and

simplicity of use of the tool. Regarding expressivity, we assume

that the authoring tool allows developers and designers to manage

a good range of modifications to the user interface. Through the

tool it is possible to define actions that change the appearance of

any element or its contents or the navigation to different pages.

The underlying language for the adaptation rules allows them to

declare actions for any manipulation of the user interface

(creation/update/deletion of elements, also with the support of

conditionals and loops). We have however kept this first version

of the authoring tool simple to use avoiding the possibility of

creating particularly complex adaptation rules. Given the user test

results, we believe the tool has a good tradeoff between

expressivity and ease of use.

9. CONCLUSIONS
We have presented an authoring tool for supporting the

development of context-dependent user interfaces, able to adapt

and distribute themselves across multiple devices based on

contextual events.

The user study we have carried out to evaluate the first version of

the tool has shown the benefits of the trigger / action paradigm for

defining the context-dependent adaptation and distribution rules.

Participants found this solution simple and quick, and the

proposed approach, in general, useful to address emerging

scenarios characterized by contexts of use with a wide availability

of devices and sensors.

We will dedicate future work to improving the authoring tool

based on users’ recommendations and adding further features. We

will start by improving usability of editing the action part of the

rules, e.g. by allowing multiple selection of elements, adding a

suggested list for the CSS properties and syntax check for the

updates. We will provide more support to define rule templates

for the domain expert level, and carry out user tests for this part as

well.

9

10. ACKNOWLEDGMENTS
We gratefully acknowledge support from the Street Smart Retail

project (grant n. 14607, European Institute of Innovation and

Technology) for partially supporting this work.

11. REFERENCES
[1] Brown, P.J. 1996. The Stick-e Document: a Framework for

Creating Context-aware Applications. ELECTRONIC

PUBLISHING, WILEY, CHICHESTER, GB, vol. 8, no. 2-3,

24 September 1996, pp. 259-272.

[2] Chen, X.A., Grossman, T., Wigdor, D.J., and Fitzmaurice, G.

2014. Duet: exploring joint interactions on a smart phone and

a smart watch. Proceedings of CHI 2014, ACM, pp. 159-168.

[3] Chi, P. and Li, Y. 2015. Weave: Scripting Cross-Device

Wearable Interaction. Proceedings of CHI 2015, ACM,

pp.3923-3932.

[4] Dumas, B., Solórzano, M., and Signer, B. 2013. Design

guidelines for adaptive multimodal mobile input solutions.

Proceedings of MobileHCI 2013, ACM, pp. 285-294.

[5] Frosini, L. and Paternò, F. 2014. User Interface Distribution

in Multi-Device and Multi-User Environments with

Dynamically Migrating Engines. Proceedings of EICS 2014,

ACM, pp. 55-64.

[6] Ghiani, G., Manca, M., Paternò, F., and Porta, C. 2014.

Beyond Responsive Design: Context-Dependent Multimodal

Augmentation of Web Applications. Proceedings of

MobiWIS 2014, LNCS Volume 8640, pp. 71-85, Springer

Verlag.

[7] Grubert, J., Heinisch, M., Quigley, A.J., and Schmalstieg, D.

2015. MultiFi: Multi Fidelity Interaction with Displays On

and Around the Body. Proceedings of CHI 2015, ACM, pp.

3933-3942.

[8] Houben, S., and Marquardt, N. 2015. WatchConnect: A

Toolkit for Prototyping Smartwatch-Centric Cross-Device

Applications. Proceedings of CHI 2015, ACM, pp. 1247-

1256.

[9] Lin, J. and Landay J. A. 2008. Employing patterns and layers

for early-stage design and prototyping of cross-device user

interfaces. In Proceedings of CHI 2008, ACM, pp. 1313-

1322.

[10] Korpipää, P., Malm, E., Rantakokko, T., Kyllönen, V., Kela,

J., Mäntyjärvi, J., Häkkilä, J., and Känsälä, I. 2006.

Customizing User Interaction in Smart Phones. IEEE

Pervasive Computing 5(3): 82-90 (2006).

[11] Marcotte, E. 2011. Responsive Web Design, A Book Apart

(2011), http://www.abookapart.com/products/responsive-

web-design

[12] Marquardt, N., Diaz-Marino, R., Boring, S., and Greenberg,

S. 2011. The proximity toolkit: prototyping proxemic

interactions in ubiquitous computing ecologies. In

Proceedings of UIST 2011, ACM, pp. 315-326.

[13] Maues, R.A. and Barbosa, S.D.J. 2013. Keep doing what I

just did: automating smartphones by demonstration. In

Proceedings of MobileHCI 2013, ACM, pp. 295–303.

[14] Meskens, J., Luyten, K., and Coninx, K. 2010. Jelly: a multi-

device design environment for managing consistency across

devices. In Proceedings of AVI 2010, ACM, pp. 289-296.

[15] Nebeling, M., Mintsi, T., Husmann, M., Norrie, M. C. 2014.

Interactive development of cross-device user interfaces. In

Proceedings of CHI 2014, ACM, pp. 2793-2802.

[16] Realinho, V., Romão, T., and Dias, A. E. 2012. An event-

driven workflow framework to develop context-aware

mobile applications. In Proceedings of the 11th International

Conference on Mobile and Ubiquitous Multimedia (MUM

'12), article 12, ACM Press, 2012.

[17] Salber, D., Anind, D., and Abowd, G. 1999. The context

toolkit: Aiding the development of context-enabled

applications. In: Proceedings of CHI 1999, ACM, pp. 434–

441.

[18] Ur, B., McManus, E., Ho, M.P.Y., and Littman, M.L. 2014.

Practical trigger-action programming in the smart home. In

Proceedings of CHI 2014, ACM, pp. 803–812.

[19] Yang, J. and Wigdor, D. 2014. Panelrama: enabling easy

specification of cross-device web applications. In

Proceedings of CHI 2014, ACM, pp. 2783-2792.

http://www.abookapart.com/products/responsive-web-design
http://www.abookapart.com/products/responsive-web-design

