g

Some Considerations on FFT- Conjugate Gradient Method 2&-5¢
for Electromagnetic Scattering Problems 14593

Giuliano Manara® Anna Vaccarelli*

Internal Report
November 1989
Istituto di Elaborazione della Informazione - C.N.R.

° G.Manara is with the "Istituto di Elettronica e Telecomunicazioni”,
University of Pisa, Via Diotisalvi,2 - Pisa, Italy

“A.Vaccarelli is with the "Istituto di Elaborazione della Informazio-
ne" of the Italian National Research Council, Via Santa Maria,

46, - Pisa, Italy




TABLE OF CONTENTS

ABSTRACT .eeeveerererrereessessssessssessassossssessessssssessssssnsssesssssssestessssessesessessesssssssesessessersesssssssens 2
1.0 INTRODUCTION ....ceceererueeerreerrressssnssessessesessssessssssssssssssssssesesssssesssssssessessssessassssssnssns 3
2.0 THE CONJUGATE GRADIENT METHOD ...cccceveeuerrerrersaseasnssesnessessersnssssssesesssssaes 3
2.1 SOME DEFINITIONS ....ccoveervererreerverennrenesrenns revesnnserasessesansssnssssresasesasssnasernrsssesases 5
2.2 ANALYTICAL DERIVATION OF THE METHOD.....cccuuetrureteresseressssrressnnessnnessonsossnes 5
3.0 THE PROBLEM OF SCATTERING FROM A CONDUCTING PLATE.......cc.cv0vevveneen. 9
4.0 THE DISCRETE APPROXIMATION OF THE CONTINUOUS PROBLEM................ 13
5.0 AN APPLICATION OF THE METHOD ....ccorevereruerinereeseesssessessessssssesssassasssssssessassness 15
6.0 THE GENERAL CASE OF A MATERIAL PLATE ....cccoceeevuererueesssunsssssssscorsssssenssnnaes 19
7.0 CONCLUSIONS ...uvoverrererrerersesesessssessesessessssessssssssssssssnsssasessessessesssssssessessssassessonsasens 23
REFERENCES ...c.ueetiteirrerteeraesessesssssssesssssssessesessesessessssssssssssasssnsosssssssessosssssssessesesnssssssen 24

FIGURE CAPTIONS ...coviirieeiieesnirreeeasseessnsssstsssssssssssassssssssssssasessassssessssassss ossssssnsssss sonses 25




ABSTRACT

An application of the conjugate gradient method to the
electromagnetic scattering of plane waves from planar, perfectly
conducting and material plates is presented. The method is
combined with a Fast Fourier Transform algorithm to increase
numerical efficiency. A detailed discussion on the basic features of
the conjugate gradient method is also included.




1.0 INTRODUCTION

The description of Electromagnetic scattering from perfectly
conducting or material structures is usually described in terms of
the E-field, the H-field or combined field integral equations. By
applying a Moment Method (MM) technique [1], integral equations
can than be reduced to matrix equations. Many accurate and
efficient MM formulations have been presented in the literature
[2-5]. However, matrix solutions become more and more inefficient
as the dimensions of the scatterer increase. These difficulties can
be overcome by utilizing iterative methods. One of these methods,
the Conjugate Gradient Method, has been widely used recently to
solve both scattering and radiation problems [6]. In this context,
the Conjugate Gradient - Fast Fourier Transform method (CG-FFT)
is of particular interest, as it has revealed several features which
enhance the efficiency [7].The purpose of this work is to discuss of
the CG-FFT method in detail and to analyze the application of this
method to the problem of the electromagnetic scattering of a plane
wave by planar, perfectly conducting or material plates. In
particular, in Section 2, the basic properties of the conjugate
gradient method are rewied in order to provide a better
understanding of the whole procedure. In Section 3, the
electromagnetic problem of plane wave scattering from perfectly
conducting and material plates is formulated in terms of the
pertinent integral equations. In Section 4, the continuous problem
is discretized and the FFT algorithm is introduced into the
computations. Finally, the specific problems of the perfectly
conducting and of the material plate are investigated in Sections 5
and 6, respectively.

2.0 THE CONJUGATE GRADIENT METHOD

The Conjugate Gradient method belongs to the more general
class of Gradient Methods which are used to minimize an arbitrary
function F(z) of the z = (z1,2z9,...,zN) variable. They are iterative
methods; the k-th iteration consists of the computation of a search
vector px from which a new estimation zy.; of the solution can be
obtained according to the rule:




(2.0.1) Zki] = Zk + OkPk

where ax is generally obtained from a linear search or a prior
knowledge based upon the gradient method theory.

Process (2.0.1) involves a search along the direction of vector
Px from the current point zy. If the iterative method is to be stable
at least ax must be chosen so that:

(2.0.2) F(zx.1) < F(zy)

The gradient methods employ algorithms that use first and maybe
second derivatives of the function F(z) to compute px. These
derivatives may be available analytically or approximated in some
way; the method is still efficient if the derivatives have not too
numerous discontinuities.

The Conjugate Gradient method generally converges to a
solution which requires fewer gradient evaluations per iteration
with respect to other gradient methods; it will, however, have a
quadratic termination.

Let us now consider the problem of minimizing a quadratic
functional F. A possible finite set of search vectors pk, that satisfy
the "conjugacy property", can be chosen . A set of vectors px is said
to be mutually conjugate or B-orthogonal with respect to a linear
operator B if and only if

(2.0.3) (Bp;,px ) =0 k]

where (-,- )is a scalar inner product between two functions, which
will be better defined in the following. For example, if B is a
positive definite matrix, the eigenvectors of B form one such set of
vectors, and it can be demonstrated that these vectors are linearly
independent and lead to a quadratic termination [9]. It can be
shown that in this case the solution can be reached in a finite
number of steps. ‘

For non-quadratic functionals, the exact minimum can not be
located in N searches, but it can be approximated with good
accuracy. In this case, there is no standard technique to choose the




search vector, but experience can help with some useful
suggestions.

2.1 Some definitions

Before describing the method, we recall some definitions. Let
us define the scalar inner product between two functions f and g in
one and two dimensions, as follows:

(2.1.1) £ = Uf(x)g*(x)dl
1

(2.1.2) (o= [ [fxye'xy)ds

]

where the symbol " *" denotes the complex conjugate. In a quite
similar, way a discrete inner product between two vectors f = (fp, fi,
..., In-1) and g = (go, g1, .... gn-1) can be defined:

N-1
(2.1.3) £g = gnhfy

n=0

Closely related to the inner product, the Euclidean norm can be
established, defined as follows:

(2.1.4) £l =\]<f,t>

Finally, if B is a linear operator, the adjoint operator of B,
denoted by B2, is defined by:

(2.1.5) (Bf,g) = (f,Bag)

for any function f and g.

2.2 Analytical derivation of the method

Let us consider the quadratic functional F(z), defined on a
Hilbert space:




(2.2.1) F(z) = (Bz,z) - 2{z,h)

where B has the following properties:
i) it is self-adjointed such that B=B2
ii) it is positive definite such that (Bz,z) > O for each z = O
iii} if B is a matrix the eigenvalues are real and positive and the
eigenvectors are orthogonal.
The properties of the operator B guarantee that the £ minimizing
the functional F(z) defined by eq.(2.2.1) is the unique solution of the
equation Bz = h.
The vector £ can be expanded in a Fourier series with respect
to the set of vectors B-orthogonal py:

(2.2.2) Z=2Z1+ 0] P1 + 02 P2 + ... + 0Pk
If we denote by zy the partial sum at the k-th term, then, for a
known property of the Fourier series, the quantity ||zx - 2| is
minimized over the subspace (p1,p2,...,Pk); this means that F(z)
decreases while k increases, then, if the sequence {p;} is complete,
the process converges to 2.

It can be shown that, under the described hypotheses, for each
z1€ H the sequence generated by the iterative process:

(2.2.3) Zhel = Zk + DK
(2.2.4) . = PlTid)

(Pk.BPK)
(2.2.5) rk:h-szzrk—l _ (XkBpk_l

satisfies the condition (rx,p;) =0, i.e. rx is orthogonal to p; for
i=1,2,...,.k-1 and zx— 2 which is the unique solution of Bz = h [10]. It
can be easily shown that ax is real. In fact, eq.(2.2.4) can be
deduced by substituting eq.(2.2.3) in eq.(2.2.1):

(2.2.6) F(zx+1) = (B(zx + axpy).(zk + axPK)) - 2((zk + oaxpx).h) =
= F(’"g) + 0Bz, Pk ) + 0x(Bpk,2k ) +
+ oy (BPk.Pk ) - 200(Pk. 1)

By means of property i) of operator B, the second and third term of
the last expression in (2.2.6) can be written as :




(2.2.7) Bz, Pk ) + 0k(BPk, 2k ) = 0Bz, Pk ) + ok({Pi, B2k ) =
= 20xRe{(pk, Bz )}

then eq. (2.2.6) becomes:
2
(2.2.8) Flzg+1) = Flzi) + 20xRe{(pk,Bzk)} + ay (BPk.Pk ) - 200(Pk.h) =

= F(zy) - 20xRe{{rk, pr)} + Oti (BPk.Pk )

This functional has to be minimized with respect to ax. To obtain
this, oy has to satisfy the following expression:

0
(2.2.9) — F(ZKk;1) =0
J0k

By developing this partial derivative, equation (2.2.4) is obtained.
A set of B-orthogonal vectors can be generated by the
Gram-Schimdt process, applied to any sequence of vectors. Given a

set of linear independent vectors ey, ... ,eN, the B-orthogonal set px
is given by:
(2.2.10) PL=e€1

o (€k+1,BPps)
Pk+1 = €k+1 sgll (s Bps)
In particular, in the Conjugate Gradient method, p; is chosen equal
to r;, which is the direction of the negative gradient of F(z). Then,
after moving in this direction to zg, the new negative gradient
direction rg = h - Bzg is considered and p2 is chosen in the space
spanned by rj, rg and B-orthogonal to p;. The following p; are

chosen in a quite similar way. In other words, the sequence of pj's

for k>0

is a B-orthogonalized version of the sequence of negative gradients
(ri,r2,...) generated as the descendant process progresses. The

compact recursive form of the method will be:

(2.2.11) Zy,1 = Zk + OkPk
(2.2.12) Pk+1 = Tk+1 - BxPk




(Px.Tk)

(2.2.13) O =
(Px.BpPk)
(2.2.14) P = DeLBPW
{(Px.BpPK)
with p; =1

Let us now re-arrange the above equations in a more useful form
for the computation.

1
It can be shown that (ri,1,.Bpx) = - . (rk+1.Tk+1); in fact, by
k

taking the above inner product and by using the eq. (2.2.5) we have:

Tk+1 - Tk

(2.2.15) (Tie1,BPi) = { T 1, - y=- (—j; (e 1e 1) - e 1,710

The last term is zero, as can be easily seen by remembering that
(rx+1,P) = 0 for i=1,2,....k; in fact:

(2.2.16) (Tk+1,P)= (Tk+1,Tk - Pr-1Pk-1) =
= (Tk+1,TR) - PBk-1 (Tk+1.Pk-1) = (Tke 1,7 = O
As a consequence, the equality (rx+1.Bpk) = -&L (Tk+1,Tk+1) iS
k

established and the iterative equations (2.2.12) - (2.2.14) can be
expressed as: “

‘ (T, Tk
(2.2.17) Pk+1 = Tigt 1 + _{TeT)
(Tk+1.Tk+1)
1
(2.2.18) o =————
{Px.BpK)
(2.2.19) B (T

(Tk+1.Tk+1)

In order to save on computations, let us normalize the search
directions px with respect to (rk,rx). The algorithm assumes the

following form:
- ) First step: initialize the residual and search vectors

(2.2.20) r1=h-Bz;




1

(T, TK)
(2.2.22)  py=Bory

(2.2.21) Bo

- ) Following steps: for k=1,...,.N

1
(2.2.23) O = (Bprpw)
(2.2.24) Zxy] = Zk + UkPk
(2.2.25) Tk+1 = Tk - akBpyg
(2.2.26) k= — 1
(Tk+1,Tk+1)
(2.2.27) Pk+1 = Tk+1 + BkPk

The algorithm stops when k=N or when

lirk 1l

2.2.28
( ) |l

< tolerance.

3.0 THE PROBLEM OF SCATTERING FROM A CONDUCTING PLATE.

The formulation of the plate scattering problem begins by
postulating that the total solution is given by the superimposition of
a known source function and a perturbation function. For a plate
illuminated by a plane wave, the total electric and magnetic field at
any point in space will be denoted by E{ and H;, respectively. The
source function is the incident electric or magnetic field which is
assumed to originate at an infinite distance from the scatterer. The
perturbation function is the scattered electric or magnetic field,
which will be denoted by Eg and Hg, respectively; the electric or
magnetic field radiates outward from the scatterer and must
approaches zero as the distance from the object become infinite. At
any point in space, the fields are postulated to satisfy the following
relations:

(3.0.1) Ei =Eg + Ej
(3.0.2) H; = Hg + Hj




In the case of a material plate, the total fields inside the plate are
directly related to the volume currents induced by the incident
radiation. For a better understanding, we will first study the case of
a perfectly conducting plate, which is simpler both from the
theoretical and the analytical point of view. Approach towards the
problem of a material plate can be cosidered simply as an extension
of the previous case.

Let us consider a plane sinusoidal wave which illuminates a thin
plate (i.e. the thickness 1 of the plate is negligible with respect to
the wavelength Ap inside the plate), oriented as in Fig.(3.1).

In the following, we will only refer to the electric field when
the magnetic field can be treated similarly. Let us assume that A,
and f, are the wavelength and the frequency of the incident
electromagnetic wave, respectively. The electrical incident field E;
can be expressed by means of its components:

(3.0.3) E; = (Eidx + Eyyly + Eii,) ek R)

where iy, iy, i, are the unit vectors of the x,y,z axes, respectively;
the components of the electrical incident field are:

(3.0.4) Eix = cos(oj) cos(6;) cos(9;) - sin{a) sin(j)
(3.0.5) Eiy = cos(ay cos(0y) sin(¢s) + sin(aj) cos(dy)
(3.0.6) Eiz = - cos(oy) sin(6y)

R is the position vector defined as R = xix + yiy +ziz; k; is the
propagation vector

(3.0.7) k; = - ko [sin(8y) (cos(¢y)ix + sin(¢piiy) + cos(0i)iz]
where kg = 21/, is the wavenumber.
The fundamental assumption in the scattering problem is that

the total field E¢ is:

(3.0.8) Ei=E; + Eg

10




where Egis the scattered field. If the plate is perfectly conducting,
then the tangential field is zero, i.e. Eg = - EiT.

The scattered field can be represented by a magnetic vector
potential Fyy and a scalar potential ® which satisfy the following
differential equations, in which K. is the surface current and ¢, the
permittivity of the free space:

(3.0.9) V2Fm + k. Fm = - Ke
(3.0.10) V20 + ko @ = - es
on the plate and

(3.0.11) V2Fp + ko Fi = 0
(3.0.12) V20 + k. @ =0

in the exterior regionl. The impulse response of these equations
yields Green's function G(IRI):

ek, IRI
4 iR |

(3.0.13) G(RIl)=

where IR! =Vx2 + y2+ z2. The vector and scalar potentials can be
obtained as a convolution between the impulse response of the free
space (Green's function) and the surface current and surface
charge, respectively:

(3.0.14) F = ”S,KC(R’) G(IR-R’l) ds’

1 7 ’ ’
(3.0.15) q>=8—0“5, pes(R) G(IR - R’1) ds

Ithe index "e" indicates the dependence on the electric field, while "m" indicates

dependence on the magnetic field.

11




By using the equation of continuity:

ko
3.0.16 VKe = -j
( ) e JZ()i-:o Pes

where Zo is the characteristic impedance of the free space and pes
is the charge density induced on the plate.

It can be shown that the scattered field can be expressed by means
of the only vector potential Fyy:

Zo
(3.0.17) ES—-—Jk [koFm + V(V- Fm)]

If condition E;r = 0 is verified, then each component of the incident

electric field can be expressed in terms of surface currents as
follows:

(3.0.18) Ex=j2 [ P-Ke (k i G) Key———----—-aZ Gst'
UL, X = Jk ) Jsb a 2 axay
(3.0.19) Ey=j22 | F—Kex i Key( +-'~G)]d
RN iy = J
ko Jd aay oy2

o

The problem, now, is how to solve these equations with the
unknowns Kex and Key . This problem has been successfully
approached by Sarkar et Al. [6,7] using the Conjugate Gradient
Method. The scattering problem discussed above requires the
solution of an equation, which can be written in the general form:

(3.0.20) Az =D

where z are the unknowns and A is a generic non-singular operator
defined on a Hilbert space and is such that A-1Az=z. The Conjugate
Gradient method is used to minimize a quadratic functional, but it
can be successfully applied to solve equation (3.0.20). In fact the
solution of (3.0.20) also minimizes the following quadratic
functional F(z):

12




(3.0.21) F(z) = (b-Az, b-Az)

which can be easily reconducted to the form of the functional
(2.2.1) by developing the inner product in (3.0.21):

(3.0.22) F(z) = (b,b) - (b,AzZ) - (Azb) + (Az,Az)
= (b,b) - 2 Re{(Az,b)} + (Az,AzZ) =

Note that the solution minimizing F(z) is independent of the
constant (b,b) and of the multiplicative factor 2; hence the solution
z = A-lb, minimizing the expression (3.0.20) also minimizes the
functional F(z) given by

(3.0.23) F(z) = (Az,Az) - 2Re{(Az,b)} = (A3Az,z) - 2Re{(z,A%b)}

Making the substitutions B = A2A and h = A2b, the eq. (3.0.23)
assumes the same form as expression (2.2.1)

4.0 THE DISCRETE APPROXIMATION OF THE CONTINUOUS PROBLEM.

In order to discretize the scattering problem, the surface of the
material plate has to be subdivided into rectangular cells, along
both the x and y directions with steps Ax = hx and Ay = hy,
respectively. In order to avoid certain types of errors when
computing FFT, it is worthwhile chosing square cells, such that the
length of the sides of each cell is Ax = Ay = h.

Any geometrical planar shape can be approximated by a square
cell grid; the decision whether some cells along the boundaries
belong to the approximated shape or not is taken according to
prestablished criteria. For example if the centroid of a boundary
cell falls into the perimeter of the original shape, the cell belongs
to the discrete shape or if the area of the cell covered by the
original shape is more than 50% of the total area of the cell, it
belongs to the discrete figure. Of course this information is coded
in oder to be stored in a computer. Binary coding can be used, e.g.
1 for cells belonging to the original shape and O for the others.

Some physical hypotheses must also be made if the formulation
is to be valid: each cell will have a constant thickness, permeability
and permittivity, i.e. the material distribution and characteristics

13




are constant over each cell. Note that this hypothesis allows
inhomogeneous plates to be considered, too; in fact characteristics
can be vary from cell to cell, and, in addition, step h can be made as
small as desired, compatibly with the computational effort required
by the algorithm.

Some examples of digital generation of plates are shown in
Fig. (4.1). Square NxN matrices have been considered, without any
consequence in digitizing the plate. The cell-centroid technique
has been used to decide on the boundaries. In Fig. (4.2) the binary
coded NxN matrix, referring to Fig.(4.1a), is depicted.

The direct and inverse two-dimensional Discrete Fourier
Transform pair (denoted by F and F-1 respectively) of a discrete
function z(x;, yj) is given by:

N N
(4.0.1) z(fa, fyn) = F 2xuyy) = 3, 2, z(x1,y9) e12“‘l
i=1 j=1
~ 1 N N_, In
(4.0.2) z(xyy) = F1 (2, fyn) =57 D, 2 2(fa, fyn) €32,

The next problem is to discretize the differential equations
(3.0.18) and (38.0.19). This can be achieved by using the finite
center differences, which are shown in the following table:

Continuous | Discrete Discrete Expression
Symbol Symbol
- 1
5_ dx iy [d1,0 - d-1,0l + Olhy)?
X
- 1
5‘3 dy 5hy [do.1 - do,11 + Olhy)?
2 1
_QE dxx =5 [d1,0 - 2do,0 + d.1,0] + Ohy)2
ox <
2 1
%5 dyy 7 [do - 2do,0 + ol + O(hy)?
y
2 1
_afia_y Sy | Zhghy1dia - din+dop - dieal + Olhihy)
<

Table 4.1: Finite differences

14




5.0 AN APPLICATION OF THE METHOD

The appropriate integral equations for the solution of the
scattering from a perfectly conducting plate are given by:

(5.0.1) 01Eix = [ [ (¥1Kex + WoKey) ds
(5.0.2) 0By = [ [, (¥2Kex + ¥3Key) ds’
where:
92
(5.0.3) ¥ = (kz + é—-;]G
‘ 92
(5.0.5) Y3 = (k + 5;,5)
ko[ &x)2 4 y-y)2
(5.0.6) _ oyt
4r \/ x-x)2 + (y-y)?
(5.0.7) Eix = [cos(ay) cos(0;) cos(dy) - sin(ay) sin(¢y)] e-ilkir)
(5.0.8) Ejy = [cos(ay) cos(8;) sin(¢y) - sin(a;) cos(¢y)] eilkir)
(5.0.9) kir = - ko sin(0;) [cos(¢g) x + sin(¢y) vl
(5.0.10) W] = ~j'zk‘z

The plate is divided into NxN square cells of side length h, over
which the surface current is assumed to be constant. A set of matrix
equations are imposed by satisfying the equations at the centroid of
each square cell. The matrix equation may be represented as:

G011 |5 8]k ]=e [52]

where A,B,C are NxN complex matrices and Kex, Key, Eix, Eiy are
NxN complex vectors.

Equation (5.0.11) has a simple physical interpretation. The left
hand side of (5.0.11) represents the scattered field, while the

15




second member is related to the incident field. It is found that each
row of the matrix equation stands for the position of the boundary
conditions at the centroid of the pertinent cell. In particular, the
term (m,n) in the coefficient matrix represents the x or y
component of the field radiated in the centroid of the n-th cell by a
unit surface current lying in the x or y direction at the centroid of
the m-th cell.

The matrix elements are computed by letting the row index
denotes the observation point or the unprimed coordinate and the
column index represents the source point or primed coordinate. It
can be shown that if simple midpoint integration is used, then, for
all points where the observation point is not equal to the source
point, the matrix elements are given by:

3 2 _31{0 m"an 2 1 . 1
Amn=h2[[2 ‘ko+ernJ(x ) +ko'( +Jko)rmn:| G(rmn)

Ton I'mn I'mn
(5.0.12)
3 2  3ko\/Xm - xn) - V)
B = h2 _2_.._ko+jr ) m nz(Ym Yn Glrmn)
mn
I'mn I'mn
(5.0.13)
3 2 3k, m - Yn\2 2 1 1
—_ w2l (=2 . Y A 4
Con=h l: [rz ko +] rmn] Tmn ) + Kk, (rmn +Jk0) rmn} Gl(rmn)
mn
(5.0.14)
where
-ik.r
(5.0.15) Glrpy) = £-omn
475rmn
(5.0.16) I'mn = V&m - X0)2 + (Ym - yn)2

When the observation point is also the source point, then the cell
integral must be performed analytically due to the singularity of
Green's function. These cell elements are usually called the
"self-cell" contributions. The two integrals computed for m=n have
the form:

16




h h
2 2
(5.0.16) I; = j j G(r,x) ds’
h h
)
h h
2 2
92 o
(5.0.16) 12=aX2 j jG(r,r)ds
h h
)

h h
> 2 1-ijkolr-r'l
1 - jKolr - ,
.0.17 =
(5.0 ) h 4r J -[ ir-rl ds
h h
)
h h "
o n2 2 2 K h? 4 2cos(¢)
! 1 1 2
= - i — ': -3 - d 3
J 47 4x j J Ir-1| ds J 4T +7c J -[ pdo
h h 0 0
2 7
T
4 /4
koh2 2 1 koh? h 1 + sin(¢)
=-] = o=-j—,— += —
4w 5 cos(9) P 1 - sin(¢)
koh?2
(5.0.18) =_j_9.__ +_1} [1 \/~_2'_‘_'__1_}
Ar V2 -1

Integral I2 is taken from Miron [11] and is given by

3
- 5 ko h2
0.1 Iy~ - Y2 4 3
( 9) 2= 7 s

This yields the self cell matrix elements:

3
h2
1 2 ‘]\/2+1 Vo K
(5.0.20) Amm=Cmm=‘7‘c“[hkoln r—2-1-h - g }

17




(5.0.2 1) an = O.
Note that the matrices are symmetric.
By using the finite differences scheme, shown in Table 4.1, the

conjugate gradient method is given as follows:

- ) First step: Initialize the residual and search vectors

(5.0.22) Yh = [hxl? + [[hy]l2
(5.0.23)  dx=AKy+BEK,
(5.0.24)  dy=BEK,+CK,
(5.0.25) ryy=hey - dyy
(5.0.26) dx=A'r,+B'1,
L1 L1
(5.0.27) dy=B'r;+C'r,
(5.0.28) Ya = lld«d[® + 1yl
-1
(5.0.29) Bo - 'Yd
1
(5.0.30) Pxy = Bo dx.y

-) Following steps: for k=1,...,N

(5.0.31)  dx=A"pr+B'p
(5.0.32)  dy=B'pr+C'py
(5.0.33) Yd = ldxlI2 + |Idyll
(5.0.34) o = Vg

(5.0.35)  Kxy =Kiy+oxpyy
(5.0.36)  Tay =Iny+ oxdyy
(5.0.37) =l IR+ IR




(5.0.38) dy = A* 131:” LB r;,{“
(5.0.39) dy = B* 131:” Lt r}1,:+1
(5.0.40) Ya = A2 + lidyli2
(5.0.41) Bic = 14

(5.0.42) Py = oy + Bdry

The algorithm stops when k=N or when

(5.0.42) z—; < tolerance

6.0 THE GENERAL CASE OF A MATERIAL PLATE

In the case of a material plate the permittivity € and the
permeability p of the material have to be considered in the
resolution equations; they are defined by:

(6.0.1) €=¢p&r
(6.0.2) H = Lo Hr

where both the relative permittivity and permeability & and ur are
complex quantities. The total internal fields may be expressed in
terms of electric and magnetic volume currents Je and Jm, as

- jZo

(6.0.3) = J
Bt = s Dk, €
-
(6.0.4) H=—— J
e - DkoZo ™

For a thin material of thickness 1, the volume currents are
proportional to the surface currents K. and Ky, such that at the
interior midpoint we have:

-JZo

(6.0.5) Et=m Ke =Zc Ke
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(6.0.6) H; = -] Kp = Y K
t (ur - 1)koZot mT om

where the electric impedance Z. and the magnetic admittance Yo,
are obviously defined by:

- JZo
(8r - l)koT

-]
(6.0.8) Y =
o (1r - DkoZot

(6.0.7) Ze =

and are often referred to as the resistivity and the conductivity of
the layer.

The scattered fields may be written in terms of the electric Fe
and the magnetic Fy, vector potentials as:

Z
(6.0.9) Es=-VxFe-jE2(VxVme-&j
0 T
1 K
(6-0.10) Hs=-VXFm—JZ—E— VxVXFe__m
o0 T

where Fe and Fp, satisfy the inhomogeneous vector Helmholtz
equations:

(6.0.11) V2 Fm+k§1«*m=-%
K

(6.0.12) V2 Fe + ko Fo = - -2
T

The vector potentials are then given by the convolution of the
currents with the impulse response of free space, such that:

(6.0.13) Frm = jL,Ke(R') G(IR - R’l) ds’

(6.0.14) Fe = ”S Km(R) G(IR -R’l) ds’
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Note that these integral equations have the form of convolution
integrals and they can be computed by means of some Fast Fourier
Transform algorithm.

Let us now recall that the Fourier Transform of the Green
function is given by:

2 +i' forf,zc +t§;< 1

(6.0.15)  Glfofy) =3 2
forfy +£,>1

It}z{+tf,l Y

The goal is to solve equations (6.0.9) and (6.0.10); it is then
necessary to calculate currents K¢ and K, by means of eq.
(6.0.11)+(6.0.14).

The hypothesis that the plate is electrically thin (i.e. T « Ap),
implies that the internal field components are assumed to have a

Z
H; are then found directly from eq. (6.0.9) and (6.0.10) and the
tangential components Ex, Ey, Hx, Hy can be found from eq. (6.0.9)
and (6.0.10) into which egs. (6.0.11) and (6.0.12) have been
substituted. The fundamental equations (3.0.1) and (3.0.2) can be
split as follows

)
constant variation such tha P 0. The normal components E, and

Z 2 02 02
(6.016) ZCKCX +j"1'{';)q [(ko'f'"a;)me"l"— Flny:l'l'— FCZ::EiX

| Zo[ 2 2y 18
| 2 3 Zo( 92 o2
(6.0.18) 8rZeKez-% Fex+a—x Feng (3@4— “é;z‘)szzElz
1 2 92 02
(6.0. 19) Ymex +] koZo (k0+ 3 2} Fex + axay Fey + 3 sz = HIX
1 [ 22 P
(6.0.20) Ymey +i 5" kOZO axay Fex + (k + 7 ay2 Fey ox Fmz = Hiy
3 2 1 (2 2
(6.().21) HerKInZ + % Frnx"'a')—( Frny'J '1{_02'; (axz ayz) Fez -le




where, of course, Fpx, Fmy. Fmz, Fex, Fey, Fez are the components of
Fm and Fe in the integral equations (6.0.13) and (6.0.14). At each
step of the conjugate gradient method, an FFT algorithm is applied
to the convolution integrals in order to calculate each component of
the current (i.e. Kex, Key, Kez, Kmx, Kmy, Kmz ).

Equation (6.0.16)-(6.0.21) can be rewritten in a more compact
form, by assuming that the electric currents and the incident
magnetic field are multiplied by Z, and the coordinates are divided
by Ao

(6.0.22) NetKex + CoL1Fmx + ColoFmy + LeFez = Exx
(6.0.23) NetKey + ColoFmx + CoL3Fmy - LsFez = Eyy
(6.0.24) NenKez - LeFex + LsFey - ColyFmz = Ey
(6.().27) nmnKmZ + LGFmX - L5me - COL4FCZ = le
where
) 2 o
6.0.28 Li=4 -
( ) 1=4nt+ o
02
6.0.29 = ——
( ) Lo o0y
02
(6.0.30) L3 = 4n2 + @
32 32
6.0.31 ="+
©.0.3)  Le=igeos
d
(6.0.32) = T
ox
d
(6.0.33) = T
oy
and
Z
(6.0.34) Met =7
o
Z
(6.0.35) Nen = €r_’e'

(o)
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(6.(3.36) T‘mt - YmZo

(6.‘).37) nmn_ = uerZo
1

6.0.38 =j—

{ ) Co=] o

Equations (6.0.22)-(6.027) can be discretized by the finite
differences shown in Table 4.1 and the complete FFT-Conjugate
Gradient Method can be applied.

7.0 CONCLUSIONS

The FFT-Conjugate Gradient Method seems to be very attractive
from a computational point of view, expecially compared with other
more traditional methods employed for solving scattering
problems. On the other side, it has a limit in digitizing the object
and truncating the functions, because of the errors which are
introduced by these type of processing.

The most interesting aspect, which is to be investigated, is the
extension to the three-dimensional surfaces, in particular to
surfaces with some discontinuities, as wedge. This argument will be
object of future study.
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FIGURE CAPTIONS

Fig. 3.1: The scattering plate.
Fig. 4.1: Some examples of discretized plates
Fig. 4.2: A coded digitized shape.

24




Hi

Ei

X

Fig. 3.1



MAIL IR D oo oannn
@l ¢|o ojeojoje|o|o|c|/o/ejoje/o/e/e|e|e|eje|ei® |0
66| 0|0 #leje|c|oje a|cje| o/o|ec|/e|e|le oje|e|oie ®ale
2| &0 ojs|lo|ojo oicje|o/cjeje|ejecle o]e|e|eeicie e
2| clo olojojoje v|o|ec|/eo/ ol ejojooielo/o0o|o|e|e
bj6|6/j6 0jc 0jojc|e|eo|o/ o/ ojoje|e|e|e elejeie ole|e|e
Gje|cjo ojojojo|c/ejo|ojo ojle|e/ec/e|e ejeje|o e ele e
| 60 0 clojejle ciojo|o/o/cje e el 0|ojeiesle elele
®lele|g oo ,0olc@o/c|o/cjo/ejecjoje ole elele|ele]|e
@l cj0o|0|j0j0|j0jo c|ec|cic|/ojo/o|e|e|e e|je|joi®oic|e(a]|e
90 00 0/cjojc|ecoje/ojo/e|lojle|ec|/e|e|jo][ejo/®e|e|e|e
®|8|® 0 0 ¢ 0jojeo 0|c|o| o/ 0/ elec|le|e|e ojle|/elje e &|e|e
/6 60 0o cj0o|jojo e oje|/ec/o/cje/e njejele/e|e o e
é|le olo olejojecle ojo|o|oc/ejcjoejeieleleoiole elele]le
/e o/ ¢ ejojo/cjc|e|oojojejo o000/ ejo e e|le e
ele/eo o 0o 0jcjoje/lo/ecjo|/o/o/o/e/e|e|e|e|je|/o|e e ele]e
®le &0 o eec|jee e el e el oo oeie ele/ele elele]e
e 0@ c|o|gjeo]e G¢|o|ec|e[ojc|@ o 0o e/oG® el 6l
8|0 0@ 0|0 @leojejejo|ojcjcjej0 o e|clele clele|o e |e
/1@ 00 000 c|j0|j0o|e|0/0/c|e|o o e|/e/e/eiec eio|e e|e
©10 0610 00000 0o o/o/o|s|oc|/e|lojeeiec e ele oo
6|6 6/e 0 6/6j0jo 0 0|00/ 0|c|e cle|le/eo|jo|/a]e ele|e|e
8| 00 6 eojoje o o o o o ejo eeiecielelo/eoe ee]e
®|® 6 @ o o @jecjepjc|o|c/cjcje e e e eloce o elel|e
¢leleleo ole ojcloec|o|c]o/e/ej0 oo ele/eeloe|elo o
e © 6 o 0 Glojc ele|oeje/e/e oe|eecle oo e e
60 0 0 ooioeleoe o ojoo|lo clec|lojo e e ole(e(e
06|60 0 o6 ecje o o olo/oelecle|ejoe|vie ®le|e 6

Fig. 4.1a



®
eisle

sjejeele

eleje lele|®|0®

elele |ele|o]ele] e

clejelele/e]ole o el e
elojejeje|®|0]e| o] ¢l e/c]e
e/ejele|e|®[o|c| e[ o o/e[e|e]e
clejojejeje |00/ o] ¢ 0/e|c|0/c]0]|0
elejejofe[@[0]c| o/ ¢ o[0|e|e[o[e]e]e]e
ooooooooo#ooooooooooo
OoocoooooMooOQOQQoooo_oo
Pe|e|e|e|C |0 6 66|00/ 0|6|o|o®(c|e 6w @
Glejlolejelec]e|ejejojejejejejo|ejeoje|ole|e
Gleje/®leje|oje € ¢ 6| ¢ ¢ | Gle|ol@le eleele
elojele|e/o/efo] d @ 6 ¢ elo|e[/o|elelele|o]e]e
eoleleje|e|o/e/e] d d @ o cje|c|e|jejejo|e|e
olo/o/e|e|e|o/e] d d ¢ 6 el 0| 0e|ej0|e
olele|@/e|e|6 @] § @ ¢ 6 ¢0|06l0]|e
eloleje|®|e|/oje| d @ o ¢ o ¢ &
ole|e|o|e|e|e/e] € d & ¢ o

olejeje|o/e/@ 0 ¢ ¢ ¢

NOOOMEORERL!

ole|e|e|®| 8| &

elejeje]|®

eloe

@

Fig. 4.1b



eleje |e|@|0]@
eleleleje €6 6|0 @6
olele|leleleje|o|jel0|ble|eje|e
clelojlelelc ole|a| el 0|0je|ele
elej@|oje|e|e|eje o|®|®|®|/€|0j0|C|6 6
olelele|loeleleje|le e|®|o|De|eje|o|®e[e
elele/ojeleje|elelelelo|®|®|C6[0]ej0|c|@/e0|0]0
eloje|o|Glejejeelejo|e |0 OO0 B[S [ET|E[®
I000000aCNLRLILIEIIMEILILILIL
elejele|lelejeleleje e elo|® |0 0|00 0G| 0|08
NI MAAMAMBMMAIMAMA LM MM
elele|eleolelo |lelelelelejo|e|e|eo|@ e|e|le|e|®ejeble|e
oleje|e[ojele jejojejejeje|o|@| 0|66/ 6|0|6|6i6|6|6|6 |6
elele|olele @le|oleelelele B 02| O E[O[C|S[6|6®
elelc|elele @lejejelelele|e |0 O O[O O|O(O[BE|6 B8
olele|e|e|o|e|ele|le(oje|ejc |00 Oe|cle|jo|ée|e| dé|e
elele|/e|eloleo jele|e|le]jeje e |0|e|e|e|e|e|e|oie/vje|je e
ejle|/eje|le|@]ecjo|e|eje|e o |®| ®|0|®|6j6|0|0 /0|08
eloe|lelelo|®lolele|oleole e |® ®|®|0|8|e|e|ej6|0 80
elele|le|o|e|e|o|e|ele|e|o|e|e|e|oje|e|e|o]e|e
¢clelole|®leoje|lelelele o |®| ®|®j/0|0|@|0|0|0|0 @
elcle|le|oje|lole|ejele o|e|Gle|ee|e|Ble|e
ele|le|ele|ejo|o|e|e|e|e@]ejejele]o|o]|e
clelojlelele|e[e e |@|0]/0|0|0|6|0 @
elelele ole|loje | @ 6 G e ele| e
elelojle|lele|®|0|Ble e
ole|le e |8 @@

Fig. 4.1c






