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to reduced SST biases. The resulting sharper SST gradi-
ents can significantly influence the overlying atmosphere 
(Minobe et al. 2008; Parfitt et al. 2016). The increase of 
model resolution can also lead to changes in the variability 
of ocean models (Hodson and Sutton 2012; Jackson et al. 
2020).

All these aspect demonstrate that increasing horizontal 
resolution in climate model studies can lead to changes in 
the mean climate state. For some processes, model climate 
may change or improve continuously with increasing reso-
lution (Demory et al. 2014), for other processes changes 
may occur as a critical resolution threshold is passed after 
which key processes are explicitly resolved, for example 
atmospheric convection (Fosser et al. 2015), ocean eddies 
(He et al. 2018), or Rossby radius (Hewitt et al. 2016). 
These impacts of increasing climate on model resolution 
suggest that the response of the climate to the AMV may 
also vary with resolution. We attempt to address this ques-
tion in the following section.

Experiments were performed at both high and low 
atmosphere resolution, but examination of Table  1 
shows that comparing model resolution between mod-
els is dependent on how resolution is defined, due to the 

variation in grid geometries. It is also clear that there is no 
resolution threshold that divides the models into low and 
high resolution. This spread of model resolutions presents 
a challenge to assessing the impact of model resolution on 
the AMV response.

The change in the modelled AMV response due to resolu-
tion can be best expressed as a quadrature:

 that is, the difference between the AMV response in 
the higher resolution models, and the AMV response in 
the lower resolution models. We can then propose two 
hypotheses: 

1. Dm is proportional to, or monotonic with the change in 
resolution Rm (=RH − RL)

2. Dm is zero unless the low and high resolution models 
span a critical resolution threshold, Rc

We can examine these hypotheses using the ANOVA test 
for Ger (Eq. 3). If Ger is not a significant factor ( p < 0.05 ), 
then we are unable to reject the null hypotheses that the 

(4)Dm = (XH
+
− XH

−
) − (XL

+
− XL

−
)

Fig. 12  As Fig. 9, but for 500 hpa geopotential height (zg)
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model mean of Dm is zero. This could arise because none 
of the Dm are greater than zero (the AMV response does 
not change as resolution is increased), or a threshold ( Rc)
is spanned by a subset of the models ( m′ ), but the result-
ing Dm′ are too small to be detected when meaned over all 
models.

Unlike in the previous sections, the significance of these 
results for resolution do appear to be somewhat sensitive 
to resampling (see SI section 1.3). Consequently, we only 
comment on the features that are robust to resampling in 
the following discussion. Additionally, we note that the field 
significance of many of these results is marginal.

Figures 13, 14 and 15 show that the impact of increasing 
model resolution is generally small; that is, we are unable to 
detect the impact of increased model resolution on the AMV 
response, although there are some regions where there are 
notable differences.

There are small significant changes in surface air tem-
perature (tas) in the northern North Atlantic and Arctic 
in all seasons (Fig. 13), most notably in the Labrador Sea 

which sees colder (warmer) temperatures during DJF (JJA) 
at higher resolution, with a small cooling in the Barents Sea 
during MAM. These changes may arise due to resolution 
sensitivities in the mixed layer depth or sea ice, but could 
also arise from differences in the mean state of the sea ice 
cover in HR and LR controls—small differences in the mean 
sea ice extent could lead to large differences in the surface 
air temperature response between the resolutions. These 
changes are only marginally field significant, however.

The impact of resolution on the large scale circulation 
response is very weak and small compared to the mean 
response, with perhaps a slight positive mean sea level pres-
sure response over southern South America in HR (Fig. 14 
and SI section 1.3—Figure S8). But in none of the seasons 
are these results field significant.

The strongest impacts of increasing model resolution 
appears in the tropical precipitation response (Fig. 15). 
The AMV drives a northward displacement in the Atlantic 
ITCZ, represented by the dipole in Fig. 4. This northwards 
displacement is stronger in HR, resulting in a precipitation 

Fig. 13  Seasonal Surface Air Temperature (tas)—Impact of increas-
ing model resolution on modelled AMV response. Each panel shows 
the difference between the AMV High Resolution (HR) ensemble 
responses ( 2AMV+-2AMV− ) and the Low Resolution (LR) responses. 

Regions where the difference is significant ( Ger;p < 0.05 ) are shaded. 
A) Winter (Dec–Jan). B) Spring (Mar-May). C) Summer (Jun–Aug). 
D) Autumn (Sep–Nov). Units: C. Top right of each panel: fraction of 
the total number of gridpoints that are significant ( p < 0.05)
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tripole (difference between two displaced dipoles) in the 
Tropical Atlantic. This tripole is strongest in summer (JJA, 
Fig. 15c). This could arise due to an enhanced northern 
hemisphere warming response in the HR models during 
summer (Fig. 13c) (e.g. Frierson et al. 2013), which could 
drive a more northward shift in the ITCZ and the Hadley 
circulation.

There is also a small increase in precipitation over the 
west Pacific Ocean in winter and autumn (Fig. 15a, d), con-
sistent with an enhanced ascent and a strengthening of the 
tropical Walker Circulation.

Because of the difficulty of distinguishing high and low 
resolution models across the ensemble, as discussed above, 
we can also examine the impact of resolution in individual 
models (see SI section 5—Figures S14–S28). This analysis 
shows that the models generally agree on the weak impacts 
seen across the full ensemble, but that the MPI-ESM 1.2 
model shows a much stronger impact of resolution, with 
warmer temperatures over the wider Atlantic subpolar gyre, 
and a stronger Atlantic ITCZ displacement (SI section 5—
Figures S18 and S28).

Despite this diversity, we have not been able to detect a 
large scale change in the climate response to the AMV after 

an increase of horizontal resolution (Figs. 2, 3, 4). Small 
consistent impacts of increased resolution are small regional 
variations in surface air temperature (tas) over the Arctic 
together with a northward shift in the ITCZ.

5  Discussion

The global scale climate response to the AMV in the multi-
model multi-resolution ensemble mean (Figs. 2, 3, 4) is in 
broad agreement with the findings of previous coupled AMV 
experiments (Ruprich-Robert et al. 2017; Dong et al. 2006; 
Levine -et al. 2018). Key features of the surface air tem-
perature, pressure and rainfall responses identified above are 
also seen in these studies. This similarity suggests that the 
pattern of the climate response to the AMV is broadly con-
sistent across coupled climate models, but the details and the 
magnitudes of the model responses may differ (McGregor 
et al. 2018; Kajtar et al. 2018; Ruprich-Robert et al. 2021). 
This climate response is also broadly similar to that found in 
previous atmosphere-only AMV studies (Hodson et al. 2009; 
Sutton and Hodson 2007; Mohino et al. 2011; Davini et al. 
2015; Peings and Magnusdottir 2014; Zhang and Delworth 

Fig. 14  As Fig. 13, but for mean sea level pressure (psl). Units: Pa Contours are 20 Pa
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2006), however the response over the fixed-SST oceans in 
those experiments is generally weaker than seen in the cou-
pled studies, suggesting that ocean-atmosphere coupling 
enhances the climate response to the AMV.

We have examined the difference between the 2AMV+ 
and 2AMV− experiments, but does the climate respond dif-
ferently to 2AMV+ and 2AMV− ? In other words, how linear 
is the climate response to the AMV around the model cli-
matology? We can examine this question by comparing both 
AMV responses to the model climatology (SI section 8—
Figures S37–43). We conclude that the large-scale climate 
response is mostly linear—that is the 2 ∗ AMV+ − Clim and 
Clim − 2 ∗ AMV− responses have the same spatial structure 
as the 2 ∗ AMV+ − 2 ∗ AMV− response (Figs. 2-4). We dis-
cuss this further in the SI (section 8).

Each model realization was integrated for 10 years. In 
our previous analysis we assumed that each of these years is 
statistically independent. If the climate response to the AMV 
forcing evolved over time (i.e. drifted), then this would be 
an incorrect assumption. To test this independence we can 
examine the influence of the year of the realization in a simi-
lar way to the influence of the models (Sect. 4.4—Figs. 9, 
10), and ask the question: does this factor significantly affect 

the AMV response? Figures S44-S46 (SI section 9) dem-
onstrate that there are only small regional impacts of this 
factor. In other words, the climate response to the AMV is 
largely constant across the 10 years of simulation (see SI 
section 9 for more details).

5.1  Comparison with observations

How does the modelled response to the AMV compare with 
estimates of the observed response? The observed climate 
evolved in response to multiple sources of forcings, not just 
the AMV, hence it is challenging to derived a robust estimate 
of the true observed response to the AMV. Previous observa-
tional studies have attempted this, and some show a similar 
European warming (Fig. 2) in observations (Gastineau and 
Frankignoul 2014; O’Reilly et al. 2017; Sutton and Dong 
2012). The modelled circulation response (Fig. 3) is less 
consistent and does not show the negative NAO response 
seen in Gastineau and Frankignoul (2014) or Peings and 
Magnusdottir (2014). The pattern of the precipitation 
response (Fig. 4) is broadly consistent with the increase 
over Europe seen by O’Reilly et al. (2017) and Sutton and 
Dong (2012), and with the observed increases over the Sahel 

Fig. 15  As Fig. 13, but for precipitation (pr). Units:mm/day
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(Folland et al. 1986; Zhang and Delworth 2006), northeast 
Brazil (Uvo et al. 1998; Folland et al. 2001) and the reduc-
tions over North America (Sutton and Hodson 2005; Hodson 
et al. 2009).

Another approach to estimate the observed forced AMV 
response is to follow the method used to estimate the AMV 
forcing patterns (https:// www. wcrp- clima te. org/ wgsip/ 
docum ents/ Tech- Note-1. pdf), by removing an estimate of 
the forced historical warming trend (from a historical forced 
multimodel ensemble mean—Figure 1a from Technical 
Note) from observed SSTs. Averaging the resulting residu-
als over the North Atlantic gives the (detrended) AMV index 
(Fig. 1b).

We can follow the same approach with any observed field: 
removing the estimate of the forced trend (from Technical 
Note Figure 1a, above) and considering the residuals as an 
AMV response. We can then form a composite difference 
from residuals between a high-AMV period (1930:1959) 
and a low-AMV period (1960:1959) (Fig. 1b). Figures 16 
and 17 show these differences for surface air temperature 
(HadCRUT4—see Sect. 2.4.1) and mean sea level pressure 

(HadSLP2—see Sect. 2.4.1); the observed record of pre-
cipitation is too short for this approach. (We have multiplied 
these composites by 2 to aid comparison with the 2*AMV 
model responses previously shown.) An alternative approach 
is to composite based on when the AMV index (Fig. 1b) 
exceeds (falls below) plus (minus) one standard deviation. 
This approach produces similar results (SI section 7: Fig-
ures S35 and S36). Figures 16 and 2 show some consisten-
cies between the modelled and estimated observed surface 
temperature response to the AMV: the warm anomaly of 
North America in DJF, extending to western Europe in JJA, 
and the cool Sahel anomaly band in JJA. Over the oceans, 
the cool Southern Ocean is consistent with the modelled 
response in most seasons, and the signal of eastern tropical 
Pacific cooling seen in the models is detectable in most sea-
sons. The consistency is much lower for mean sea level pres-
sure (psl) (Figs. 17 and 3). The greatest consistency appears 
in JJA, with a low pressure anomaly over North America, 
extending eastwards over the Atlantic to Europe. There is a 
hint of the modelled Aleutian high pressure response in DJF 
and JJA. Alternatively, we can examine the amplitude of the 

Fig. 16  Scaled (x2) composite of observed surface air temperature 
(tas, HadCruT)—1930:1959 minus 1960:1989. The estimated forced 
trend has been removed from tas before computing the composite. 

Shaded regions are significant (two-sided t-test between the two time 
periods, p < 0.05 ). Units K. Top right of each panel: fraction of the 
total number of gridpoints that are significant ( p < 0.05)

https://www.wcrp-climate.org/wgsip/documents/Tech-Note-1.pdf
https://www.wcrp-climate.org/wgsip/documents/Tech-Note-1.pdf
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modelled AMV response compared to an observed estimate. 
This approach is motivated by the signal-to-noise paradox 
observed in seasonal forecasts; where the forecast amplitude 
of the North Atlantic Oscillation is about one-third of the 
observed amplitude (Scaife et al. 2014; Scaife and Smith 
2018). If we project the observation residuals (i.e. detrended 
as above) onto the modelled response (Figs. 2 etc), we can 
estimate a timeseries ( �(t) ) of the observed response to the 
AMV for any variable (see SI section 7 for further details). 
If the real climate responds to the AMV with the same spa-
tial pattern as the model, then �(t) would match the AMV 
index exactly in both shape and amplitude. SI section 7—
Figures S35 and S36 show that whilst the model responses 
do capture some of the multidecadal variability in the obser-
vations, this is somewhat weaker and out-of-phase with the 
observed AMV. The latter part of the observed record (1960 
onwards) is generally much better captured. This suggests 
that the weaker response seen in the model, compared to 
observations, may be due to the greater uncertainties in the 
earlier part of the observational record. Overall, there is 
some evidence that the modelled response to the AMV is 
weaker than the observed response, but the limited obser-
vational data makes it hard to be definitive.

Fig. 17  As Fig. 16, but for mean sea level pressure. Units: Pa 

Fig. 18  Comparison of (open symbols, left) upward surface latent 
heat fluxes ( 2AMV+ −2AMV− ) and (black, right) net upward surface 
heat fluxes (latent, sensible, shortwave and longwave), both averaged 
over the AMV region (Fig. 1), for each season. Symbols show means 
over all ensemble members and resolutions for each model. Circle 
shows mean across all models. Grey filled circle denotes the model 
spread is significant from the ANOVA (e.g. Aem in section 3 ( eqn. 3))
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5.2  AMV forcing spread

Whilst the AMV SST anomalies are consistently maintained 
across models (Fig. 9, Figure S11), the resulting net ocean-
atmosphere surface fluxes may differ across models. Exam-
ining this spread across models, the net surface latent heat 

fluxes released into the atmosphere over the North Atlantic 
AMV forcing region varies significantly across models in 
winter and summer, peaking in winter and autumn (Fig. 18). 
The spread increases when we consider the total net sur-
face flux (Fig. 18). Hence, although the atmosphere in each 
model sees closely similar North Atlantic SST anomalies, 
there is a significant model spread in the resulting heat flux 
forcing of the atmosphere (perhaps due to a spread in condi-
tions at the air–sea interface). This spread may arise from 
model formulation differences, or perhaps differences in the 
climatologies across the models (for example, the extent of 
sea ice cover over the Arctic). Such variation in forcing may 
be a significant factor in the model spread in the AMV cli-
mate response across models (Figs. 9-10). The model spread 
in surface air temperature (Fig. 9) over the Tropical Pacific 
appear to be partly related to this spread in AMV forcing (SI 
section 10—Figure S49) for part of the year. Ruprich-Robert 
et al. (2021) demonstrate that the latitude of the ITCZ var-
ies across the model climatologies and that this explains a 
significant proportion of the spread in the Tropical Pacific 
response.

Fig. 19  As Fig. 2, but for precipitation—evaporation. Units: mm/day 

Table 1  Atmosphere grid resolution in km for each model at low and 
high resolution configurations. The first number is the nominal  res-
olution (derived from the model grid definition and threshold trun-
cation (point 3) http:// goo. gl/ v1drZl (Appendix  2) or Klaver et  al. 
(2020) supplementary) and the following number in brackets is the 
effective resolution (derived from the model grid’s ability to resolve 
the KE spectra (see Klaver et al. 2020)

Model Low resolution High resolution

CNRM-CM6-1 250 ( ≥625) 100 (313)
EC-Earth 100 (351) 50 (238)
ECMWF-IFS 100 (253) 50 (185)
MetUM-GOML2 250 ( ≥625) 100 (364)
MPIESM1.2 100 (364) 50 (256)

http://goo.gl/v1drZl


828 D. L. R. Hodson et al.

1 3

5.3  P–E

The AMV drives global changes in the hydrological cycle 
via changes in precipitation (Fig. 4). The AMV also drives 
changes in surface evaporation (Fig. 5). These changes result 
in the net surface moisture fluxes (p–e: precipitation–evapo-
ration) (Fig. 19). Whilst the AMV drives a reduction in pre-
cipitation across the US in summer (Fig. 4c) the net impact 
on p-e is positive for the central and western US; due to 
a widespread reduction in surface evaporation (Fig. 5). In 
contrast, the AMV drives a strong seasonal cycle of p-e over 
northern South America; with increased downward moisture 
fluxes in DJF and net upward fluxes in JJA. The enhanced 
South Asian monsoon (Fig. 4c) results in a mixed net down-
ward moisture flux, the increased rainfall being balanced 
somewhat by enhanced evaporation. Over Europe, there is 
notable seasonality, with increased downward moisture flux 
in winter, and a drier summer and autumn.

5.4  Summary

In broad agreement with other AMV impact studies (Sutton 
and Hodson 2005; Hodson et al. 2009; Dong et al. 2006; 
Ruprich-Robert et al. 2018; Levine -et al. 2018), we can 
summarize the global response to the AMV as a northward 
shift in tropical precipitation (hence a northward shift of 
the ITCZ and perhaps the Hadley cell) together with an 
adjustment in the tropical Walker circulation. The Hadley 
cell changes are likely driven by the hemispheric imbal-
ance in heating (e.g. Kang et al. 2008) and lead to global 
changes in precipitation following the displacement of the 
ITCZ. Latent heat release over the Tropical Atlantic may 
then drive changes in the tropical Walker circulation as 
shown by Kucharski et al. (2011). The resultant surface wind 
changes over the Equatorial Pacific interact with the ocean 
driving enhanced upwelling, via a Bjerknes feedback, lead-
ing to a widespread eastern and central Pacific cooling (Li 
et al. 2016). This cooling increases subsidence and reduces 
convection over the East and Central Pacific, driving extra-
tropical wavetrains (Scaife et al. 2017) leading to changes 
in extratropical circulation over the north Pacific and Atlan-
tic. These large scale responses lead to widespread regional 
changes in temperature and circulation.

6  Conclusions

We have examined the global climate impact of the AMV in 
five coupled climate models, at two groups of atmospheric 
horizontal resolutions: low resolution (LR: 250–100 km) 
and high resolution (HR: 100–50 km) for each model. We 
have discussed the model mean climate response and where 

choice of model and resolution alters this response. Our key 
findings are:

– The AMV has a global-scale impact on climate, affecting 
global circulation, surface air temperature and rainfall. 
The positive AMV drives:

– warming over much of Eurasia, northern Africa and 
North and South America (Fig. 2). This is accom-
panied by some regional cooling over land: Alaska, 
northern sub-Saharan Africa and India. These 
changes are partly due to the advection of warm (or 
cold) air, partly due to changing shortwave fluxes 
due to changes in cloud cover. Outside the Atlantic, 
the AMV drives widespread cold SSTs, most nota-
bly a PDO-like cooling over the Central and eastern 
Pacific. This cooling is likely driven by enhanced 
ocean upwelling.

– a global shift in the hydrological cycle, characterized 
by a northward shift in the ITCZ over the Atlantic 
and Pacific and a displacement of the African Mon-
soon system, accompanied by reduced rainfall over 
the Tropical Pacific, and increased rainfall over Asia 
and the Maritime Continent (Fig. 4).

– global-scale changes in circulation, characterized by 
ascent over the Atlantic and descent over the Pacific 
(Fig. 3). The response peaks in summertime (JJA), 
but there are significant impacts on the Aleutian low 
during winter (DJF) and spring (MAM)—these latter 
drive anomalous cooling over Alaska and western 
Canada in winter (DJF).

These findings are consistent with previous AMV experi-
ments with atmosphere-only models (Sutton and Hodson 
2005, 2007; Hodson et al. 2009; Davini et al. 2015; Vigaud 
et al. 2018; Omrani et al. 2014, 2016) and also more recent 
studies with coupled models (Ruprich-Robert et al. 2017, 
2018; Levine -et al. 2018; Monerie et al. 2019).

– There is a global multimodel-mean AMV response across 
multiple variables ( �e—significant when compared to 
internal variability), but models disagree on the magni-
tude of this response in some regions ( Aem)—most nota-
bly in the Tropics (Figs. 9 and 10). Part of this model 
variation may arise from the differing atmosphere heat 
flux forcings that result from the same SST pattern forc-
ing pattern (Fig. 18).

– We are generally unable to detect a change in the multi-
model mean responses as model resolution is increased, 
although the extent of the northward displacement of the 
ITCZ has some sensitivity to resolution (Fig. 15), mov-
ing further north at higher resolution. There is also some 
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evidence of an enhanced tropical Walker Circulation. 
This does not preclude the possibility that larger changes 
to the AMV response exist across a specific resolution 
threshold within our sample, or for resolutions greater 
than we have sampled here.

This study suggests that resolution (in the range we have 
sampled here) may not be a large source of uncertainty 
in experimental estimates of the large-scale impact of the 
AMV. Model variation is likely to be a more significant 
source of uncertainty. Resolution may play a greater role for 
smaller scale processes or extremes, such as hurricanes or 
temperature extremes. Future studies analysis will examine 
these impacts in these experiments. Given the widespread 
nature of the impacts of the AMV seen in this study, a bet-
ter understanding of these model uncertainties, combined 
with good estimates of the future evolution of the AMV are 
crucial to predict near-term global climate changes. Further 
future analysis of the full CMIP6 DCPP-C AMV experi-
ment ensemble will enhance our understanding and ability 
to do this.

A Analysis of Variance (ANOVA)

In this section we outline the basis for Analysis of Vari-
ance (ANOVA) see Storch and Zwiers (1999, p117), Zwiers 
(1996) or Wilks (2019) for detailed explanations). ANOVA 
aims to decompose the total variance of a dataset into con-
tributions from different factors. The significance of each 
contribution can then be assessed.

Consider a multi-model ensemble experiment with 
(m = 1..M) models and (e = 1..E) experiments, where each 
experiment was performed (j = 1..J) times.1 Suppose we 
wish to examine the factors influencing Mean Sea Level 
Pressure (MSLP) in this ensemble. Assuming the models 
uses a common spatial grid, we can define MSLP at a grid 
point across all experiments (e), models (m) and ensemble 
members (j) to be Xemj . We can then express Xemj as a linear 
combination of factors:

Here, � is the average over all experiments, models and 
ensemble members:

(5)Xemj = � + �e + �m + �em + �emj

�e is the part of MSLP that changes between experiment, 
but does not change between ensemble members or mod-
els. We could consider this the true experimental response 
(about which individual model responses will cluster). 
Because of the definition of � (6), �e is constrained to satisfy:

�m is the part of MSLP that changes between models, but 
does not change between experiments or ensemble mem-
bers. In other words, it is the model bias of a given model m. 
Again, �m is constrained in the same manner as �e:

�em is often called the interaction term—it accounts for 
the across-experiment differences between the ensemble-
means, once the model biases ( �m ) have been accounted for. 
�em is similarly constrained by the definitions of � , �e and 
�m to satisfy:

Finally, �emj describes the residual noise. �emj is assumed 
to be independent and normally distributed with a zero mean 
and a variance of �2

�
 , e.g. �emj ∼ N(0, �2

�
) . Having proposed a 

linear statistical model for this variable, we can form hypoth-
eses and construct tests. For example, is there a significant 
model bias between the models? In other words, do the 
models have a spread of MSLP climatologies that is detect-
able above the internal variability, �emj ? We can re-frame the 
question as: is 

∑

m 𝛽2

m
> 0?

To answer this question we first define the Total Sum of 
Squares, TSS

Where, ◦ implies a mean over that index—for example:

On close inspection, as the noise term �emj is indepen-
dently distributed, the cross terms between different j vanish, 
hence TSS can be decomposed as follows:

where

(6)� =
1

EMJ

∑

emj

Xemj

∑

e

�e = 0

∑

m

�m = 0

∑

e

�em =
∑

m

�em = 0

TSS =
∑

emj

(Xemj − X
◦◦◦

)2

X
◦mj =

1

E

∑

e

Xemj

(7)TSS = SS� + SS� + SS� + SS�

1 The analysis can still be performed if the models have a different 
number of ensemble members, j, but the subsequent statistical tests 
will no longer be exact. See (See Storch and Zwiers 1999, p. 178).
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This is simply the familiar idea that the total variance is 
just the sum of individual sources of variance. We can then 
construct unbiased estimators of the terms on the right hand 
side of Eq. 5. Consequently, it can be shown (e.g. Storch and 
Zwiers 1999) that SS� is an unbiased estimator of:

Similarly, it can be shown that SS� is an unbiased estima-
tor of

Therefore the ratio

is an unbiased estimator of

If 
∑

m 𝛽2

m
> 0 then this expression will be greater than 

1. Formally we can then pose a null hypothesis H
0
 and an 

alternative hypothesis H
1
:

In other words, if at least one of �m is not equal to zero then 
we can reject the null hypothesis H

0
 . An F-test can be used 

to test H
0
 by assessing whether the F-statistic (10) is signifi-

cantly greater than 1 (using the F-distribution FM−1,EM(J−1) ). 
A significant result (e.g. p < 0.05 ) implies that the factor 
represented by �m , in this case model bias, has a detect-
able effect on MSLP in this multi-model ensemble experi-
ment. Comparing 

∑

m �2

m
 to �2

�
 in this way, allows us to assess 

whether the effects associated with �m are greater than the 
noise, �emj . Similar estimators to (10), and hence similar 
tests, can be found for �e and �em.

SS� =
∑

emj

(Xe◦◦ − X
◦◦◦

)2

SS� =
∑

emj

(X
◦m◦

− X
◦◦◦

)2

SS� =
∑

emj

(Xem◦
− Xe◦◦ − X

◦m◦
+ X

◦◦◦
)2

SS� =
∑

emj

(Xemj − Xem◦
)2

(8)EJ
∑

m

�2

m
+ (M − 1)�2

�

(9)EM(J − 1)�2

�

SS�∕(M − 1)

SS�∕EM(J − 1)

(10)
EJ

M−1

∑

m �2

m
+ �2

�

�2

�

H
0
∶
∑

m

�2

m
= 0

H
1
∶
∑

m

�2

m
≠ 0

We can also estimate the size of the effect of a given fac-
tor on Xemj in (5) by computing the fraction of the variance 
explained (FVE). Examination of (8) and (9) shows that:

is an unbiased estimator of the variance of �m.
Therefore:

FVE� is (an unbiased estimate of) the fraction of the total 
variance (TSS), explained by �m (see 7). Similar expressions 
can also be found for �e and �em.

Furthermore, it can be shown that ANOVA is a more 
general form of the t-test. For example, for the simpler case 
of one factor (e.g. one-way ANOVA) (5) becomes,

For the case of only two models (M=2—i.e. two samples) 
the F-statistic (10) for �m is exactly equal to the square of the 
corresponding two-sample t-statistic, and it can be shown 
(by integration) that the cumulative distributions of tn and 
F

1,n are identical. Hence, one-way ANOVA with two treat-
ments (M=2) is a two-sample t-test. Equally, we can extend 
this model to:

where Cj is a factor that is the same for each m, but varies 
with ensemble member j. For M = 2 , this reduces to a paired 
t-test—the presence of Cj reduces the estimate of the noise 
variance ( �2

�
 ), which reduces the denominator in (10) lead-

ing to a larger F-statistic. A paired t-test similarly eliminates 
Cj by computing pair differences between the two samples, 
which results in a reduced denominator in the corresponding 
t-statistic, and hence a more sensitive test. In both cases a 
source of variance is being removed to compare the remain-
ing variance of interest with a better estimate of the noise.

We can extend the statistical model (5) to include more 
factors. In this paper, we consider consider the extra factor 
of resolution, and hence Xemrj , where r is resolution. (5) can 
then be extended to include all possible interactions between 
these factors, and hence:

Here, Aem replaces �em . �r represents the climatology 
changes that occur averaged across all models when resolu-
tion is changed, irrespective of the experiment. Ger repre-
sents how the experimental response changes when resolu-
tion is changed—a key question for this paper. Zmr represents 

SS� −
M − 1

EM(J − 1)
SS� = EJ

∑

m

�2

m

FVE� =
SS� −

M−1

EM(J−1)
SS�

TSS

(11)Xmj = � + �m + �mj

(12)Xmj = � + �m + Cj + �mj

(13)
Xemrj = � + �e + �m + �r + Aem + Ger + Zmr + Wemr + �emrj
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how the spread of model climatologies changes when resolu-
tion is changed, irrespective of the experiment. Wemr repre-
sents how the model spread between experiments changes 
when resolution is changed. In this way, we account for all 
possible sources of variance, which refines and reduces the 
estimate of the noise �emrj , allowing us to detect smaller 
influences of the various factors than would otherwise be 
the case.
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