
A Fluid Flow Approach to Usability Analysis of
Multi-user Systems?

Full Version

Mieke Massink1, Diego Latella1, Maurice H. ter Beek1, Michael Harrison3, and Michele Loreti2

1 Istituto di Scienza e Tecnologie dell’Informazione ‘A. Faedo’, CNR
Area della Ricerca, Via G. Moruzzi 1, Pisa, Italy

{mieke.massink,diego.latella,maurice.terbeek}@isti.cnr.it
2 Università di Firenze, Dipartimento di Sistemi e Informatica

Viale Morgagni 65, Firenze, Italy
loreti@dsi.unifi.it

3 School of Computing Science, Newcastle University
Newcastle upon Tyne, UK

Michael.Harrison@ncl.ac.uk

Abstract. The analysis of usability aspects of multi-user systems, such as cooperative work
systems and pervasive systems, pose particular problems because group behavior of their
users may have considerable impact on usability. Model-based analysis of such features
leads to state-space explosion because of the sheer number of entities to be modeled when
automatic techniques such as model checking are used. In this paper we explore the use
of a recently proposed scalable model-based technique based on solving sets of Ordinary
Differential Equations (ODEs). Starting from a formal model specified using the Performance
Evaluation Process Algebra (PEPA), we show how different groupware usage patterns may
be modeled and analyzed using this approach. We illustrate how the approach can explore
different design options and their impact on group behavior by comparing file access policies
in the context of the industrial groupware application thinkteam.

1 Introduction

Tools for usability analysis in relation to one (or at most a few) users are by now relatively mature.
However, to date, systematic techniques for analyzing systems where there are many users and
where the collective behavior of these users has an influence on the usability of the system are
currently undeveloped. Such techniques are becoming more necessary as the variety of cooperative
work systems, multi-player games, shared virtual spaces and pervasive systems grows.

Collective behavior may have an impact on the usability of a system as it is perceived by an
individual. The effect of the behavior of other users may be to change the individuals user inter-
action. Consider for example a groupware system that offers exclusive access to files by allowing
users to get and lock files when files are available. If the lock is already given to another user, and
the file is currently in use, then the user will not be able to access the file until the other user
has finished with it. In such situations users devise strategies to ensure that they will have the
editing rights that they need when they need them. Alternatively they will schedule their work
so that there is always something else that they can do in such circumstances. For example, a
strategy that might be feasible in this example would be to get hold of the file some time before it
is needed. This greedy strategy would be effective for the individual, making it possible for them

? This work has been partially funded by the Italian MIUR/FIRB project tocai.it, by the EU project
Resist/Faerus (IST-2006-026764), by the EU project Sensoria (IST-2005-016004) and by the Italian
CNR/RSTL project XXL. thinkteam, think3 and thinkPLM are registered trademarks of think3 Inc. For
details: http://www.think3.com.

to carry out their work effectively, but it is not likely to be effective for the whole collaborative
activity.

Not only will the individual behavior of a user be affected by changes to the system through
its collective use, but the system can also have an effect on the collective behavior of the users.
Indeed a system may be designed to achieve precisely this, consider for example a dynamic signage
system such as [13] designed to facilitate evacuation of a building. The displays showing where
people should go could be designed to change depending on volumes of people within different
spaces in the building at any given moment. The displays will together modify the behavior of
those in the spaces and thereby, if effective, achieve the most efficient and calm movement of
people.

Other factors may affect the usability of these multi-user systems. Usage patterns in relation
to technology may also be induced by external factors. For example, in a collaborative design
environment it is often the case that the collaboration takes place in a way that reflects project-
oriented organization of the work. Projects tend to have different phases: creative phases in which
artifacts are developed, which may require longer periods of file creation and modification; fine-
tuning phases characterized by frequent but short accesses to a number of critical files. These
different phases may lead to a shift between typical usage patterns of the system with a potential
impact on its usability characteristics.

Techniques are required that will enable an understanding of both qualitative and quantita-
tive performance aspects of collective usability. In practice few studies have addressed collective
behavior. Empirical studies either focus on individual interactions within a system, for example
exploring how a group of individuals use flight strips in air traffic management. These studies
tend to use ethnographic techniques to provide a rich contextualized account of behavior (see [12]
for example) or more anecdotal accounts of social behavior (see [16] in relation to social behavior
using the Flickr photo-sharing service). On the other hand detailed statistical analyses of systems
have been used to detect biases in their individual use (see for example [20] in relation to a mam-
mography system). These studies are important in exploring patterns of behavior that arise from
use of the system. They are time and resource intensive and require a live system. The question
of the paper is how to analyze collective behavior of users in relation to a system prior to fielding
the system.

While formal models have been developed and explored that are relevant to modeling the in-
teraction between an individual user and device in context (see e.g., [8,9]) and general behavior of
users have been captured through normative task models (see e.g. [10,19]) the impact modeling
of collective behaviors within interactive systems have not been studied. This issue becomes par-
ticularly important in ubiquitous systems, providing smart environments in which many users are
immersed and which can have an important impact on the collective behavior of those involved.
This paper focuses on the role that modeling approaches can take in enabling the analysis of
collective behavior during the early stages of design. The aim is that these techniques should be
capable of providing a basis for usability evaluation in the face of different user strategies, when
in different phases of collaboration and given different technology designs. A groupware system
similar to the one used already for illustration, provides an example of the use of the particular
technique.

The fundamental problem with formal modeling in relation to analyses of collective behaviors
is how to deal with the state explosion that arises through attempts to model multiple instances
of processes required to define the collective behavior. The paper explores a recently proposed
scalable model-based technique, Fluid Flow Analysis [15]. This technique supports the analysis
of many replicated entities with autonomous behavior that collaborate by means of forms of
synchronization. It builds upon a process-algebraic approach and adds techniques for quantitative
analyses to those for behavioral analysis. The technique has been successfully applied in areas such
as large-scale Web Services [11,15], Service-Oriented Computing [22] and Grid applications [5,6],
but also in Systems Biology [7].

The technique consists in deriving automatically a set of Ordinary Differential Equations
(ODEs) from a specification defined using Performance Evaluation Process Algebra (PEPA) [14].
The solution of the set of ODEs, by means of standard numerical techniques, gives insight into

2

the dynamic change over time of aggregations of components that are in particular states. The
approach abstracts away from the identity of the individual components. The derivation of sets
of ODEs from PEPA specifications, the algorithms to solve ODE equations and the generation of
the numerical results are supported by the PEPA workbench [21].

The problem addressed in the paper is to explore different user strategies and groupware designs
for a simplified version of a groupware system called thinkteam. Two different file access policies
are analyzed and compared. thinkteam is part of the Product Lifecycle Management system of
think3. The Fluid Flow technique can be used in this situation because the system being analyzed
involves many replicated components that can be abstracted to relatively few states. The approach
can be seen as complementary with model checking in general and stochastic model checking in
particular. Stochastic model checking techniques have already been applied to the same example in
earlier work [1,2,3,4]. While this approach allows a richer analysis of specific properties of smaller
sets of processes, Fluid Flow allows broader analysis of larger aggregations.

The paper introduces PEPA in Section 2 and briefly explains the Fluid Flow interpretation of
PEPA models in Section 3. In Section 4 the thinkteam example is introduced, followed in Section 5
by a specification of the example. Section 6 describes the analysis and Section 7 outlines briefly
future directions. The formal semantics of PEPA are recalled in Appendix A while the actual
PEPA models used in the paper are given in detail in Appendix B. Further details on the result
of the translation from PEPA models to ODEs are shown in Appendix C and Appendix D.

2 PEPA: A Process Algebra for Performance Evaluation

In PEPA, systems can be described as interactions of components that may engage in activities
in much the same way as in other process algebras. Components reflect the behavior of relevant
parts of the system, while activities capture the actions that the components perform. A component
may itself be composed of components. The specification of a PEPA activity consists of a pair
(action type, rate) in which action type denotes the type of the action, while rate characterizes the
negative exponential distribution of the activity duration. A positive real-valued random variable
X is exponentially distributed with rate r if the probability of X being at most t, i.e. Prob{X ≤ t},
is 1 − er·t if t ≥ 0 and is 0 otherwise, where t is a real number. The expected value of X is 1/r.
Exponentially distributed random variables are more tractable because they have a memoryless
property, i.e. Prob{X > t + t′|X > t} = Prob{X > t} for t, t′ ≥ 0. Exponential distributions
are widely used in the modeling of the dependability and performance of real systems where they
form the basis for Continuous Time Markov Chains (CTMC), see e.g. [20].

Furthermore, proper compositions of exponential distributions can be used for the approxima-
tion of any non-negative distribution. The PEPA expressions used in this article have the following
syntax 4:

P ::= (α, r).P | P + P | P ��L P | A

Behavioral expressions are constructed through prefixing. Component (a, r).P carries out activity
(a, r), with action type a and duration ∆t determined by rate r. The average duration is given
by 1/r. It is defined that ∆t is an exponentially distributed random variable with rate r. After
performing the activity, the component behaves as P . Component P +Q models a system that may
behave either as P or as Q, representing a race condition between components. The cooperation
operator P ��L Q defines the set of action types L on which components P and Q must synchronize
(or cooperate); both components proceed independently with any activity not occurring in L. The
expected duration of a cooperation of activities a belonging to L is a function of the expected
durations of the corresponding activities in the components. Typically, it corresponds to the longest
one (see [14,15] for definition of PEPA). An important special case is the situation where one
4 For technical reasons, actually, there are some restrictions on the nesting of parallel processes in the

dialect of PEPA suitable for the translation to ODEs. For the sake of simplicity, we refrain from
discussing the issue here and refer to [15] for details.

3

component is passive (a rate > indicates this) in relation to another component. Here the total
rate is determined by that of the active component only. The behavior of process variable A is
that of P , provided that a defining equation A = P is available for A. The formal semantics of
the subset of PEPA used in this paper can be found in Appendix A. We introduce two shorthand
notations. If the set L is empty P ��L Q is written as the parallel composition of P and Q: P |Q.
If there are n copies of P in parallel cooperating with m parallel copies of Q this is written as:
P [n] ��L Q[m]. In this paper we will often present PEPA specifications graphically as a kind of
stochastic automata and provide the full textual PEPA specification in Appendix B.

3 ODE Semantics of PEPA

One of the advantages of a formal, high-level specification language with a fully formal semantics
is that it lends itself to the application of different analysis and evaluation techniques while re-
specting its semantics. For example, PEPA specifications can be analysed by means of a stochastic
model checker, such as PRISM [18] but it can also be used for simulation. Recently, a different
form of analysis has been proposed in which PEPA specifications are translated into sets of Ordi-
nary Differential Equations (ODEs) [15]. This technique makes it possible to analyse performance
aspects of systems with a large number of repeated components.

Let us consider a small example how PEPA specifications can be transformed into sets of
ODEs. Imagine a machine selling train tickets at the station and Clients buying tickets. For the
sake of simplicity, let us assume that only return tickets are sold so that travellers are buying their
tickets in the same station every time they need to travel and that the travellers return to the
same station after travelling. Simplistically the ticket machine can be modelled as:

TMready = (ticket, 1).TMreset
TMreset = (reset, 1).TMready

Initially the ticket machine is ready to sell a ticket to a traveller (TMready). Selling the ticket
takes 1 minute on average. After the ticket has been sold, the machine needs 1 minute to reset
itself (TMreset) and return to the initial state.

The traveller can be modelled as:

TT = (ticket, 1).TTtravel
TTtravel = (travel, 1/60).TT

The traveller arrives at the ticket machine without ticket (TT) and buys one. This takes on average
1 minute; then he travels (and performs other activities not modelled here) for an average of 60
minutes (TTtravel). After that the traveller is again without a valid ticket and needs to buy a new
one at the machine.

If we have 1000 travellers and 100 machines on a crowded morning their combined behaviour
can be expressed in PEPA as:

TMready[100] ��ticket TT[1000]

So, initially we have 100 ticket machines ready to sell tickets and 1000 travellers without tickets.
Their combined behaviour is synchronised on the buying/selling of a ticket, represented by activity
“ticket”. When translating the global behaviour into a set of differential equations, the idea is that
we represent how many ticket machines (and how many travellers) are in a certain state at each
time instant. Furthermore, this discrete number is approximated by a continuous value.

Each traveller without a ticket needs to find a free ticket machine, so if there are 1000 travellers
without a ticket and 100 available ticket machines, each of which sells on average 1 ticket per
minute, clearly 100 travellers per minute get their ticket and move on to their next state (as do
the 100 ticket machines). This gives a reduction in the number of travellers that are without a
ticket. On the other hand, when travellers come back from their trip and need another ticket this

4

causes an increase in the number of travellers without a ticket. The change of travellers buying
tickets over time in general can be characterised by the following differential equation:

d TT(t)/dt = −(1).min(TMready(t),TT(t)) + (1/60).TTtravel(t)

This equation expresses the fact that the number of travellers without a ticket at time t decreases
at a rate 1 per minute multiplied by the minimum of the number of available ticket machines at
time t and the number of travellers without a ticket at time t. It increases at rate 1 per hour based
on the simplifying assumption that the number of travellers coming back from their trip want to
travel again.

The other quantities can be derived in a similar way:

d TTtravel(t)/dt = (1).min(TT(t), TMready(t))− (1/60).TTtravel(t)
d TMready(t)/dt = −(1).min(TMready(t), TT (t)) + (1).TMreset(t)
d TMreset(t)/dt = (1).min(TMready(t), TT (t))− (1).TMreset(t)

Figure 1(a) has been obtained by solving the set of ODEs and plotting the results over a time
period of around 200 minutes. It shows how, over time, starting from the initial number of travellers
and ready ticket machines, the number of processes in certain states change and reach a stable
situation. In fact, we can observe that after a while around 80 of the 100 ticket machines are not
used. So, perhaps, under these circumstances the number of machines could be reduced. On the
other hand, a peak of 1000 travellers all wishing to buy a ticket takes still about 30 minutes to
process. If such peaks happen frequently, it might be a good idea to keep, or even add more ticket
machines. Figure 1(b) shows a similar result obtained by a simulation for a limited number of
runs of the same PEPA specification. Such a simulation is useful to get additional feedback on the
correctness of the results obtained by solving the set of ODEs because, as is well-known, sometimes
the solutions of sets of ODEs may be unstable. In what follows we will not show simulation results
though we have checked that are consistent with the ODE approach.

 0

 200

 400

 600

 800

 1000

 0 50 100 150 200 250

Po
pu

la
tio

n
siz

e

Time

TTtravel

TMready
TT TMreset

TMreset
TMready

TT
TTtravel

(a) 1000 travellers using 100 ticket machines over
200 minutes, ODE analysis.

 0

 200

 400

 600

 800

 1000

 0 50 100 150 200 250

Po
pu

la
tio

n
siz

e

Time

TTtravel

TMready
TT TMreset

TMreset
TMready

TT
TTtravel

(b) 1000 travellers using 100 ticket machines over
200 minutes, simulation results.

Fig. 1. (a)-(b) Results of the ODE analyses and simulation.

In the ticket machine the ‘bottleneck’ that constrains the number of tickets sold per hour
when there are many travellers is the rate at which the ticket machine effectively sells tickets.
This is influenced both by the time it takes to sell a ticket and by the time taken to reset. The
performance of a process can in some cases be better modelled by a passive rate representing
that it is able to adapt its performance to any request rate. For example a model of an ideal
ticket machine would sell as many tickets per minute as requested. Syntactically, such a passive
rate is denoted by > and the specification of the first line of the ticket machine then becomes:

5

TMready = (ticket,>).TMreset. The function min is then defined such that any rate λ is always
smaller than >: min(λ,>) = λ. The use of > must be handled with care. The reason is that
whenever there are no ready ticket machines available, then the rate of ticket selling should be
zero and not λ. So, > can only be used if it is guaranteed that there is always a sufficient number
of ready ticket machines, and this depends as is clear on the chosen rates in the model. A safer
way to model the adaptive behaviour is to choose instead of > a sufficiently high rate in the ticket
machine model, for example λ ·N where N is the maximal number of travellers in the model. This
is the approach followed in this paper, though for notational simplicity we will continue to use the
symbol > in the specifications.

The generation of sets of ODEs from PEPA specifications can be performed in a fully automatic
way as is explained in detail in [15] and has been implemented as part of the PEPA Workbench [21].

4 The thinkteam Groupware

The thinkteam system (http://www.think3.com/) is think3’s Product Data Management (PDM)
application. It is designed to deal with the document management needs of design processes in
the manufacturing industry. Controlled storage and retrieval of documents in PDM applications
is called vaulting, the vault being a file-system-like repository. The system is designed to be a
secure and controlled storage environment, in which vaulting prevents inconsistent changes to the
document base while still allowing maximal access compatible with business rules. A standard set
of operations is supported (see Table 1).

Operation Effect
get extract a read-only copy of a file from the Vault

import insert an external file into the Vault

checkOut
extract a copy of a file from the Vault with the intent of modifying it
(exclusive, i.e. only one checkOut at a time is possible)

unCheckOut cancel the effects of a preceding checkOut

checkIn
replace an edited file in the Vault (the file must previously have been
checked out)

checkInOut
replace an edited file in the Vault, while at the same time retaining it
as checked out

Table 1. thinkteam user operations

Access to files (via a checkOut) is based on the retrial principle: no queue or reservation system
exists to handle the requests for editing rights. thinkteam typically handles some 100,000 files for
20-100 users. A user rarely checks out more than 10 files a day, but can keep a file checked out
for periods from a few minutes to a few days. Log-file analysis of typical use indicated that only
a small subset of the files are accessed regularly for editing. Files are typically shared by several
users ranging from 2 to 5 with peaks of up to 17.

To maximize concurrency, a checkOut in thinkteam creates an exclusive lock for write access.
An automatic solution of the write access conflict is not easy, as it is critically related to the type,
nature, and scope of the changes performed on the file. Moreover, standard but harsh solutions—
like maintaining a dependency relation between files and using it to simply lock all files depending
on the file being checked out—are out of the question for think3 as they would cause these files
to be unavailable for unacceptably long periods. In thinkteam the solution is to leave it to the
users to resolve such conflicts. However, a publish/subscribe notification service would provide the
means to supply the Clients with adequate information by (1) informing Clients checking out a

6

file of existing outstanding copies and (2) notifying the copy holders upon checkOut and checkIn of
the file. [3] adds a lightweight and easy-to-use publish/subscribe notification service to thinkteam
and verifies several correctness properties such as concurrency control, awareness, and denial of
service. Denial-of-service is possible in this system in that one of the users can never get a turn
to perform a checkOut. This may happen because the system is continuously kept busy by other
users. Access to files is based on retrial. The usability aspects of the two file access policies need to
be studied under different assumptions about how the group is using the system. In [1] two such
usability aspects are studied; (1) how often, on average, users have to express their requests before
they are satisfied and (2) under which system conditions (number of users, file editing time, etc.)
such a reservation system would really improve usability. In that work a stochastic model-checking
approach is used and a limited model with up to ten users competing for one file is analyzed. In
this paper we investigate a complementary analysis based on the Fluid Flow approach were we
study models with a much larger number of users and files.

5 Modelling File Access Policies

A typical thinkteam user makes requests for edit rights on files using checkOut operations. After
editing, the file is inserted back into the vault by a checkIn operation. Furthermore, a typical file
manager is ready to receive a request from a Client and grants this request. It then locks the file for
other Clients until it is returned to the vault. Two types of file manager will first be considered.
The first supports retrial while the second supports a file reservation system based on a finite
queue. It is assumed that the file manager is always able to provide a timely response to the Client
on the availability of the file, be it positive or negative. This is modeled using passive actions as
explained in Section. 3.

5.1 The Retry Policy

Figure 2 describes models of a Client and a FileManager supporting the Retry policy. This par-
ticular model will be called the “liberal retrial model” in what follows. PEPA specifications cor-
responding to all the stochastic state transition diagrams presented in this paper can be found
in the Appendix. The Client initially tries to checkOut a file. This can be successful (cos) or fail
(cof). The rate a denotes the access rate and characterizes the time that passes between the last
checkIn of a file and the next access to a file. In other words, it represents the time that a Client
is busy with activities other than requesting edit rights for a file and modifying it. If the Client
has successfully received edit rights to the file, she works on it for a while and checks the file in.
The time involved in this activity is modelled by the rate w. If the edit rights are not granted,
the Client tries again repeatedly with time intervals characterised by rate r, the retry rate. The
FileManager initially is in a state in which the file is free and can accept a checkOut request from a
Client. It then moves to a state representing that the file is now locked (FMbusy) in which further
Clients’ requests result in a failed checkOut (cof) until the file is checked in (ci).

///o/o/o/o '& %$! "#Client

(cos, a)
yy

(cof, a)

��

///o/o '& %$! "#FMfree

(cos,>)

		'& %$! "#Work

(ci, w)

99

'& %$! "#Retry

(cof, r)
FF(cos, r)

oo '& %$! "#FMbusy

(cof,>)
FF

(ci,>)

II

Fig. 2. From left to right: Stochastic Automata of Client and FileManager components.

All activities of the FileManager have a passive rate (>), they adapt to any rate induced by
the Clients. The model abstracts from the identity of the Clients by not keeping track of which

7

///o/o/o/o '& %$! "#Client

(cos, a)

yy

(cof, a)
//'& %$! "#RetryFail

(wait, w)xx

///o/o '& %$! "#FMfree

(cos,>)

		'& %$! "#Work

(ci, w)

99

'& %$! "#Retry

(cof, r)
88

(cos, r)
oo '& %$! "#FMbusy

(cof,>)
FF

(ci,>)

II

Fig. 3. From left to right: Stochastic Automata of Client and FileManager components.

Client exactly is requesting which file. The model of the Client behavior does not require that a
Client’s retry activity is aiming at obtaining the same file. In fact, it models Clients that try to
obtain whatever file they want every time they are making a request. This can be a request for
the same file or for any other file, free or occupied. In this sense the model differs from the one we
presented in [1], where the fact that there was only one file implied that all three Clients are trying
to get the same file. This abstraction can be achieved without loss of generality given the volumes
of processes. A composed model with 90 Clients competing for 30 files can now be expressed using
the PEPA cooperation operator:

Client[90]��cos,ci,cofFMfree[30]

A modified specification of the Retry model (the Waiting Retry model) is given in Figure 3.
Here when a checkOut attempt fails (cof), the Client, waits on average an amount of time equal
to the length of a typical editing session (1/w) before trying again. This is modeled by the pair
of states RetryFail and Retry and their related transitions. This model approximates a situation
in which Clients keep on trying to obtain a particular file because, on average, they have to wait
for such a file at least for the duration of one editing session. It could be argued that a Client
may be lucky and wait less time when the Client that is currently editing has almost finished,
but because the exponential distributions are memoryless the same rate w modeling the working
time also models the remaining working time. As in the liberal Retry model we can express the
composed model with 90 Clients and 30 FileManagers as

Client[90]��cos,ci,cofFMfree[30].

5.2 The Waiting-list Policy

Figure 4 models the Waiting-list policy. The model of the FileManager supporting this policy is
given in Figure 5. The Client may initially achieve: (1) a successful checkOut of the requested
file (cos), (2) an unsuccessful checkOut, but placement in the waiting list (cof), or (3) a complete
failure because the waiting list for the file is full (qf). In the first case, the Client edits the file and
checks it in as before. In the second case, the Client waits until a notification arrives saying that
it is the Client’s turn to edit the file (trn). In the third case the Client has to try again to get the
file or to be put on the waiting list. The model of the FileManager that supports the Waiting-list
policy includes a queue. In this specific case one Client can be editing the file and at most two
other Clients may be in the queue. Initially the file is free and a checkOut request is successful
(cos). If a further request arrives the request is placed in the waiting list (cof) modeled by state
FMbusyW1. If yet a further request arrives before the file is checked in it is placed in the list as
well, modeled by state FMfullW2, denoting that the list is now full and two Clients are waiting
for getting write access. Any further requests are answered with a queue full message (qf). When
the file is checked in while the FileManager is in state FMfullW2, it moves to state FMfullW2bis
from which a notification is sent to the next Client that was waiting for the file (trn). We know

8

///o/o/o/o '& %$! "#Client

(cos, a)
yy

(cof, a)

��

(qf, a)
//'& %$! "#Retry

(cof, r)
zz

(qf, r)

��

ED

BC@A
(cos, r)

OO
'& %$! "#Work

(ci, w)

99

'& %$! "#Wait
(trn, n)

oo

Fig. 4. Stochastic Automaton of Client component.

that such a Client exists because Clients that receive a (cof) are waiting for such a notification
before they can do other things. The model

Client[90]��cos,ci,cof,qf,trnFMfree[30]

now takes the new definitions for Client and FMfree. This model is not concerned with exactly

///o/o '& %$! "#FMfree

(cos,>)

��

'& %$! "#FMbusyW1bis

(cws,>)
vvnnnnnnnnnnnnnnnnn

'& %$! "#FMfullW2bis

(trn,>)
vvmmmmmmmmmmmmmmmmmm

'& %$! "#FMbusy

(ci,>)

OO

(cof,>)
//'& %$! "#FMbusyW1

(ci,>)

OO

(cof,>)
//'& %$! "#FMfullW2

(ci,>)

OO

(qf,>)
EE

Fig. 5. Stochastic Automaton of FileManager component.

which Client gets the notification. In fact, when abstracting from identity, any Client that is
waiting for a notification will do, because on average for every Client that in theory would have
received the notification before its turn there is an equivalent one that receives it later than would
be preferred. In daily life Clients do care about such a random assignment of turns, but note that
for the purpose of the analysis, we only require that Clients wait until they receive a notification.
We can correctly abstract from the identity of the Clients (and files) because we are only interested
in the number of Clients that are in a certain state. This provides an indication of the performance
of the overall system. To make this clearer consider the following example. If ten people stand in
a queue, each with their numbered ticket, the length of the queue is not influenced by two people
exchanging their tickets (or their places). If we have two queues, their length is also not influenced
by the exchange of two people, one from each queue. In the case of our model, we therefore do not
need to model in which queue which Client is. In this model it is necessary to synchronize also on
the actions denoting queue full (qf) and next turn (trn).

6 Analysis of File Access Policies in thinkteam

The models in Section 5 can be used to explore the advantages and disadvantages of alternative
strategies giving a perspective on the collective usability of these different strategies. Analysis
using the PRISM stochastic model checker with a limited number of files and Clients is described
in [1]. The specifications are also amenable to discrete event simulation. In this section we present
the results of the Fluid Flow analysis. This analysis provides information about how many Clients
are editing a file or are waiting in a queue over time. These numbers depend on the typical usage
patterns of the system, which in their turn can be characterized by the values of the parameters
of the model. The following assumptions are made about usage patterns, that

9

– the average time between a checkIn and the next request is 2 hours (i.e. rate a = 0.5);
– the system is used by 90 Clients that compete for 30 files;
– the retry rate r is 5 · a;
– editing sessions of different average duration 1/w;
– each Client has at any moment at most one file checked out.

In addition in case of the Waiting-list model we assume that there can be at most one Client
working on a file and that there can be at most two Clients in the queue before it is full.

6.1 Analysis of the Waiting-list Policy

Results show average durations of editing sessions of 4 hours (Figure 6(a)) and 5 minutes (Fig-
ure 6(b)). All other assumptions are invariant. The graphs show how an initial situation of the
Waiting-list model with 90 Clients and 30 free files evolves over 20 hours. Each curve shows the
evolution of the number of processes in each state described in the specification of Section 5. A
number of observations can be made about the number of Clients who are editing files, waiting in
queues or busy trying to get a file. In all cases stability occurs within an hour or two. We can see
in the longer sessions (Figure6(a)):

1. a steep decrease in the number of Clients involved in other activities, dropping from 90 initially
to a stable 6.5;

2. a steep decrease in the number of free files from 30 to almost zero (arising for the fact that so
many Clients are competing for files and are involved in relatively long editing sessions);

3. the number of Clients spending their time waiting in some queue is relatively high tending to
approximately 52;

4. the queues themselves are quite full, i.e. approximately 26 of the 30 queues are full in the long
run.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 0 5 10 15 20

Po
pu

la
tio

n
siz

e

Time

Wait

Work

FMfullW2Client
FMbusyRetry=FMfullW2bis

(a) Number of processes in each state in Waiting-
list model with Clients editing files for 4 hours on
average.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 0 5 10 15 20

Po
pu

la
tio

n
siz

e

Time

Client

FMfree
Work FMbusy
Retry FMfullW2bis

(b) Number of processes in each state in Waiting-
list model with Clients editing files for 5 min. on
average.

Fig. 6. (a)-(b) Results of the ODE analyses for the Waiting-list policy for long and short editing periods.

In the shorter sessions (Figure 6(b)): 10 files are actually being edited at any time and the Clients
are hardly wasting any time in the queues obtaining the files they need. This situation may of
course change rapidly when shorter editing times are combined with much more frequent requests
for files.

10

6.2 Analysis of the Retry Policy

The liberal Retry policy (Figure 7) shows at first sight a similar pattern to the Waiting-list policy.
In the case of long editing sessions of about 4 hours on average we observe:

1. a rapid decrease in the number of users performing other activities than trying to get files and
edit them;

2. the available files are quickly occupied;
3. approximately 45 Clients are at any time busy (re)trying to obtain files;
4. in editing sessions of 5 minutes there remains a considerable number of Clients (about 12) busy

retrying to obtain files, compared with the Waiting-list policy under the same circumstances
in that model almost no Clients are waiting in a queue.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 0 5 10 15 20

Po
pu

la
tio

n
siz

e

Time

Retry

Work FMbusy

Client

FMfree

(a) Number of processes in each state in liberal
Retry model with Clients editing files for 4 hours
on average.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 0 5 10 15 20

Po
pu

la
tio

n
siz

e

Time

Client

FMfree
Retry
Work FMbusy

(b) Number of processes in each state in liberal
Retry model with Clients editing files for 5 min.
on average.

Fig. 7. (a)-(b) Results of the ODE analyses for the Retry policy for short and long editing periods.

6.3 Comparing the Usability of the Two File Access Policies

In summary the liberal Retry model and the Waiting-list model both tend toward a stable situation
in relation to the number of processes that are in certain states at any moment. In Figure 8(a) we
compare the usability of the liberal Retry model (LRM) and the Waiting-list model (WLM) by
showing the number of free Clients (series labelled by FinLRM and FinWLM respectively), the
number of working Clients (series labelled by WinLRM and WinWLM respectively) and waiting
or retrying Clients (series labelled by RinLRM and WRinWLM respectively) after 20 hours of
operation.

These numbers are shown under different assumptions on the average duration of the edit
sessions for both the liberal Retry model and the Waiting-list model. Note that the average edit
time ranges from 10 hours on average on the left, to 5 minutes on the right of the figure. The
liberal Retry model appears to outperform the Waiting-list model when the duration of the edit
time is more than approximately 20 minutes. This is because there are more Clients waiting for a
file or involved in retry in the Waiting-list model than in the Retry model. The number of Clients
working on a file is the same when the edit time is more than one hour, and the files are in that
case all checked out. This result can be explained by the fact that in the liberal Retry model, when
many files are checked out, the Client can in every retry attempt have a possibility to obtain a
free file when available. In the Waiting-list model the Client is forced to stay in a queue and wait
until an occupied file is again available. The Retry model represents a strategy in which a Client
is more free to dynamically adapt their work to the situation.

11

 0
 10
 20
 30
 40
 50
 60
 70
 80

0.120.60.312410

Po
pu

la
tio

n
siz

e

Average edit time in hours

WRinWLM
RinLRM

WinWLM
WinLRM
FinWLM
FinLRM

(a) Liberal Retry vs. Waiting-list.

 0
 10
 20
 30
 40
 50
 60
 70
 80

0.120.60.312410

Po
pu

la
tio

n
siz

e

Average edit time in hours

WRinWLM
WRinWRM

WinWLM
WinWRM
FinWLM
FinWRM

(b) Waiting Retry vs. Waiting-list.

Fig. 8. (a)-(b) Comparison of Waiting-list and Retry policies.

The situation changes considerably, however, for average editing periods shorter than approx-
imately 20 minutes. We can observe then that there are fewer Clients editing a file in the Retry
model than in the Waiting-list model. In fact, in the Waiting-list model for edit sessions of less
than 20 minutes very few Clients need to wait for a file, whereas a relatively large number of
Clients are retrying in the Retry model. This is due to the fact that Clients do not get notified
about the fact that a file became available and are wasting time in between consecutive retries. In
the Waiting-list model, the waiting Clients are immediately informed about the availability of the
file of interest. Figure 8(b) shows the results comparing the Waiting-Retry model (WRM) with
the Waiting-list model (WLM).

The series show the number of free Clients (series labelled by FinWRM and FinWLM respec-
tively), the number of working Clients (series labelled by WinWRM and WinWLM respectively)
and waiting or retrying Clients (series labelled by WRinWRM and WRinWLM respectively) after
20 hours of operation. We can observe that for edit sessions that last more than one hour the two
policies have now a more similar performance. The Waiting-Retry model still gives slightly better
performance than the Waiting-list model when looking at the Clients who are free or busy retry-
ing/waiting. This may be explained by the fact that we required that Clients in the Waiting-Retry
model wait only for the duration of one session whereas when all files are occupied it is much more
likely that Clients should wait for two editing sessions. This is the case for the Waiting-list model.
For editing sessions of less than one hour, when not all files are continuously occupied, it is clear
that the Waiting-Retry model has worse usability performance than the Waiting-list policy in the
sense that Clients waste more time in retry activity than they would waiting in a queue in the
Waiting-list model. Again, this is due to the fact that Clients do not know how long they should
wait before attempting another checkOut. So, even if the file of interest is already available, Clients
keep waiting before attempting a next checkOut request. In the Waiting list policy instead, Clients
are immediately notified about the availability of the desired file, and therefore, on average, they
are wasting less time.

7 Conclusions and Further Research

We have used the Performance Evaluation Process Algebra (PEPA) to develop combined user and
system models to investigate usability aspects of multi-user systems with a large number of users.
This has been achieved by solving sets of Ordinary Differential Equations that are automatically
derived from PEPA specifications. This analysis allows for the evaluation of systems with a very
high number of replicated, independent components at the cost of abstracting from the identities
of these components. We have illustrated how the analysis technique can be used to inform design
choices for user interaction in multiuser systems where user behavior may directly affect usability.
Different usage patterns may influence performance aspects of groupware systems that are directly

12

relevant to its usability. We have shown how a file access policy based on a retrial principle and
one based on waiting lists can be modeled and their effects on usability of the overall system can
be compared for different assumptions on usage patterns. The ODE analysis results show that
for usage patterns in which in the long run not all files are checked out, the Waiting-list policy
makes users waste less time in waiting/retry activities than the Retry policy would under the same
circumstances. Such a comparison was made by analyzing the number of Clients that are involved
in certain activities at any time. These activities correspond to particular states in the respective
models. In this paper we explored some initial ideas for the application of the ODE technique to
the analysis of usability aspects of multi-user systems.

We think that the results are encouraging and we plan to investigate their use also in more ex-
tended case studies. In particular we are interested in using this technique to explore smart spaces,
and in particular how a ubiquitous system might affect the collective behavior of users within the
smart spaces. First considerations in the context of a dynamic context sensitive guidance system
can be found in [13].

References

1. ter Beek, M. H., Massink, M. Latella, D.: Towards Model Checking Stochastic Aspects of the
thinkteam User Interface. In S.W. Gilroy and M.D. Harrison, editors, Interactive Systems:
Design, Specification, and Verification-Revised papers of DSVIS’05, volume 3941 of Lecture
Notes in Computer Science, pages 39-50. Springer, 2006.

2. ter Beek, M. H., Massink, M., Latella, D., Gnesi, S.: Model Checking Groupware Protocols.
In F. Darses, R. Dieng, C. Simone, and M. Zacklad, editors, Cooperative Systems Design-
Scenario-Based Design of Collaborative Systems, volume 107 of Frontiers in Artificial Intelli-
gence and Applications, pages 179-194. IOS, 2004.

3. ter Beek, M. H., Massink, M., Latella, D., Gnesi, S., Forghieri, A., Sebastianis, M.: Model
Checking Publish/Subscribe Notification for thinkteam. In A. Arenas, J. Bicarregui, and A.
Butterfield, editors, Proceedings of FMICS’04, volume 133 of Electronic Notes in Theoretical
Computer Science, pages 275-294, 2005.

4. ter Beek, M. H., Massink, M., Latella, D., Gnesi, S., Forghieri, A., Sebastianis, M.: A Case
Study on the Automated Verification of Groupware Protocols. In C. Heitmeyer and K. Pohl,
editors, Proceedings of ICSE’05, pages 596-603. ACM, 2005.

5. Benoit, A., Cole, M., Gilmore, S., Hillston, J.: Scheduling Skeleton-Based Grid Applications
Using PEPA and NWS Source. The Computer Journal, 48(3):369-378, 2005.

6. Benoit, A., Cole, M., Gilmore, S., Hillston, J.: Enhancing the effective utilisation of grid clusters
by exploiting on-line performability analysis. In Proceedings of CCGRID’05, pages 317-324.
IEEE Computer Society, 2005.

7. Calder, M., Gilmore, S., Hillston, J.: Automatically deriving ODEs from process algebra models
of signalling pathways. In Proceedings of CMSB’05, pages 204-215, 2005.

8. Campos, J., Harrison, M.: Model checking interactor specifications. Automated Software En-
gineering, 8:275-310, 2001.

9. Campos, J., Harrison, M.: Considering context and users in interactive systems analysis. In
G. van de Veer, P. Palanque, and J. Wesson, editors, Proceedings of EIS’07, Lecture Notes in
Computer Science. Springer, 2007. To appear.

10. Fields, R.: Analysis of erroneous actions in the design of critical systems. PhD thesis, Depart-
ment of Computer Science, University of York, 2001.

11. Gilmore, S., Tribastone, M.: Evaluating the Scalability of a Web Service-Based Distributed
e-Learning and Course Management System. In M. Bravetti, M. Nunes, G. Zavattaro, editors,
Proceedings of WS-FM’06, volume 4184 of Lecture Notes in Computer Science, pages 214-226.
Springer, 2006.

12. Harper, R.H.R.: The organization in ethnography - a discussion of ethnographic fieldwork
programs in CSCW. Computer Supported Cooperative Work 9(2): 239-264. 2000.

13. Harrison, M.D., Kray, C., Campos, J.C.: Exploring an option space to engineer a ubiquitous
computing system. Electronic Notes in Theoretical Computer Science, 208C:4155, 2008.

13

14. Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge University
Press, 1996.

15. Hillston, J.: Fluid flow approximation of PEPA models. In Proceedings of QEST’05, pages
33-43. IEEE Computer Society, 2005.

16. Kindberg, T., Spasojevic, R., Fleck, R. and Sellen, A.: The ubiquitous camera: an in-depth
study of camera phone use. IEEE Pervasive Computing 4(2)42-50. 2005.

17. Kulkarni, V.: Modeling and Analysis of Stochastic Systems. Chapman & Hall, 1995.
18. Kwiatkowska, M., Norman, G., Parker, D.: Probabilistic symbolic model checking with PRISM:

A hybrid approach. In J.-P. Katoen and P. Stevens, editors, Proceedings of TACAS’02, volume
2280 of Lecture Notes in Computer Science, pages 52-66. Springer, 2002.

19. Paterno, F., Mancini, C., Meniconi, S.: ConcurTaskTrees: A Diagrammatic Notation for Spec-
ifying Task Models. In S. Howard, J. Hammond, and G. Lindgaard, editors, Proceedings of
INTERACT’97, volume 96 of IFIP Conference Proceedings, pages 362-369. Chapman & Hall,
1997.

20. Strigini, L., Povyakalo, A and Alberdi, E.: Human machine diversity in the use of computerized
advisory systems: a case study. International Conference on Dependable Systems and Networks
(DSN03). pages 249-258. 2003.

21. Tribastone, M.: The PEPA Plug-in Project. In M. Harchol-Balter, M. Kwiatkowska, and M.
Telek, editors, Proceedings of QEST’07, pages 53-54. IEEE Computer Society, 2007.

22. Wirsing, M., Clark, A. , Gilmore, S., Holzl, M., Knapp, A., Koch, N., Schroeder, A.: Semantic-
Based Development of Service-Oriented Systems. In Proceedings of FORTE’06, volume 4229
of Lecture Notes in Computer Science, pages 24-45. Springer, 2006.

APPENDICES

A PEPA Formal Semantics

In this appendix we recall the formal semantics of the subset of PEPA used in the present paper.
For more information the interested reader is referred to [14].

Let A be a set of action types, ranged over by α, α′, α1, . . . and let P, P ′, P1, . . . be process
terms defined according to the following grammar5

P ::= (α, r).P | P + P | P��LP | A

where r is a positive real number, denoting the rate of the duration of activity α, or the symbol
⊥, denoting that α is passive, L ⊂ A, and A is a constant which is assumed defined by a proper
defining equation A

def
= P for some process term P . The structured operational semantics are

given in Figure 9. In the rule for cooperation, with α ∈ L, R stands for the following value:

R =
r1

rα(P1)
· r2

rα(P2)
·min(rα(P1), rα(P2))

where, for process P , rα(P) denotes the apparent rate of α in P , i.e. the total capacity of P to
carry out activities of type α. For example rα((α, λ).P) = λ, while rα((α, λ).P1+(α, µ).P2) = λ+µ
and rα((α, λ).P1 + (α, λ).P2 = 2λ. Function rα, for α ∈ A, can be defined formally, by induction
on the syntax of PEPA terms [14].

5 For technical reasons, actually, there are some restrictions on the nesting of parallel processes in the
dialect of PEPA suitable for the translation to ODEs. For the sake of simplicity, we refrain from
discussing the issue here and refer to [15] for details.

14

(α, r).P
(α,r)- P P1

(α,r)- P ′

P1 + P2
(α,r)- P ′

P2
(α,r)- P ′

P1 + P2
(α,r)- P ′

P1
(α,r)- P ′, α 6∈ L

P1��LP2
(α,r)- P ′

��LP2

P1
(α,r1)- P ′

1, P2
(α,r2)- P ′

2, α ∈ L

P1��LP2
(α,R)- P ′

1��LP ′
2

P2
(α,r)- P ′, α 6∈ L

P1��LP2
(α,r)- P1��LP ′

P
(α,r)- P ′, (A

def
= P)

A
(α,r)- P ′

Fig. 9. Operational semantics rules

On the basis of the operational semantics rules of Figure 9 the subset of PEPA of our interest
is defined as the labelled multi-transition system

(P, Act, { (α,r)- | (α, r) ∈ Act })

where P is the set of processes, Act is the set of activities and, for each activity (α, r) the multi-
relation

(α,r)- is given by the rules of Figure 9.

B PEPA Specifications

In this appendix we provide the full PEPA specifications of the liberal Retry model depicted in
Figure 2 and of the Waiting-list model depicted in Figures 4 and 5.

First, the full PEPA specification of the liberal Retry model with parameters a = 0.5, w = 0.25
and r = 5.0 ∗ a is as follows:

Client = (cos, a).Work + (cof, a).Retry
Work = (ci,w).Client
Retry = (cof, r).Retry + (cos, r).Work

FMfree = (cos,>).FMbusy
FMbusy = (cof,>).FMbusy + (ci,>).FMfree

Client[90] ��cos,ci,cof FMfree[30]

Second, the full PEPA specification of the Waiting-list model with parameters a = 0.5, w = 0.25,
r = 5.0 ∗ a and n = 1000 is as follows:

Client = (cos, a).Work + (cof, a).Wait + (qf, a).Retry
Work = (ci,w).Client
Wait = (trn,n).Work

Retry = (cof, r).Wait + (cos, r).Work + (qf, r).Retry

FMfree = (cos,>).FMbusy
FMbusy = (cof,>).FMbusyW1 + (ci,>).FMfree

FMbusyW1 = (cof,>).FMfullW2 + (ci,>).FMbusyW1bis
FMbusyW1bis = (trn,>).FMbusy

FMfullW2 = (qf,>).FMfullW2 + (ci,>).FMfullW2bis
FMfullW2bis = (trn,>).FMbusyW1

Client[90] ��cos,ci,cof,qf,trn FMfree[30]

15

C Reagent-centric model for the liberal Retry model

In this section we present the reagent-centric model of the PEPA liberal Retry model. This model
is automatically generated by the PEPA workbench in a format (cdml) that is accepted by solvers
such as ISBJava. Reactions are provided in the format reactionname,reactants → products, reac-
tionrate. Note that in the version below we used an explicit high rate top instead of a passive rate
>.

//Rates
a = 0.5;
r = 5.0*a;
top = 90.0*r;
w = 0.1;

//Population sizes
Client = 90; // Client
FMbusy = 0; // FMbusy
FMfree = 30; // FMfree
Retry = 0; // Retry
Work = 0; // Work

//Reactions
ci, Work + FMbusy -> Client + FMfree, [min(Work*w,FMbusy*top)];
cof1, Client + FMbusy -> Retry + FMbusy, [(a/(r+a))*min((Client*(r+a)),FMbusy*top)];
cof2, Retry + FMbusy -> Retry + FMbusy, [(r/(r+a))*min((Retry*(r+a)),FMbusy*top)];
cos1, Retry + FMfree -> Work + FMbusy, [(r/(r+a))*min((Retry*(r+a)),FMfree*top)];
cos2, Client + FMfree -> Work + FMbusy, [(a/(r+a))*min((Client*(r+a)),FMfree*top)];

D Ordinary Differential Equations for the liberal Retry model

Below we present the ordinary differential equations corresponding to the PEPA liberal Retry
model. Note that in the equation for Retry and FMbusy the terms related to the self-loops have
been omitted since their sum results in zero. The equations have been obtained interpreting the
reagent-centric model.

d Work(t)/dt = −min(Work ∗ w,FMbusy ∗ top)
+min(Retry ∗ r, FMfree ∗ top ∗ r

(r+a))
+min(Client ∗ a,FMfree ∗ top ∗ a

(r+a))

d Client(t)/dt = −min(Client ∗ a,FMfree ∗ top ∗ a
(r+a))

−min(Client ∗ a,FMbusy ∗ top ∗ a
(r+a))

+min(Work ∗ w,FMbusy ∗ top)

d Retry(t)/dt = −min(Retry ∗ r, FMfree ∗ top ∗ r
(r+a))

+min(Client ∗ a,FMbusy ∗ top ∗ a
(r+a))

d FMfree(t)/dt = −min(Retry ∗ r, FMfree ∗ top ∗ r
(r+a))

−min(Client ∗ a,FMfree ∗ top ∗ a
(r+a))

+min(Work ∗ w,FMbusy ∗ top)

d FMbusy(t)/dt = −min(Work ∗ w,FMbusy ∗ top)
+min(Retry ∗ r, FMfree ∗ top ∗ r

(r+a))
+min(Client ∗ a,FMfree ∗ top ∗ a

(r+a))

16

