
Pervasive and Mobile Computing 86 (2022) 101689

I

e
c
t
r
n
p

i
T
e
f
i
m
a
f
b

Contents lists available at ScienceDirect

Pervasive andMobile Computing

journal homepage: www.elsevier.com/locate/pmc

FaaS executionmodels for edge applications
Claudio Cicconetti ∗, Marco Conti, Andrea Passarella
IT, National Research Council, Pisa, Italy

a r t i c l e i n f o

Article history:
Received 12 November 2021
Received in revised form 17 August 2022
Accepted 27 August 2022
Available online 3 September 2022

Dataset link: https://github.com/ccicconetti/
serverlessonedge

Keywords:
Edge computing
Serverless
Function-as-a-Service
Distributed computing
In-network intelligence

a b s t r a c t

In this paper, we address the problem of supporting stateful workflows following a
Function-as-a-Service (FaaS) model in edge networks. In particular we focus on the
problem of data transfer, which can be a performance bottleneck due to the limited
speed of communication links in some edge scenarios and we propose three different
schemes: a pure FaaS implementation, StateProp, i.e., propagation of the application
state throughout the entire chain of functions, and StateLocal, i.e., a solution where
the state is kept local to the workers that run functions and retrieved only as needed.
We then extend the proposed schemes to the more general case of applications
modeled as Directed Acyclic Graphs (DAGs), which cover a broad range of practical
applications, e.g., in the Internet of Things (IoT) area. Our contribution is validated via
a prototype implementation. Experiments in emulated conditions show that applying
the data locality principle reduces significantly the volume of network traffic required
and improves the end-to-end delay performance, especially with local caching on edge
nodes and low link speeds.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Computation offloading has been a trending topic in the networking and cloud computing areas for some time now: it
nvisions that mobile or resource-constrained devices offload part of their processing activities to external entities with
omputation capabilities willing to undertake the effort. A few years ago, the interest has then shifted towards the edge of
he network [1], as this enables latency-sensitive applications that cannot afford a trip to far-away data centers. However,
ecent cloud deployments already delocalize data centers so that they are closer to the users [2]: research activities should
ot rely only on a closer-is-better-for-latency motivation for edge computing, but rather look to the edge with a broader
erspective and find what it can realistically provide in specialized use cases and applications.
One such opportunity that is emerging is to employ at the edge a Function as a Service (FaaS) model [3]: the application

s decomposed into functions that are invoked individually or in a chain. FaaS is very well suited to many Internet of
hings (IoT) applications of practical interest for what concerns the programming model (functional event-based), an
fficient utilization of resources (both at device- and edge node-level) and the promises of high scalability. The latter stems
rom symbiosis with a serverless computing framework, where functions are invoked in containers that are orchestrated
n a highly flexible virtualization infrastructure [4]. Results have demonstrated that serverless is more suitable than a
icroservice architecture for unpredictable requests accompanied by a large size of the response, due to the scaling
gility [5]. Serverless/FaaS are major trends in cloud computing [6], thus edge deployments/applications could benefit
rom the ample availability of industry-grade commercial and open source solutions [7], even though some advances
eyond the state of the art are required to make a good use of resources in this different environment [8].

∗ Corresponding author.
E-mail addresses: c.cicconetti@iit.cnr.it (C. Cicconetti), m.conti@iit.cnr.it (M. Conti), a.passarella@iit.cnr.it (A. Passarella).
https://doi.org/10.1016/j.pmcj.2022.101689
1574-1192/© 2022 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.pmcj.2022.101689
http://www.elsevier.com/locate/pmc
http://www.elsevier.com/locate/pmc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.pmcj.2022.101689&domain=pdf
https://github.com/ccicconetti/serverlessonedge
https://github.com/ccicconetti/serverlessonedge
https://github.com/ccicconetti/serverlessonedge
https://github.com/ccicconetti/serverlessonedge
https://github.com/ccicconetti/serverlessonedge
https://github.com/ccicconetti/serverlessonedge
https://github.com/ccicconetti/serverlessonedge
https://github.com/ccicconetti/serverlessonedge
https://github.com/ccicconetti/serverlessonedge
https://github.com/ccicconetti/serverlessonedge
https://github.com/ccicconetti/serverlessonedge
https://github.com/ccicconetti/serverlessonedge
https://github.com/ccicconetti/serverlessonedge
https://github.com/ccicconetti/serverlessonedge
https://github.com/ccicconetti/serverlessonedge
https://github.com/ccicconetti/serverlessonedge
https://github.com/ccicconetti/serverlessonedge
https://github.com/ccicconetti/serverlessonedge
https://github.com/ccicconetti/serverlessonedge
https://github.com/ccicconetti/serverlessonedge
https://github.com/ccicconetti/serverlessonedge
https://github.com/ccicconetti/serverlessonedge
https://github.com/ccicconetti/serverlessonedge
https://github.com/ccicconetti/serverlessonedge
https://github.com/ccicconetti/serverlessonedge
https://github.com/ccicconetti/serverlessonedge
https://github.com/ccicconetti/serverlessonedge
https://github.com/ccicconetti/serverlessonedge
https://github.com/ccicconetti/serverlessonedge
https://github.com/ccicconetti/serverlessonedge
https://github.com/ccicconetti/serverlessonedge
https://github.com/ccicconetti/serverlessonedge
https://github.com/ccicconetti/serverlessonedge
https://github.com/ccicconetti/serverlessonedge
https://github.com/ccicconetti/serverlessonedge
https://github.com/ccicconetti/serverlessonedge
https://github.com/ccicconetti/serverlessonedge
https://github.com/ccicconetti/serverlessonedge
https://github.com/ccicconetti/serverlessonedge
https://github.com/ccicconetti/serverlessonedge
https://github.com/ccicconetti/serverlessonedge
https://github.com/ccicconetti/serverlessonedge
https://github.com/ccicconetti/serverlessonedge
https://github.com/ccicconetti/serverlessonedge
https://github.com/ccicconetti/serverlessonedge
https://github.com/ccicconetti/serverlessonedge
https://github.com/ccicconetti/serverlessonedge
mailto:c.cicconetti@iit.cnr.it
mailto:m.conti@iit.cnr.it
mailto:a.passarella@iit.cnr.it
https://doi.org/10.1016/j.pmcj.2022.101689

C. Cicconetti, M. Conti and A. Passarella Pervasive and Mobile Computing 86 (2022) 101689

h
b
t

Fig. 1. Archetypal smart city application for audio–video analytics in the MARVEL project.

In particular, serverless relies on the implicit assumption that the container location is irrelevant to performance, which
as led to a stateless FaaS paradigm: applications that have a state rely on external services offered (and billed separately)
y the cloud provider [9]. In [10] the authors have analyzed open-source and proprietary datasets and they have found
hat only 12% of the serverless applications in production are truly stateless, whereas the others rely on managed services
such as storage (61%) and databases (48%). In the cloud, this may lead to a slightly sub-optimal utilization of the resources,
e.g., due to the inability to keep hot content in caches [11], but at the edge the impact becomes much more ominous:
here the cost of transferring data between function executors and external services is, in general, much higher than in a
data center, hence the network may easily become a limiting factor [12]. Furthermore, one of the most appealing features
of FaaS is the opportunity for the service provider to compose applications as complex workflows of invocations, so that
the output of a function is not returned immediately to the user but delivered to one (or more) successors for further
processing. This exacerbates the above implications of location dependency, which become crucial when migrating from
a microservice to a serverless architecture [13].

In this paper, we address the problem of data transfer (including both arguments/return values and the application
state) within a workflow of stateful functions, motivated by a practical use case illustrated in Section 2. Then, after
reviewing the state of the art (Section 3), we summarize in Section 4 the findings in our previous work [14], where we have
proposed three fully decentralized execution models for applications that can be modeled as chains of functions: PureFaaS,
StateProp, and StateLocal. The execution models are extended to the more general case of applications modeled as DAGs in
Section 5. As we will see later, PureFaaS, which is closest to state-of-the-art serverless platforms, is surpassed by StateProp
and StateLocal, which achieve reduced traffic and smaller delays. However, they incur the cost of a slightly higher system
complexity, because they require the ability to embed the application’s state as function arguments (StateProp) or keep
the state at edge nodes (StateLocal), in addition to a more profound knowledge of the application workflow (DAG of
function invocations and state dependencies). We have implemented a prototype of the proposed solutions, which we
use to compare their performance in emulated network experiments (Section 6). We draw the conclusions in Section 7.

2. Motivation

In this section we describe a motivating example, inspired from the activity ongoing in the H2020 MARVEL collabo-
rative R&D project,1 co-funded by the European Commission, in which we participate. The project defines a framework
for real-time analytics in smart cities, addressing several applications of high impact to citizens validated in two pilots,
municipality of Trento and public streets in Malta: automated detection of anomalous traffic conditions, monitoring of
crowded areas, protection of vulnerable users (pedestrians, cyclists) in street junctions, emotion recognition in public
events, and many others.

All the applications have the same general structure illustrated in Fig. 1: starting from the acquisition of data from
sensors, first there is an anonymization phase to remove personal data, then the relevant features are extracted and
used to trigger a Machine Learning (ML)-driven decision-making process. Despite its potential benefits, vanilla serverless
computing cannot be adopted here for two reasons. First, a stateless execution is not sufficient: (some of) the components
require read/write access to a per-application state, e.g., with video streams to cross-correlate the current frame with
previous ones in a window. Second, FaaS platforms support chain of functions but our applications have multiple sources
per application (cameras + microphones), which requires the workflow to be designed as a DAG for synchronization and
fusion purposes.

In this paper we address both these aspects: in Section 4 we discuss the possible options on where to maintain the
application’s state, summarized in Fig. 2, while the support of DAGs is illustrated in Section 5. In Section 6 we evaluate
our proposed system with a prototype implementation in a mininet testbed, which also used for the motivating example
in this section..

1 https://www.marvel-project.eu/, last accessed Aug 12, 2022
2

https://www.marvel-project.eu/

C. Cicconetti, M. Conti and A. Passarella Pervasive and Mobile Computing 86 (2022) 101689

a
a

f

3

a
w
o
t
e

i
a

Fig. 2. Architecture options on where to keep the application’s state: option 1: the state remains in the client, which embeds it in the function
rguments and return value so that the execution remain stateless; option 2: the state is kept by the edge nodes; option 3: the state is handled by
cloud service, which is the default today.

Fig. 3. Average delay of the workflow in Fig. 1 with the three options in Fig. 2. The edge links have 1 Gb/s bandwidth with 1 ms latency, whereas
the cloud node is connected through a 10 Mb/s link with 20 ms latency. The full details on the methodology and tools used are in Section 6.

In Fig. 3 we show the average delay of the workflow when increasing the state size of the feature extraction video
function from 1 kB to 1 MB; the state of the corresponding function for audio is 1/10 of the latter, those of the other
functions 1/100. The state sizes used here are arbitrary but representative of real use cases. As can be seen, when the
state is kept in the cloud the average delay is always higher than that in the other cases, and it grows significantly as the
state size increases. On the other hand, there is no noticeable increase when the state is maintained at the edge or in the
client, with the latter exhibiting the smallest delay (though at the cost of higher network traffic, not shown).

The results found in this motivating example show that the performance of data-intensive applications made of DAG
stateful functions, such as real-time smart city analytics, significantly depends on where the state is kept, which is the
subject of this work. It is worth mentioning that these applications are not a special case. For instance, also robotic
applications are typically designed using a DAG model [15] and, in general, we have analyzed the traces of real-life cloud
applications collected from a production system in an Alibaba data center2 and we have found that a non-negligible
raction of applications consist of DAGs: 21.7%, with single tasks being 28.6% and chains 49.7%.

. Related work

Serverless platforms in the cloud hinge on the underlying container orchestration systems, which handle autoscaling
nd are responsible for consistent performance. However, these orchestration tools are inefficient when used at the edge,
here devices are heterogeneous and clustered, which causes sub-optimal performance [16]. For a comprehensive review
n all the aspects of resource management in serverless systems we refer the interested reader to the survey in [17]. In
he following, we focus on some works that are especially relevant to our contribution, that is the definition of suitable
xecution models to handle chain/DAG composition of stateful functions in serverless edge networks.
At the edge, the problem of data locality has been introduced neatly in [12], where the authors have proposed to

nfluence resource scheduling in Kubernetes (K8s) by adjusting its internal weights based on metadata specified by the
pplication developers. The more abstract problem of directly allocating functions to edge nodes for complex applications

2 https://github.com/alibaba/clusterdata/blob/master/cluster-trace-v2018/trace_2018.md, last accessed Aug 12, 2022.
3

https://github.com/alibaba/clusterdata/blob/master/cluster-trace-v2018/trace_2018.md

C. Cicconetti, M. Conti and A. Passarella Pervasive and Mobile Computing 86 (2022) 101689
consisting of multiple inter-related functions has been studied in [18] with a mathematical formulation, which takes into
account different categories of cost (i.e., activation, placement, proximity, sharing). The problem has been also studied
in the context of Mobile Edge Computing (MEC) with DAG-modeled applications in [19], where the authors sought the
goal of meeting as many application request deadlines as possible using an online algorithm approximating an NP-hard
scheduling problem. Finally, in [20] the authors have proposed SEND, an in-network storage management system realized
through edge-deployed data repositories, which places intelligently raw and processed data based on locality or popularity
criteria.
Key difference: Our work is complementary to the above studies because we do not address the allocation of containers/tasks
to edge nodes, but rather propose solutions to manage the applications’ state in FaaS under a given allocation.

Supporting stateful applications is one of the key research challenges identified in the position paper [4] for serverless
computing in the cloud. A datastore for edge computing with consistent replicas has been also proposed in [21],
which reconciles only the data that are relevant to a given session for performance reasons. In [22] the authors have
proposed HydroCache, a distributed data caching system with multi-site causal consistency, which can be used as state
management for serverless DAG functions and has been shown to outperform uncached platforms in the cloud. Fault
tolerant function execution, with embedded garbage collection, has been addressed by the authors in [23] and found
to be both effective and affordable on AWS Lambda. Finally, Boki [24] has been proposed as a serverless platform that
enables stateful applications via shared logs, which have ordering, consistency and fault tolerance properties.
Key difference: Currently stateful FaaS in edge networks is largely unexplored, which is a motivation for our work to
explore different approaches for argument and state distribution with chains and DAGs of function invocations. In a practical
deployment, sophisticated state management systems can be used in combination with the execution models that we propose
in this work.

The need for efficient serverless platforms that can scale down to small edge devices is illustrated in [25], which
proposes to integrate a computation model based on the actor pattern with content-based networking. To address also
microcontrollers, the authors have used a pub-sub messaging system underneath. A similar approach has been followed
in [26], which presents Faasm, where user-space isolation abstraction is provided via the use of the WebAssembly run-time
environment and applications can share state using a hierarchical Key-Value Store (KVS).
Key difference: The actor model has interesting similarities with serverless. As a matter of fact, the integration of WebAssembly
platforms using the actor pattern with FaaS platforms is under way (e.g., wasmcloud3 and OpenFaaS4). We believe our work
makes a valid contribution across both domains, as we propose different execution models for stateful execution of chain/DAG
workflows, which can be combined or tailored to the specific needs of the scenario and applications.

Some recent works have focused on the specific issue of resource management for DAG workflows in serverless
platforms. In [27] the authors have identified a set of techniques to make DAG schedulers aware of the serverless platform
they are running on, tested on AWS Lambda. The opposite approach has been followed in [28], where the authors have
defined an orchestration framework to match the application performance requirements via appropriate provisioning of
containers in a K8s cluster.
Key difference: These works contribute to the motivation of our research activity, as they deal with applications that can
be modeled with DAGs, which however remains complementary: we focus on different schemes to pass on the arguments and
states of the application, which is a different (though possibly related) problem to container resource management.

Finally, we mention that practical applications might also require mechanisms for the realization of patterns beyond
the execution of stateful DAGs. Microsoft’s commercial serverless platform, Azure Durable Functions (ADFs), also allows
to define critical sections for the atomic execution of some functions in a workflow [29], whereas explicit parallelization
of function execution has been investigated in [30].
Key difference: We recognize that some applications have specific needs that cannot be addressed efficiently by a single
solution. In this work we have focused on chain and DAG workflows, which are very common and already cover a broad range
of applications of practical interest, and we leave for future work further specializations, including critical sections and explicit
parallelism.

4. Stateful function chains

In this section we introduce the system model and notation used in the paper and we summarize the findings in [14],
which tackled the execution of chains of functions on serverless platforms deployed at the edge, which are extended to
the more general case of DAG-modeled applications in the next section. We conclude the section with considerations
about confidentiality in Section 4.1.

The system model is illustrated with the help of the example in Fig. 4. In the figure we have four edge nodes indicated
as ni, each hosting a serverless platform that can execute lambda functions of one or more types, indicated as λi, via a
pool of workers. For instance, n1 can execute lambda functions λ1 and λ4 but not λ2 and λ3.

Let us now consider the example user application depicted in Fig. 5: the client needs the input to be provided to λ1,
which also requires (and possibly modifies) the application state SA, whose output out1 needs to be provided to λ2, also

3 https://wasmcloud.dev/, last accessed Aug 12, 2022
4 https://www.openfaas.com/, last accessed Aug 12, 2022
4

https://wasmcloud.dev/
https://www.openfaas.com/

C. Cicconetti, M. Conti and A. Passarella Pervasive and Mobile Computing 86 (2022) 101689

i
c
v
b

i
d
m

Fig. 4. System model.

Fig. 5. Example chain application.

Fig. 6. PureFaaS execution diagram of the application in Fig. 5 at the edge in Fig. 4.

requiring access to SB, which feeds λ3 and so on, until the final output out4 is returned to the client. The target application
is colored in yellow and represented running on the client device, also showing its two states SA and SB. In the cloud,
stateful functions are realized by means of stateless functions that access external services, such as in-memory databases
or storage services. However, this approach is not efficient at the edge, as shown in Section 2. Our alternatives are to keep
the state in the client vs. in the edge nodes. In [14] we have explored three different approaches, which are summarized
below: PureFaaS and StateProp (the state remains in the client) and StateLocal (the state is kept by the edge nodes). In
the following we assume that the allocation of functions to nodes is: [λ1, λ2, λ3, λ4] → [n1, n4, n2, n1].

With PureFaaS, the functions in the chain are executed one after another, and the required state of each function
s transferred back and forth with every invocation, as illustrated in Fig. 6. This strategy can be easily realized on
ommercial/open source serverless platforms provided that: (i) the signature of the function (both arguments and return
alue) supports the client embedding the required state5; (ii) the client is aware a priori of the state that will be needed
y every next function invoked.
StateProp is similar but it makes use of the chaining capability made available by most serverless platforms. As shown

n Fig. 7, the client embeds the full state of the application into the function arguments and return values: a function that
oes not use the embedded state will simply let it pass through, while the others will embed as function arguments the
odified state received, which will eventually be returned to the client.

5 Commercial platforms may limit the amount of data that can be embedded into function invocations [31]: for instance, with AWS this limit is
a mere 32 KB, whereas with IBM it is 5 MB, but the overhead has been shown to increase non-linearly with the arguments’ size.

Only with Microsoft’s ADFs it seems there is no theoretical limit, but a compression mechanism is triggered automatically above 60 KB.
5

C. Cicconetti, M. Conti and A. Passarella Pervasive and Mobile Computing 86 (2022) 101689

f
t
T
a

4

a
o
c
a
s
t
s
t

5

D
s

5

p
g
o
o
i
e

Fig. 7. StateProp execution diagram of the application in Fig. 5 at the edge in Fig. 4.

Fig. 8. StateLocal execution diagram of the application in Fig. 5 at the edge in Fig. 4.

Finally, StateLocal keeps the state in the edge nodes as illustrated in Fig. 8: rather than embedding the state in the
unction invocations, only pointers are passed. When a lambda function needs a state, it retrieves it via the pointer, and
hen it becomes its new owner, thus modifying the state’s pointer in the subsequent function invocation along the chain.
his way, the client will be eventually returned the list of updated pointers to all its states, to use them in subsequent
pplication executions or to withdraw the states from the edge nodes, if ever needed.

.1. Disclosure of proprietary information

Function composition in any serverless platform introduces the risk of disclosing proprietary information about the
pplication’s logic to the platform provider: even though the implementation of a single function can remain private, as
nly the end-points are needed for the sake of function invocation, some information about the algorithms being executed
ould be deduced by the way the functions are chained and their usage patterns. This risk becomes even greater with DAG
pplications made of elementary building blocks, as their richer expressivity could offer further insights about the overall
ervice logic. While we recognize that there can be use cases where disclosing this minimal amount of information to a
hird party (and potentially a competitor) may not be deemed acceptable, we believe such a risk cannot be considered a
how-stopper in the majority of practical scenarios. Therefore, we defer the investigation of the issue to future works in
his area.

. Extension to DAGs

In this section we extend the execution models in Section 4 to applications that can be modeled as DAGs. We introduce
AG-specific notation in Section 5.1, then address the extension of the stateful execution models in the previous section
eparately for PureFaaS (Section 5.2) and StateProp/StateLocal (Section 5.3).

.1. State consistency

An application modeled as a DAG consists of a set of tasks (we use the terms tasks and functions interchangeably) with
recedences: an edge λi → λj exists if task λi must be executed before task λj. The set of precedences define a directed
raph, called task dependency graph, which cannot contain cycles by definition (recall the ‘A’ in DAG stands for Acyclic),
therwise the execution would never end. Dependencies can be of the input/output type, i.e., λi → λj means that the
utput of task λi is needed by task λj, or a means of synchronization like in a message-passing system, the distinction
s irrelevant to our purposes. To keep the notation consistent with Section 4, we indicate with outi the output of task i,
ven though we note that in a DAG there could be multiple, possibly different, outputs for each task. Support of different
6

C. Cicconetti, M. Conti and A. Passarella Pervasive and Mobile Computing 86 (2022) 101689

t
a

(
u
g
a

n
t
g

i

t
o
K
b
a

Fig. 9. Task-state dependency graph of an example application.

Fig. 10. Virtual links added between tasks λ2 and λ3 , both depending on state S.

ask outputs is a mere implementation detail, which does not affect the contribution illustrated in this section, except for
trivial generalization of the derivations.
In our work we address workflows make of stateful functions, thus any task may also depend on some states. As in [14]

summarized in Section 4), we capture the stateful nature of functions via the state dependency graph, which is an
ndirected graph where edge λi → Sx means that the task λj needs to access state Sx. The union of the task dependency
raph and the state dependency graph produces the task-state dependency graph; an example is illustrated in Fig. 9 for
n application made of four tasks, two of which (λ2 and λ3) use state S.
It can happen, like in the example in Fig. 9, that multiple tasks need to operate on the same state during a single

execution of the application. Depending on the internal logic of the application, it can happen that: (i) the order of
execution does not matter; (ii) λ2 must be executed before λ3; (iii)λ3 must be executed before λ2. The serverless platform
eeds to know from the application the temporal order of execution of tasks that depend on a shared state to maintain
he causal consistency of the states. We then capture such temporal order by augmenting the task-state dependency
raph as follows: a virtual edge λi → λj, represented as a dashed line in the figures below, is added if λi and λj both use

the same state and λi must be executed before λj to guarantee causal consistency of the shared state. In the previous
example, this means adding an edge λ2 → λ3 if λ2 has to be executed first (case ‘a’ in the figure) vs. λ3 → λ2 if λ3
has to be executed first (case ‘b’ in the figure). In this section we assign a superscript to states shared by multiple tasks
to express the temporal dependency order: in Fig. 10 S1 must be accessed first, S2 second.

The addition of the virtual edges affects the parallelism that can be achieved: without state dependencies the DAG
n Fig. 9 can executed as {λ1, λ2|λ3, λ4 (where | means that the two tasks can be executed in parallel), but with that in
Fig. 10 this is not possible. Furthermore, in order for the augmented task-state dependency graph to remain well-formed,
no cycles must exist, also including the virtual edges, i.e., the state-induced temporal order dependencies. Let us consider
for instance the application in Fig. 11. The virtual edge λ4 → λ2 would be needed, however this would create the cycle
λ2 → λ3 → λ4, which in turn leads to a deadlock: λ4 cannot be executed until it receives the output of λ3, which in turn
cannot run until it receives the output of λ2, which cannot access state S before the execution of λ4 is complete. Since
his kind of situations can be detected by the application, and they reflect a logic design issue, we assume hereafter that
ur applications of interest are only those with an acyclic augmented task-state dependency graph.
ey point: With stateful DAG applications, the causal consistency of the execution must be guaranteed. We propose to do so
y defining, for each state, the order in which the tasks depending on it will be executed, as reflected by virtual edges in the
ugmented task-state dependency graph.
7

C. Cicconetti, M. Conti and A. Passarella Pervasive and Mobile Computing 86 (2022) 101689
Fig. 11. Causal consistency induces a cycle in the augmented task-state dependency graph.

Fig. 12. Augmented task-state dependency graph of an example application used to illustrate the extension of the execution models proposed in
Section 4 to the case of DAG.

Fig. 13. Execution of the example DAG application in Fig. 12 with PureFaaS.

5.2. Pure Faas

The extension of PureFaaS approach is straightforward. At each step, there is a set of callable functions, which are all
those whose task-state dependencies are verified. The client can call them in parallel or in sequence (order is arbitrary)
depending on its internal logic and capabilities.

To better illustrate our point, we make use of the example application in Fig. 12. The sequence diagram with PureFaaS
is shown in Fig. 13, where we assume for better readability that function λ is always executed on edge node i. Moreover,
i

8

C. Cicconetti, M. Conti and A. Passarella Pervasive and Mobile Computing 86 (2022) 101689

w

a
a

i

t
i
m
c
t
s

λ
m
t
a
r
t
m
s
S

Fig. 14. Example of execution of λ4 with yield in the application in Fig. 9.

ith a slight overload of notation, with S i we not only indicate the temporal order dependency of the state S in the
augmented task-state dependency graph (as defined in Section 5.1), but we also refer to its subsequent modifications: S0
is the initial state before the workflow invocation, S1 its modified version after the execution of λ4 (which connects to S1
in the graph), and so on until the final version S3 of the state at the end of the workflow. As can be seen, the tasks λ2
and λ4 are executed in parallel, but the client has to wait for the slowest of the two (in the example: λ4) before it can
continue: this waiting time is represented in the diagram with a black rectangle. Apart from the opportunity to parallelize
some tasks, there is no other change with respect to PureFaaS when used with chains of functions invocations.
Key point: PureFaaS remains the same with chains and DAGs.

5.3. StateProp/StateLocal

On the other hand, StateProp and StateLocal cannot be used with DAG applications without modifications like PureFaaS.
There are different reasons for this, which we will explain hereafter. Briefly, we recall that StateProp/StateLocal both rely
on the worker invoking the next function as the current one is complete; they differ on the way they manage the state:
StateProp carries it along the function invocation chain, whereas StateLocal keeps it within the edge node that last used
it.

First, it can happen that a task has more than one input, e.g., λ4 in Fig. 9: in this case, both λ2 and λ3 want to execute λ4
t the end of their respective tasks, so the whole notion of ‘‘every function executes the next one’’ is not as well-defined
s with a chain of functions. We address this point by introducing the concept of asynchronous calls: when a function

terminates, it always invokes the next function(s), i.e., its direct descendants according to the DAG, but this only triggers
the execution of a task if all its inputs are available. If this is not the case, then the output of the predecessor is stored
temporarily on the edge node and the function yields (the term is borrowed from asynchronous programming models and
languages). A graphical illustration of the yield operation can be found in Fig. 14. Supporting this pattern increases the
complexity of the serverless platform on the edge nodes, which have to maintain an ephemeral state for each incomplete
operation. Such asynchronous calls, by themselves, do not solve the problem: in the example in Fig. 14 we have assumed
that λ2 and λ3 both invoke λ4 on the same edge node n4, but in general this is not a piece of information that they have:
the serverless platform treats every function call independently from others, which can result into the execution of the
same function on different edge nodes. So, for instance, λ2 may invoke λ4 on edge node nx (x ̸= 4), which would result
n a deadlock, since both the instances of λ4 on nx and n4 will yield forever waiting for an input that will never come.

To support StateProp/StateLocal it is necessary that the mapping between functions and edge nodes is known to all
he workers at least during a single execution of a DAG application. This way, we can make sure that all the workers will
nvoke the execution of descendants on the same edge nodes (i.e., n4 from both λ2 and λ3 in the previous example). The
ain practical consequences are two: (i) the information on the mapping between functions and edge nodes has to be
arried along the execution DAG, which slightly increases the protocol overhead; (ii) there must be a process that is able
o ‘‘resolve’’ all the functions at the time the DAG is invoked (e.g., this can be done by the client), which can increase the
tart-up latency.
Frustratingly, all this is not sufficient to support StateProp/StateLocal. Consider again the trivial example in Fig. 9: both

2 and λ3 depend on the same state S. Irrespective of the relative order, it will be necessary to transfer the updated state,
odified by the first one to be executed (e.g., λ2), to the other one (e.g., λ3). But there is no invocation path between

he two, i.e., λ3 is not a descendant of λ2 in the DAG, which makes it impossible to rely on the propagation of the state
lone. Therefore, we propose a second modification: rather than embedding the state in the function arguments (or their
eferences, for StateLocal), every function accessing a state will send it directly to the next worker that will use it, according
o the state dependency graph and causal consistency constraints, both already known. Thus, the workers of a function
ust be ready to not only receive asynchronous calls, and temporarily store their arguments, but to also store updates
tates, also arriving asynchronously. We note that these modifications are not required with PureFaaS, as illustrated in

ection 5.2 above, because the client provides implicit synchronization with that model.

9

C. Cicconetti, M. Conti and A. Passarella Pervasive and Mobile Computing 86 (2022) 101689
Fig. 15. Sequence diagram of the execution of the example DAG application in Fig. 12 with StateProp/StateLocal.

Table 1
Traffic exchanged for the different policies (Chain results are from [14]).
Chain/DAG Policy Traffic exchanged

Both Pure FaaS =
∑N

i=0 outi +
∑N−1

i=1 outi + 2
∑M

j=1 deg(Sj)Sj
Chain StateProp =

∑N
i=0 outi + (N + 1)

∑M
j=1 Sj

Chain StateLocal ≤
∑N

i=0 outi +
∑M

j=1 deg(Sj)Sj
DAG StateProp =

∑N
i=0 deg

+(λi)outi +
∑M

j=1

(
1 + deg(Sj)

)
Sj

DAG StateLocal ≤
∑N

i=0 deg
+(λi)outi +

∑M
j=1

(
1 + deg(Sj)

)
Sj

In Fig. 15 we illustrate the sequence diagram with the application in Fig. 12 of StateProp/StateLocal, the only difference
between the two being that with StateLocal the state has to be retrieved from the last owner (unless the worker executes
on the same edge node). The amount of data transmitted with StateProp then becomes:

DDAG
sp =

N∑
i=0

deg+(λi)outi +
M∑
j=1

(
1 + deg(Sj)

)
Sj, (1)

where deg+(λi) is the out-degree of vertex λi, i.e., the number of its direct descendants. For StateLocal, DDAG
sp is an upper

bound.
Key point: StateProp and StateLocal can support DAG applications, but the following major modifications are needed: workers
must support asynchronous function calls, the binding between functions and edge nodes must be known to all workers during
a single DAG execution, and the states cannot be propagated along with the arguments. Collectively, these changes increase
the complexity of the software to be run on edge nodes and the protocol overhead, as well as exacerbate possible concerns on
disclosing proprietary information (see Section 4.1).

Table 1 summarizes the amount of traffic exchanged with all the schemes.

6. Performance evaluation

In this section we illustrate the prototype we have realized of PureFaaS, StateProp, and StateLocal (Section 6.1) and we
report the results obtained in an emulated network (Section 6.2), which complement the simulations experiments in [14].
10

C. Cicconetti, M. Conti and A. Passarella Pervasive and Mobile Computing 86 (2022) 101689

i
s
p
a
c
c

i
i
m
f
c
r
d
e
o
m
S

H
t
i
i
i

r
b
i
t
c
r

Fig. 16. Scenario used for the validation with ServerlessOnEdge.

6.1. Implementation

We have implemented the execution models in ServerlessOnEdge, which is a decentralized framework to dispatch
stateless FaaS functions at the edge, developed and maintained within our research group. The software is open source
with a permissive MIT license and publicly available on GitHub6 [32]. In ServerlessOnEdge the clients request the
nvocation of functions via e-routers, which play the role of intermediary with the serverless platforms by forwarding
tateless requests to one of many destinations available depending on the load and network conditions. For the
urpose of evaluating the performance of protocols and algorithms in controlled and repeatable conditions, we have
lso implemented so-called e-computers, which emulate serverless platforms with a given configuration, in terms of
omputation speed, memory, number of containers, etc. ServerlessOnEdge uses Google’s gRPC7 for communication among
lients, e-routers, and e-computers.
PureFaaS was implemented as follows: (i) the client embeds the required states within the arguments at each function

nvocation; (ii) the e-computers return the embedded states as part of the function return value; (ii) multiple functions are
nvoked if the precedences are met (only in a DAG). On the other hand, implementing StateProp and StateLocal required
ore structural upgrades. We start with StateProp, which requires any intermediate e-computer to invoke the next

unction(s) in the chain/DAG and pass on all the application’s states. First, we have implemented asynchronous function
alls: they return immediately an empty acknowledgment, while the real output is provided to the client as an unsolicited
esponse-only message by the last e-computer in the chain. Furthermore, an e-computer in our system does not know the
estination of the next function in the chain: to solve this problem, we have installed on every e-computer a companion
-router that is used to dispatch the function calls generated by its e-computer as part of the function chain execution. To
btain consistent performance of StateProp for both chains and DAGs, we have implemented the same state propagation
echanism, even though this means that not all possible combinations of DAG and state dependencies are supported, see
ection 5.3 (all those in the experiments are feasible).
An example of invocation of the two-function chain {λ1, λ4} is shown in Fig. 16 in a network with 5 edge nodes (from

ost 1 to Host 5), while the client application is on Host 0. As can be seen, the e-router on Host 0 is used by the client for
he invocation of the first function in the chain (λ1, forwarded to Host 1), while the e-router on Host 1 receives the next
nvocation to λ4 (forwarded to Host 4). The e-computer on Host 4 does not need to go through its companion e-router as
t can send the final response to the client on Host 0. The system messages had to be modified so that the chain or DAG
s embedded in every function request, along with the callback end-point for the final response.

Finally, StateLocal required the same upgrades as StateProp and a few others: (i) the system messages had to support
emote states, i.e., states that are not embedded in the function call/response, but only referenced indirectly (in our case
y their name and an end-point); (ii) the states are managed by new components called state servers, which are simple
n-memory KVSs co-located with each e-computer and client, as shown in Fig. 16; (iii) the flow of messages is exactly
he same as with StateProp, but at each function invocation the e-computer retrieves the remote states needed and then
opies them into its local state server; to do this, the state dependencies were also embedded in the function invocation
equest messages.

6 https://github.com/ccicconetti/serverlessonedge/ tag ≥ 1.2.1.
7 https://grpc.io/, last accessed Aug 12, 2022
11

https://github.com/ccicconetti/serverlessonedge/
https://grpc.io/

C. Cicconetti, M. Conti and A. Passarella Pervasive and Mobile Computing 86 (2022) 101689

p
a
c

c
f
6
w
o

a
l
s
l
d
r
T
T
i
t
a
i
S

Fig. 17. Function chains: Average end-to-end delay.

6.2. Results

We have used the prototype implementation to carry out a campaign of experiments in an emulated environment,
using mininet8 to reproduce the topology illustrated in Fig. 16 above. The experiments are reproducible by means of the
scripts published in the ServerlessOnEdge GitHub repository (experiment numbers: 400 and 401), which also includes
ointers to the raw results obtained in the research group servers. Since we are only interested in measuring the traffic,
nd its induced latency, for the different execution models proposed in Section 4, we use a single client, i.e., there is no
ontention on processing resources.
We have carried out two batches of experiments, respectively with function chains and DAGs. Let us start with function

hains: the client executes back-to-back function chains of constant length L (3 or 6), in number of functions, where each
unction is drawn randomly from λ1, . . . , λ5, possibly with repetitions. We assume that the application has S states (3 or
), where state si has size (1 + i) × 10 kB (0-based indexing); each state depends on a randomly drawn set of functions,
ith random cardinality drawn from 0 (no dependencies) and L (all functions in the chain depend on the state). The size
f the input argument and return value is assumed to be the same and equal to A (10 kB or 100 kB).
In Fig. 17 we compare the average end-to-end delay obtained with the execution models in all the scenarios separately,

s the link rate between network devices increases from 1 Mb/s to 100 Mb/s. Note that the results are plotted in
ogarithmic scale in both axes. In the top left plot, PureFaaS and StateProp are almost overlapping: this is because the
ize of both states and argument is relatively small. Instead, until the link rate is below 20 Mb/s, StateLocal has a much
ower average delay, thanks to its wiser only-as-needed transfer of states. However, with higher link rates, the advantage
iminishes progressively until the delay becomes higher than that of PureFaaS/StateProp with 50 Mb/s and 100 Mb/s link
ates: at such high connectivity rates, the data transfer becomes comparable with (or higher than) the time to establish the
CP connections to retrieve/update the states. This disadvantage of StateLocal could be reduced by employing persistent
CP connections towards the state servers or using a connection-less protocol, such as QUIC9. In the opposite scenario,
.e., bottom right plot in Fig. 17, the performance with StateProp and StateLocal are comparable, except for high link rates:
his is because the chains are shorter than in the other scenario and the data transfer is dominated by the input/output
rgument, which is treated the same by the two schemes. The other cases, i.e., top right and bottom left in Fig. 17, are
ntermediate, with StateLocal achieving a better performance for all slow link rates, and PureFaaS always lying on top of
tateProp.

8 http://mininet.org/, last accessed Aug 12, 2022
9 QUIC: A UDP-Based Multiplexed and Secure Transport – https://datatracker.ietf.org/doc/html/rfc9000, last accessed Aug 12, 2022.
12

http://mininet.org/
https://datatracker.ietf.org/doc/html/rfc9000

C. Cicconetti, M. Conti and A. Passarella Pervasive and Mobile Computing 86 (2022) 101689

f
i
a
a
S
K
s

b
a
a
o
a
a
l
A
a
o
i
b
d
K
f

Fig. 18. Function chains: Network traffic, with link rate 100 Mb/s.

Fig. 19. DAGs: Average delay, with variable link rates, and network traffic, with link rate 100 Mb/s.

Key point: With function chains, when taking into account realistic protocol overheads, there is a trade-off between keeping
the state local to edge nodes (StateLocal) and embedding it into function invocations, depending on the state size and network
speed. StateProp always performs better than PureFaaS.

We then provide a direct measure of the overhead in Fig. 18 by showing the average network traffic in all the scenarios,
or the link rate 100 Mb/s, which is the one where StateLocal exhibits worst performance. As can be seen (in linear scale
n this plot) the traffic generated with PureFaaS is always greater than that generated with StateProp, which in turn is
lways greater than that with StateLocal. We note that, unlike our previous results in [14], the data reported here include
ll protocol overhead, since the traffic is measured on the ports of the emulated network switches. The advantage of
tateLocal is more prominent with a smaller argument size, i.e., with A = 10 kB, but it is significant in all cases.
ey point: With function chains, even with a high network speed, StateLocal has a significantly lower overhead than the other
chemes, in terms of the traffic rate required, but this not always translates into a lower end-to-end latency.

We now move to the DAG case, for which we considered applications made of a sequence of stages, each with a
ranch function that spawns multiple stateless calls followed by a stateful collect task. This structure is very typical of ML
pplications, which are today dominant in cloud and edge environments: this was confirmed by the study [33], where the
uthors have synthesized an artificial generator of workloads that captures accurately, in a statistical sense, the behavior
f real-life applications in the wild. In the results below, we have used 3 stages with 5 branches per stage. The functions
re selected randomly among those on the edge nodes, and the state dependencies are also random using the same
pproach as with chains. In Fig. 19 we show the average delay, with increasing link rate from 1 Mb/s to 100 Mb/s (with a
og–log plot), as well as the network traffic only for the link rate 100 Mb/s. As above, we have used two argument sizes:
= 10 kB and A = 100 kB. Unlike with function chains, in this scenario we find that PureFaaS outperforms StateProp in
ll conditions, with the advantage being more prominent with a smaller argument size. This is because the total number
f functions called is much higher than in the chain scenario, which penalizes significantly the embedding of all the states
n invocations and responses. Such a fee is not paid by StateLocal, which only transfers references to states and performs
est in all conditions except with very high link rates, due to the overhead of state retrieve/update operations, as already
iscussed.
ey point: With a high number of functions in DAGs, state propagation is only effective if references are carried within the
unction invocations and responses.
13

C. Cicconetti, M. Conti and A. Passarella Pervasive and Mobile Computing 86 (2022) 101689

n
w
p
o
s
c
c

D

a

D

(

m s/
4

A

g

R

7. Conclusions

In this paper we have explored the support of stateful applications on serverless platforms distributed on edge
odes. We have focused on the problem of transferring the state along an invocation of functions in chain and DAG
orkflows, and we have identified three alternative schemes, with different characteristics. We have developed a
rototype implementation to prove the feasibility of our approaches and to measure performance with realistic protocol
verheads. The results have shown that propagating the state along the chain of function invocations can reduce
ignificantly the communication overhead. This leads to lower end-to-end application latency, especially with limited
onnectivity. However, with large DAG workflows, embedding the state for propagation is not effective anymore: in these
ases it becomes mandatory to store the states locally on edge nodes and carry their references instead.

eclaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
ppeared to influence the work reported in this paper.

ata availability

The paper shows data generated with experiments that are reproducible via publicly available open source software
https://github.com/ccicconetti/serverlessonedge).

In particular, the paper includes results from these experiments: https://github.com/ccicconetti/serverlessonedge/tree/
aster/experiments/400_Simple_function_chain, https://github.com/ccicconetti/serverlessonedge/tree/master/experiment
01_Simple_function_dag, https://github.com/ccicconetti/serverlessonedge/tree/master/experiments/402_Motivation_dag.

cknowledgments

This work was partially supported by the European Union’s Horizon 2020 research and innovation programme under
rant agreement No 957337, project MARVEL.

eferences

[1] M. Campbell, Smart edge : The center of data gravity out of the cloud, Computer 52 (December) (2019) 99–102, http://dx.doi.org/10.1109/MC.
2019.2948248.

[2] N. Mohan, L. Corneo, A. Zavodovski, S. Bayhan, W. Wong, J. Kangasharju, Pruning edge research with latency shears, in: ACM HotNets 2020.
[3] M.S. Aslanpour, A.N. Toosi, C. Cicconetti, B. Javadi, P. Sbarski, D. Taibi, M. Assuncao, S.S. Gill, R.K. Gaire, S. Dustdar, Serverless edge computing:

Vision and challenges, in: AusPDC 2021.
[4] A. Khandelwal, A. Kejariwal, K. Ramasamy, Le taureau: Deconstructing the serverless landscape & a look forward, in: ACM SIGMOD 2020.
[5] C.F. Fan, A. Jindal, M. Gerndt, Microservices vs serverless: A performance comparison on a cloud-native web application, in: CLOSER 2020.
[6] P. Castro, V. Ishakian, V. Muthusamy, A. Slominski, The rise of serverless computing, Commun. ACM 62 (12) (2019) 44–54, http://doi.acm.org/

10.1145/3368454.
[7] V. Yussupov, J. Soldani, U. Breitenbücher, A. Brogi, F. Leymann, FaaSten your decisions: A classification framework and technology review of

function-as-a-service platforms, J. Syst. Softw. 175, http://arxiv.org/abs/2004.00969.
[8] R. Xie, Q. Tang, S. Qiao, H. Zhu, F. Richard Yu, T. Huang, When serverless computing meets edge computing: Architecture, challenges, and open

issues, IEEE Wirel. Commun. (2021).
[9] J.M. Hellerstein, J. Faleiro, J.E. Gonzalez, J. Schleier-Smith, V. Sreekanti, A. Tumanov, C. Wu, Serverless computing: One step forward, two steps

back, in: CIDR 2019, http://arxiv.org/abs/1812.03651.
[10] S. Eismann, J. Scheuner, E. Van Eyk, M. Schwinger, J. Grohmann, N. Herbst, C. Abad, A. Iosup, The state of serverless applications: Collection,

characterization, and community consensus, IEEE Trans. Softw. Eng. 5589 (2021).
[11] M. Shahrad, J. Balkind, D. Wentzlaff, Architectural implications of function-as-a-service computing, in: MICRO 2019.
[12] T. Rausch, A. Rashed, S. Dustdar, Optimized container scheduling for data-intensive serverless edge computing, Future Gener. Comput. Syst.

114 (2021) 259–271.
[13] Z. Jin, Y. Zhu, J. Zhu, D. Yu, C. Li, R. Chen, I.E. Akkus, Y. Xu, Lessons learned from migrating complex stateful applications onto serverless

platforms, in: ACM APSys 2021.
[14] C. Cicconetti, M. Conti, A. Passarella, On realizing stateful FaaS in serverless edge networks: State propagation, in: IEEE SMARTCOMP 2021.
[15] S. Alirezazadeh, L. Alexandre, Optimal algorithm allocation for single robot cloud systems, IEEE Trans. Cloud Comput. (2021) http://dx.doi.org/

10.1109/TCC.2021.3093489.
[16] F. Carpio, M. Delgado, A. Jukan, Engineering and experimentally benchmarking a container-based edge computing system, in: IEEE ICC 2020.
[17] A. Mampage, S. Karunasekera, R. Buyya, A holistic view on resource management in serverless computing environments: Taxonomy and future

directions, ACM Comput. Surv. (2022) http://dx.doi.org/10.1145/3510412, in press. http://arxiv.org/abs/2105.11592.
[18] L. Wang, L. Jiao, T. He, J. Li, H. Bal, Service placement for collaborative edge applications, IEEE/ACM Trans. Netw. (2020).
[19] H. Liao, X. Li, D. Guo, W. Kang, J. Li, Dependency-aware application assigning and scheduling in edge computing, IEEE Internet Things J. 4662

(c) (2021).
[20] A.C. Nicolaescu, S. Mastorakis, I. Psaras, Store edge networked data (SEND): A data and performance driven edge storage framework, in: IEEE

INFOCOM 2021.
[21] S.H. Mortazavi, M. Salehe, B. Balasubramanian, E. De Lara, S. Puzhavakathnarayanan, Sessionstore: A session-aware datastore for the edge, in:

IEEE ICFEC 2020.
[22] C. Wu, V. Sreekanti, J.M. Hellerstein, Transactional causal consistency for serverless computing, in: ACM SIGMOD 2020.
14

https://github.com/ccicconetti/serverlessonedge
https://github.com/ccicconetti/serverlessonedge/tree/master/experiments/400_Simple_function_chain
https://github.com/ccicconetti/serverlessonedge/tree/master/experiments/400_Simple_function_chain
https://github.com/ccicconetti/serverlessonedge/tree/master/experiments/400_Simple_function_chain
https://github.com/ccicconetti/serverlessonedge/tree/master/experiments/401_Simple_function_dag
https://github.com/ccicconetti/serverlessonedge/tree/master/experiments/401_Simple_function_dag
https://github.com/ccicconetti/serverlessonedge/tree/master/experiments/401_Simple_function_dag
https://github.com/ccicconetti/serverlessonedge/tree/master/experiments/402_Motivation_dag
http://dx.doi.org/10.1109/MC.2019.2948248
http://dx.doi.org/10.1109/MC.2019.2948248
http://dx.doi.org/10.1109/MC.2019.2948248
http://refhub.elsevier.com/S1574-1192(22)00102-X/sb2
http://refhub.elsevier.com/S1574-1192(22)00102-X/sb3
http://refhub.elsevier.com/S1574-1192(22)00102-X/sb3
http://refhub.elsevier.com/S1574-1192(22)00102-X/sb3
http://refhub.elsevier.com/S1574-1192(22)00102-X/sb4
http://refhub.elsevier.com/S1574-1192(22)00102-X/sb5
http://doi.acm.org/10.1145/3368454
http://doi.acm.org/10.1145/3368454
http://doi.acm.org/10.1145/3368454
http://arxiv.org/abs/2004.00969
http://refhub.elsevier.com/S1574-1192(22)00102-X/sb8
http://refhub.elsevier.com/S1574-1192(22)00102-X/sb8
http://refhub.elsevier.com/S1574-1192(22)00102-X/sb8
http://arxiv.org/abs/1812.03651
http://refhub.elsevier.com/S1574-1192(22)00102-X/sb10
http://refhub.elsevier.com/S1574-1192(22)00102-X/sb10
http://refhub.elsevier.com/S1574-1192(22)00102-X/sb10
http://refhub.elsevier.com/S1574-1192(22)00102-X/sb11
http://refhub.elsevier.com/S1574-1192(22)00102-X/sb12
http://refhub.elsevier.com/S1574-1192(22)00102-X/sb12
http://refhub.elsevier.com/S1574-1192(22)00102-X/sb12
http://refhub.elsevier.com/S1574-1192(22)00102-X/sb13
http://refhub.elsevier.com/S1574-1192(22)00102-X/sb13
http://refhub.elsevier.com/S1574-1192(22)00102-X/sb13
http://refhub.elsevier.com/S1574-1192(22)00102-X/sb14
http://dx.doi.org/10.1109/TCC.2021.3093489
http://dx.doi.org/10.1109/TCC.2021.3093489
http://dx.doi.org/10.1109/TCC.2021.3093489
http://refhub.elsevier.com/S1574-1192(22)00102-X/sb16
http://dx.doi.org/10.1145/3510412
http://arxiv.org/abs/2105.11592
http://refhub.elsevier.com/S1574-1192(22)00102-X/sb18
http://refhub.elsevier.com/S1574-1192(22)00102-X/sb19
http://refhub.elsevier.com/S1574-1192(22)00102-X/sb19
http://refhub.elsevier.com/S1574-1192(22)00102-X/sb19
http://refhub.elsevier.com/S1574-1192(22)00102-X/sb20
http://refhub.elsevier.com/S1574-1192(22)00102-X/sb20
http://refhub.elsevier.com/S1574-1192(22)00102-X/sb20
http://refhub.elsevier.com/S1574-1192(22)00102-X/sb21
http://refhub.elsevier.com/S1574-1192(22)00102-X/sb21
http://refhub.elsevier.com/S1574-1192(22)00102-X/sb21
http://refhub.elsevier.com/S1574-1192(22)00102-X/sb22

C. Cicconetti, M. Conti and A. Passarella Pervasive and Mobile Computing 86 (2022) 101689
[23] C. Zhang, H. Tan, H. Huang, Z. Han, S.H. Jiang, N. Freris, X.Y. Li, Online dispatching and scheduling of jobs with heterogeneous utilities in edge
computing, in: ACM MobiHoc 2020.

[24] Z. Jia, E. Witchel, Boki: Stateful serverless computing with shared logs, in: ACM SIGOPS 2021.
[25] R. Hetzel, T. Kärkkäinen, J. Ott, µActor: Stateful serverless at the edge, in: MobileServerless 2021.
[26] S. Shillaker, P. Pietzuch, FAASM: Lightweight isolation for efficient stateful serverless computing, in: USENIX ATC 2020.
[27] B. Carver, J. Zhang, A. Wang, Y. Cheng, In search of a fast and efficient serverless DAG engine, in: IEEE/ACM PDSW 2019.
[28] V.M. Bhasi, J.R. Gunasekaran, P. Thinakaran, C.S. Mishra, M.T. Kandemir, C. Das, Kraken: Adaptive container provisioning for deploying dynamic

DAGs in serverless platforms, in: ACM SoCC 2021, https://dl.acm.org/doi/10.1145/3472883.3486992.
[29] S. Burckhardt, C. Gillum, D. Justo, K. Kallas, C. Mcmahon, C.S. Meiklejohn, Durable functions : Semantics for stateful serverless, in: PACMPL

2021.
[30] W. Zhang, V. Fang, A. Panda, S. Shenker, Kappa: A programming framework for serverless computing, in: ACM SoCC 2020.
[31] P. Garcia Lopez, M. Sanchez-Artigas, G. Paris, D. Barcelona Pons, A. Ruiz Ollobarren, D. Arroyo Pinto, Comparison of FaaS orchestration systems,

in: IEEE/ACM UCC 2018.
[32] C. Cicconetti, M. Conti, A. Passarella, A decentralized framework for serverless edge computing in the Internet of Things, IEEE Trans. Netw.

Serv. Manag. 18 (2) (2020) 2166–2180.
[33] H. Tian, Y. Zheng, W. Wang, Characterizing and synthesizing task dependencies of data-parallel jobs in Alibaba cloud, in: ACM SoCC 2019.
15

http://refhub.elsevier.com/S1574-1192(22)00102-X/sb23
http://refhub.elsevier.com/S1574-1192(22)00102-X/sb23
http://refhub.elsevier.com/S1574-1192(22)00102-X/sb23
http://refhub.elsevier.com/S1574-1192(22)00102-X/sb24
http://refhub.elsevier.com/S1574-1192(22)00102-X/sb25
http://refhub.elsevier.com/S1574-1192(22)00102-X/sb26
http://refhub.elsevier.com/S1574-1192(22)00102-X/sb27
https://dl.acm.org/doi/10.1145/3472883.3486992
http://refhub.elsevier.com/S1574-1192(22)00102-X/sb29
http://refhub.elsevier.com/S1574-1192(22)00102-X/sb29
http://refhub.elsevier.com/S1574-1192(22)00102-X/sb29
http://refhub.elsevier.com/S1574-1192(22)00102-X/sb30
http://refhub.elsevier.com/S1574-1192(22)00102-X/sb31
http://refhub.elsevier.com/S1574-1192(22)00102-X/sb31
http://refhub.elsevier.com/S1574-1192(22)00102-X/sb31
http://refhub.elsevier.com/S1574-1192(22)00102-X/sb32
http://refhub.elsevier.com/S1574-1192(22)00102-X/sb32
http://refhub.elsevier.com/S1574-1192(22)00102-X/sb32
http://refhub.elsevier.com/S1574-1192(22)00102-X/sb33

	FaaS execution models for edge applications
	Introduction
	Motivation
	Related work
	Stateful function chains
	Disclosure of proprietary information

	Extension to DAGs
	State consistency
	Pure Faas
	StateProp/StateLocal

	Performance evaluation
	Implementation
	Results

	Conclusions
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

