
 

Observation of Fermi-Pasta-Ulam-Tsingou Recurrence and Its Exact Dynamics

D. Pierangeli,1,2,3,* M. Flammini,2 L. Zhang,1 G. Marcucci,2,3 A. J. Agranat,4

P. G. Grinevich,5 P. M. Santini,2,6 C. Conti,2,3 and E. DelRe2,3
1International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology,
Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong
Province, College of Optoelectronic Engineering, Shenzhen University, 518060 Shenzhen, China
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One of the most controversial phenomena in nonlinear dynamics is the reappearance of initial
conditions. Celebrated as the Fermi-Pasta-Ulam-Tsingou problem, the attempt to understand how these
recurrences form during the complex evolution that leads to equilibrium has deeply influenced the entire
development of nonlinear science. The enigma is rendered even more intriguing by the fact that integrable
models predict recurrence as exact solutions, but the difficulties involved in upholding integrability for a
sufficiently long dynamic has not allowed a quantitative experimental validation. In natural processes,
coupling with the environment rapidly leads to thermalization, and finding nonlinear multimodal systems
presenting multiple returns is a long-standing open challenge. Here, we report the observation of more than
three Fermi-Pasta-Ulam-Tsingou recurrences for nonlinear optical spatial waves and demonstrate the
control of the recurrent behavior through the phase and amplitude of the initial field. The recurrence period
and phase shift are found to be in remarkable agreement with the exact recurrent solution of the nonlinear
Schrödinger equation, while the recurrent behavior disappears as integrability is lost. These results identify
the origin of the recurrence in the integrability of the underlying dynamics and allow us to achieve one of
the basic aspirations of nonlinear dynamics: the reconstruction, after several return cycles, of the exact
initial condition of the system, ultimately proving that the complex evolution can be accurately predicted in
experimental conditions.

DOI: 10.1103/PhysRevX.8.041017 Subject Areas: Nonlinear Dynamics, Optics,
Statistical Physics

I. INTRODUCTION

Nonlinear interaction in a multimodal system introduces
coupling between its linear modes. When a reduced set of
modes is initially excited, the energy exchange associated
with this coupling provides the route to reach thermody-
namic equilibrium. However, as discovered by Fermi in
collaboration with Pasta et al. [1], the irreversible process
towards thermalization can present local reversibility.
Studying a chain of anharmonic oscillators with a single-
mode initial condition, they found that the system fails to
thermalize on small timescales and undergoes a dynamics

characterized by the quasiperiodic appearance of specific
states, a behavior known as Fermi-Pasta-Ulam-Tsingou
(FPUT) recurrence [2–4].
An approach to understanding the physical mechanism

underlying the phenomenon rests on the quasi-integrability
of the system [5–8]. This property implies the existence of a
timescale for which the FPUT dynamics is essentially
integrable. In fact, for integrable models, pure thermal-
ization is never reached since normal modes are phase
locked and not free to resonantly interact and spread energy
over the entire spectrum [6]. Consistently, certain integrable
systems support breathers; their phase space presents
homoclinic orbits connecting unstable solutions, so trajec-
tories starting in the proximity of these unstable points can
return close to the original state.
The key role of integrability explains why the FPUT

recurrence has eluded in-depth experimental investigations.
Specifically, while in numerical studies the thermalization
timewas too large to be initially identified, quite the opposite
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issue arises in experiments: In open systems involving
several interacting modes, recurrences to the initial state
are not normally reported. In fact, because of the effect of
intrinsic dissipation or input noise amplification [9], a natural
process is rarely integrable and does not preserve multiple
returns. Observations in quasi-Hamiltonian systems have so
far been limited to one or two return cycles [10]. Evidence of
the recurrence of states has been reported in deep water
waves [10], surface gravity waves [11], magnetic rings [12],
optical microresonators [13], and optical fibers [14–16]. In
spite of these efforts, how the specific initial condition
determines the properties of the recurrent behavior remains
a fundamental point that has never found experimental
validation. An important attempt in this direction has been
reported very recently in loss-compensated optical fibers
[16], where, however, the tailored amplification only allows
the system to mimic the return cycles that would have its
nondissipative counterpart. In this setting, among the many
recurrent behaviors expected by varying the input state, only
the two types with opposite symmetry have been observed
and related to separate families of orbits in phase space [16].
The observation of the FPUT dynamics as predicted by exact
solutions of an underlying integrable model remains an open
challenge.
Here, we observe the Fermi-Pasta-Ulam-Tsingou recur-

rence in spatial nonlinear optics and provide evidence that
the recurrent behavior is governed by the exact solution of
the nonlinear Schrödinger equation (NLSE) integrable
dynamics. Specifically, we exploit a three-wave interfero-
metric setup to finely tune the amplitude and phase of the
single-mode input excitation propagating in a photorefrac-
tive medium. The unstable mode manifests the Akhmediev
breather (AB) profile and undergoes several growth and
decay cycles whose partial period and phase shift are
determined by the initial excitation, in remarkable agree-
ment with the analytic nonlinear Schrödinger theory. This
allows us to retrieve the specific input state from the
properties of the nonlinear stage of instability, the signature
of the predictability of the underlying dynamics.

II. EXACT RECURRENCES IN THE NONLINEAR
SCHRÖDINGER EQUATION

The integrable NLSE,

i∂zψ þ ∂xxψ þ 2jψ j2ψ ¼ 0; ð1Þ

is a universal model describing the propagation of a
quasimonochromatic field ψðx; zÞ in a weakly nonlinear
medium [17]. Exact solutions of Eq. (1) corresponding to
perturbations of the constant background wave have
recently attracted considerable attention in hydrodynamics
and optics [18–24], in particular, in the way they describe
the dynamics of the modulation instability (MI) and may be
relevant in explaining the formation of extreme amplitude
waves (rogue waves) [25–30]. On the other hand, the NLSE

naturally arises as the continuous limit (infinite number
of modes) for the dynamics of a chain of anharmonic
oscillators coupled by a cubic nonlinearity, the so-called
β-FPUT model [31,32]. In this framework, the problem of
finding the timescale of the recurrence as a function of the
specific input condition has been elusive until recently. The
analytic description of the recurrence for an initially
perturbed background field of finite length with a single
unstable mode has been reported by Grinevich and Santini
using the finite-gap method or matched asymptotic expan-
sions [33,34]. Theory points out a variety of phase-shifted
recurrences closely determined by the phase and amplitude
of the input condition. In particular, considering the single-
mode perturbed input field

ψ0ðxÞ ¼ 1þ εðc1eikx þ c2e−ikxÞ; ð2Þ

with complex amplitudes c1 and c2 and ε ≪ 1, we expect
the recurrent growth of a coherent structure of the
Akhmediev type (x periodic) and its recurrent decay to
the initial state. The first-appearance time or recurrence
partial period of this large-amplitude wave is predicted to
be [33,34]

Z1 ¼
1

σk
log

�
σ2k

2εjαj
�
; ð3Þ

where σk ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − k2

p
is the growth rate of the input

unstable mode with wave vector k and α ¼ c�1 −
c2 expð2iϑÞwith ϑ ¼ arccosðk=2Þ. The multiple recurrence
of the field to the initial condition corresponds to periodic
orbits close to the homoclinic orbit described by the well-
known AB exact solution of the NLSE [35]. In fact, in the
mth recurrent nonlinear stage of the dynamics (m ≥ 1), the
field is described by the AB soliton, which, at its maximum,
reads as

ψðx; ZmÞ ¼ eiξm
cosð2ϑÞ þ sinðϑÞ cos½kðx − XmÞ�

1 − sinðϑÞ cos½kðx − XmÞ�
þOðεÞ;

ð4Þ

where ξm, Zm, and Xm are parameters related to the input
condition through the elementary functions [33,34]

Zm ¼ Z1 þ ðm − 1Þ 2

σk
log

�
σ2k

2ε
ffiffiffiffiffiffiffiffijαβjp

�
; m ≥ 1;

Xm ¼ argðαÞ − ϑþ π=2
k

þ ðm − 1Þ argðαβÞ
k

;

ξm ¼ 2Zm þ 2ð2m − 1Þϑ; ð5Þ

with β ¼ c�2 − expð−2iϑÞc1. Although solutions of the
Akhmediev type have been observed and connected to
recurrent behaviors in different settings [10,16], experi-
mental demonstration of Eq. (3), which forms the basis for
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the FPUT dynamics in a broad range of systems, is lacking.
In other words, the way in which these exact recurrent
solutions can have physical relevance is an open question.

III. SPATIAL OPTICAL SETTING

To investigate FPUT recurrences in optical dynamics, we
consider the propagation of nonlinear optical waves in a
photorefractive crystal. The wave vectors of the optical
field constitute the linear modes that are coupled by
nonlinear propagation. The transverse crystal size fixes
the finite length of the input wave, a condition ensuring a
countable set of Fourier modes and a finite recurrence
period. Under specific conditions, the system can be
described by the NLSE in the spatial domain, with the
propagation direction acting as an evolution coordinate
[36]. The experimental geometry of our setup is shown in
Fig. 1(a) and detailed in the Appendix. Three continuous
laser sheets are made to symmetrically interfere at the input
facet of a potassium-lithium-tantalate-niobate (KLTN)
crystal to form a quasi-one-dimensional background wave
with a coherent single-mode perturbation. Along the trans-
verse x direction, the relevant one for the dynamics under
study, the optical field resulting from the symmetric
interference of three mutually coherent, linearly polarized
optical waves is E ¼ E0 þ E1eiϕ1eikx þ E2eiϕ2e−ikx, with
k ¼ 2π tanðθÞ=λ. The optical intensity normalized to the
background I=I0 (I0 ¼ jE0j2) can be expressed as

I=I0 ≡ jψ0ðxÞj2 ¼ 1þ A cosðkxþ BÞ, which directly maps
the initial condition in Eq. (2) with A ¼ 2εjγj, B ¼ argðγÞ,
and γ ¼ c1 þ c�2. With respect to the experimentally acces-
sible parameters, the amplitude and phase of the perturbation
read as A ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½I1 þ I2 þ 2

ffiffiffiffi
I1

p ffiffiffiffi
I2

p
cosðϕ1 þ ϕ2Þ�=I0

p
and

tanðBÞ¼ð ffiffiffiffi
I1

p
sinϕ1−

ffiffiffiffi
I2

p
sinϕ2Þ=ð

ffiffiffiffi
I1

p
cosϕ1þ

ffiffiffiffi
I2

p
cosϕ2Þ.

Therefore, the spatial frequency of the perturbation k can be
varied by acting on the geometrical angle θ in between the
arms of the interferometer, whereas their optical power and
phase delay ϕ≡ ϕ1 þ ϕ2 ¼ argðc1Þ þ argðc2Þ set, respec-
tively, the amplitude and phase of the singlemode [Figs. 1(b)
and 1(c)]. The fringe visibility is thus maximum for ϕ1 þ
ϕ2 ¼ 0 and minimum for ϕ1 þ ϕ2 ¼ π. In the symmetric
case I1 ≃ I2, we have B ≃ ðϕ1 − ϕ2Þ=2.
Since the propagation length cannot be varied in our

setting and the intensity profile inside the crystal cannot be
directly measured [37], nonlinear evolution of the input
field is observed by the time the crystal is exposed to the
copropagating light beams. The method relies on the nature
of the photorefractive nonlinearity, which is noninstanta-
neous and accumulates in time as a photogenerated space-
charge field builds up [38]. Since the process occurs on a
slow timescale compared to wave propagation through
the medium, this implies a nonlinear coefficient that
depends parametrically on the exposure time. Because of
the invariant properties of the wave equation, observations
of the intensity distribution at the crystal output at different
times correspond to beam propagation for increasing
effective distances Z (see the Appendix). This is equivalent
to studying the dynamics by varying the strength of the
nonlinearity through an external parameter, in close anal-
ogy with FPUT investigations in optical fibers where
changes of the input optical power are exploited [14].

IV. EXPERIMENTAL RESULTS

The spatial intensity distribution IðxÞ=I0 detected
as a function of the evolution coordinate Z is reported in
Fig. 2(a) for k ¼ 0.019 μm−1, A ¼ 0.3. We observe the
input perturbation growth on the modulationally unstable
background forming a train of large-amplitude localized
waves, which decays back to an almost constant back-
ground and recurrently reappears from it. The set of linear
modes undergoes several return cycles in which energy
flows back and forth, passing from the zero and first modes
(the initial perturbation) to a spectral distribution in which
all the modes are excited, the signature of the FPUT
dynamics [39]. At variance with classical and quantum
beating, such as Rabi cycles in two-level quantum systems
[40], here energy oscillations involve several modes and
occur without any driving field. At each cycle, the whole
field distribution is spatially shifted by an amount Δ,
a phenomenon also referred to as broken symmetry of
FPUT recurrence [10,16]. Although a similar phase shift
has been theoretically associated with the specific gain of
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FIG. 1. Experimental setup. (a) Sketch for the symmetric three-
wave interferometric scheme used to generate a quasi-one-
dimensional background wave with a single-mode perturbation
that propagates in a pumped photorefractive KLTN crystal (see
the Appendix). The inset shows an example of the detected input
intensity distribution (scale bar is 50 μm). (b) Input intensity
x profiles normalized to the background for different amplitudes
of the harmonic perturbation (k ¼ 0.019 μm−1). (c) Phase control
of the initial condition: intensity distribution varying the relative
phase ϕ between the interfering waves.
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the seeded wave vector [41] and the effect of dissipation
[42], we show hereafter that it results from the sensitivity of
the dynamics to the specific initial phase. This phase shift,
as well as the recurrence period detected through the first
appearance distance Z1 of the high-intensity pattern,
strongly changes as the input perturbation is varied. For
instance, in Fig. 2(b), we report the observed FPUT
recurrence for k ¼ 0.030 μm−1 and A ¼ 0.5, where no
significant phase shift occurs. The recurrent behavior can
be directly related to the excitation from the single-mode
input perturbation of an orbit close to the Akhmediev
breather [34]. As shown in Figs. 2(c) and 2(d), the periodic
intensity profile detected along xwhen the amplified modes
reach their first maximum is well fitted by the Akhmediev
breather solution of the NLSE at its maximum [Eq. (4)].
Consistently, throughout the paper, we refer to these
localized states as AB. The finding of exact solutions
indicates that our system remains close to the integrable
regime on these effective distances; that is, it can be
properly described by the NLSE.
We study the FPUT recurrence by varying the single-

mode input condition. Fixing the initial phase of the field
through a careful maximization of fringe visibility, we first
analyze the recurrence partial period by varying the
amplitude of the perturbation A. The results in Fig. 3(a)
show that the first appearance of the AB occurs at a distance
that decreases as the single-mode amplitude becomes

larger. An analogous behavior is observed for the recurrent
breather (second appearance). In remarkable agreement
with the analytic solution of the NLSE, the observed
scaling follows Eq. (3), which predicts Z1 ∝ logð1=AÞ.
For modes k falling in the proximity of the maximum gain,
the recurrence period only weakly depends on the input
wave vector [Fig. 3(b)], a feature well captured by Eq. (3)
through σk. More importantly, the main effect on the
recurrence is found to be related to the phase of the initial
condition. To investigate its role, we balance the optical
power in the interferometer arms (I1 ≈ I2) and introduce a
slight tilt in one of them, so as to have a perturbation with a
phase that depends on the spatial point. The observed
FPUT dynamics is reported in Fig. 3(c); the AB appears
and recurs phase shifted at a propagation distance that
varies along the transverse coordinate. As a function of the
input phase delay, Z1 presents an oscillation that has a sharp
maximum for ϕ ≃ −0.3π and a broad minimum for
ϕ ≃ −0.9π, 0.35π [Fig. 3(d)]. This characteristic behavior,
which reflects phase dynamics in each return cycle, is in
remarkable agreement with the NLSE theory and represents
its main validation. In fact, in Eq. (3), the recurrent semi-
period critically depends on jαj, a quantity that oscillateswith
the relative phase of the complex amplitudes c1 and c2
forming the initial perturbation. Specifically, in the case of
symmetric perturbations (I1 ≈ I2), theory predict a sharp
maximum in Z1 for ϕ ≃ −2ϑ; from Fig. 3(d), we can thus
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FIG. 2. Observation of the FPUT recurrence of Akhmediev breathers. (a,b) Evolution of the detected spatial intensity distributions for
(a) k ¼ 0.019 μm−1, A ¼ 0.3 and (b) k ¼ 0.030 μm−1, A ¼ 0.5. Both observations show the appearance of a high-intensity pattern at a
distance Z1 (red dotted line), its return to the initial state, and multiple recurrences with a spatial phase shift that depends on the
experimentally assigned input condition [Δ ≈ 15 μm and 2 μm in panels (a) and (b), respectively]. (c,d) Intensity x profile measured at
the first appearance of the localized waves (circles) fitted with the AB profile at its maximum [red line, Eq. (4)] for (c) k ¼ 0.021 μm−1

and (d) k ¼ 0.014 μm−1.
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obtain the theoretical parameter ϑ ≃ 0.15, consistent with the
one extracted from the AB profile. Moreover, a sharp
transition is expected for the recurrent phase shift as a
function of the input phases [16]. In Fig. 3(e), we report
the measured shift, which sharply passes from Δ ≈ 0 to Δ ≈
1=2k by varying the phase delay, a behavior that agrees well
with the theoretical condition cosðϕÞ≷ cosð2ϑÞ. These
effects indicate that the coherence of the field is maintained
as energy is exchanged between different modes: Phase
locking dominates the nonlinear stage of the unstable
dynamics, and thermalization slows down.
The deterministic properties of the return cycle imply

its predictability once the input condition is completely
known, and vice versa. To investigate this integrable
character in experimental conditions, we retrieve the actual
initial state from the features exhibited by the recurrent
stage (inverse problem). We consider the FPUT dynamics
reported in Fig. 4(a). The phase B of the input perturbation
is obtained by taking into account that the periodic trans-
verse position X1 at which the first AB has its maximum
intensity strictly depends on ϕ, as well as the specific
shift Δ characterizing the return cycle. In fact, according
to Eq. (5), we have X1 ¼ ðargðαÞ − ϑþ π=2Þ=k. At
each recurrent cycle, the breather solution is transversely
shifted by Δ ¼ argðαβÞ=k. Therefore, when ϑ ≈ 0, arg β ≃
kðΔ − X1Þ þ π=2, and the phase of the input excitation can
be evaluated as

B ¼ argðγÞ ≈ kðΔ − X1Þ − ϑ; ð6Þ

where k and ϑ are extracted from the first AB profile.
The amplitude of the single mode follows from the
observed Z1 through the scaling in Fig. 3(a). As shown in
Figs. 4(b)–4(d) for different initial dephasing, the field
retrieved using this procedure agrees well with the
experimental input condition that generates the recur-
rence: The nonequilibrium dynamics can be accurately
traced on the basis of the underlying integrable model.

V. DISCUSSION AND CONCLUSION

The predictability of the FPUT dynamics is a general
property of the system and does not depend on the specific
input state. However, nonlinear evolution becomes more
complex when several harmonics are initially excited. We
observe that, for two excited input modes, recurrent high-
intensity patterns still occur, but their periodicity is lost and
different states are experienced during propagation.
Starting with a superposition of a large number of modes,
random noise, or localized perturbations, wave turbulence
sets in [43,44]. In these complex regimes, disordered
nonlinear interactions may play a crucial role with respect
to exact solutions of the underlying model [45]. Finally, we
note that the observed recurrence gradually disappears as
the external pump is weakened, a finding that further
corroborates integrability as the basis of the phenomenon.

The continuous transition towards the nonintegrable regime
is reported in Fig. 5. Pseudorecurrent breather structures
persist as the nonlinearity approaches the saturable regime
and the model departs from the canonical NLSE [46]
[Figs. 5(a) and 5(b)], whereas no return to the initial
state occurs in highly saturated, nonintegrable conditions
[Fig. 5(c)]. Here, interacting spatial solitons form and
evolve towards equilibrium, compatibly with a soliton
turbulence scenario [47].
In conclusion, we have observed the Fermi-Pasta-Ulam-

Tsingou recurrence in nonlinear spatial optics, providing
unprecedented experimental evidence of its underlying
integrable dynamics. We reveal that the single-mode
input field deterministically sets the properties of the
recurrent behavior for several breathing cycles, in close
agreement with the analytic NLSE theory. The dynamics is
thus accurately predicted, a result that extends predictive
approaches to unstable wave regimes and maps a strategy to
achieve the control of localized large-amplitude waves in
environmental conditions. The optical setting we have
introduced, in which the input condition can, in principle,
be arbitrarily shaped, provides a general test bed for
investigating universal nonlinear phenomena. Our findings
shed light on the foundations of the FPUT problem and
represent a unique test for nonlinear wave theory, with
broad implications in hydrodynamics, nonlinear optics,
Bose-Einstein condensates, and beyond.
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FIG. 5. From the integrable to the nonintegrable regime. We
show the nonlinear evolution detected for k ¼ 0.021 μm−1 and
A ¼ 0.5 by varying the external pump power: (a) P ¼ 6 mW,
(b)P ¼ 2 mW, and (c) P ¼ 0.5 mW. The recurrent behavior
in panel (a) is superseded by the appearance of spatial solitons
(c) as the dynamics is far from integrability (highly saturated
conditions).
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APPENDIX: METHODS

1. Experimental setup

A y-polarized optical beam at wavelength λ ¼ 532 nm
from a continuous 30-mWNd∶YAG laser source is split and
recombined in the xz plane to form a symmetric three-wave
interferometer, with the two arms having opposite wave
vectors and forming an angle θ with the 300-μW central
beam. A sketch of the optical system is shown in Fig. 1(a).
The interference pattern is focused by a cylindrical lens down
to a quasi-one-dimensional beam with waist ω0 ¼ 15 μm
along the y direction and periodically modulated along the
x direction [inset in Fig. 1(a)]. The copropagating waves are
launched into an optical quality specimen of2.1ðxÞ × 1.9ðyÞ ×
2.5ðzÞ mm K0.964Li0.036Ta0.60Nb0.40O3 (KLTN) with Cu
and V impurities. The crystal exhibits a ferroelectric phase
transition at the Curie temperature TC ¼ 284 K. Nonlinear
light dynamics are studied in the paraelectric phase at
T ¼ TC þ 8 K, a condition ensuring a large nonlinear
response and a negligible effect of small-scale disorder
[48]. The time-dependent photorefractive response sets in
when an external bias field E is applied along y (voltage
V ¼ 500 V). To have a so-called Kerr-like (cubic) non-
linearity from the photorefractive effect, the crystal is
continuously pumped with an x-polarized 15-mW laser at
λ ¼ 633 nm. The pump does not interact with the principal
beams propagating along the z axis and only constitutes a
reference intensity larger than the single-mode perturbed
background wave. The spatial intensity distribution is
measured at the crystal output as a function of the exposure
time by means of a high-resolution imaging system com-
posed of an objective lens (NA ¼ 0.5) and a CCD camera
at 15 Hz.

2. Beam propagation in photorefractive media

Generally, nonlinear optical wave propagation in para-
xial conditions is described by the parabolic wave equation
i∂zAþ ð1=2kÞ∇2Aþ ðk=nÞδnA ¼ 0, where Aðx; y; zÞ is
the slowly varying optical-field envelope normalized to a

reference intensity, k ¼ 2πn=λ, and n the index of refrac-
tion. The self-interaction term δn ¼ δnðjAj2Þ accounts for
the nonlinear response of the supporting medium and, in
the case of a photorefractive nonlinearity, it also depends
parametrically on time, δn ¼ δnðjAj2; tÞ [38]. In fact, as the
light beam impinges on the biased photorefractive crystal, it
starts to generate an illumination-dependent variation of the
index of refraction by means of carriers’ excitations and
their spatial redistribution. The amplitude of the resulting
nonlinear change, on average, grows with the exposure time
up to a saturation value. This process occurs on a slow
timescale, typically seconds for peak intensities of a few
kWcm−2 [38]. In our system, the dependence on time can be
factored out in a first approximation, δn ¼ fðtÞΔnðjAj2Þ, so
that the focusing photorefractive nonlinearity in centrosym-
metric media reads as δn ¼ fðtÞΔn0=ð1þ jAj2Þ2, where
Δn0 includes the quadratic electro-optic effect. For jAj2 ≪ 1,
as occurs in our externally pumped configuration, we obtain
the Kerr-like regime where ΔnðjAj2Þ ≈ 2Δn0jAj2, apart
from a constant shift. The dynamics along each transverse
coordinate is thus described by the one-dimensional
equation i∂zAþ ð1=2kÞ∂2

xxAþ 2ρjAj2A ¼ 0, where ρ ¼
ðk=nÞΔn0fðtÞ is the single parameter that fixes the relative
strength of diffraction and nonlinearity. Introducing the
following change of variables, Z ¼ ρz, X ¼ ffiffiffiffiffiffiffiffi

2kρ
p

x and
Aðx; zÞ ¼ ψðX; ZÞ, the equation can be transformed
into the dimensionless NLSE [Eq. (1)]: i∂Zψ þ ∂XXψ þ
2jψ j2ψ ¼ 0. An analogous renormalization of the wave
equation is widely adopted in nonlinear fiber optics, where
the optical power of the input wave is exploited to mimic the
spatial dynamics along the fiber [49]. Rigorously, since the
normalization makes dispersive terms slowly varying along
the propagation, the approach allows us to observe only an
effective field evolution.
In the present case, the evolution in Z is studied at a fixed

value of z (the crystal output) by varying the exposure
time t. In fact, experimental results obtained in similar
photorefractive KTN crystals have verified that the average
index change grows and saturates according to fðtÞ ¼
1 − expð−t=τÞ [50]. The time dependence is well defined
through the saturation time τ once the input beam intensity,
applied voltage, and temperature have been fixed. Using
this relation with the measured τ ≈ 80 s, observations at the
crystal output are rescaled as a function of the effective
distance Z. The nonlinear response function fðtÞ represents
the main limitation of the technique in reconstructing the
spatial dynamics from time-resolved measurements.
Specifically, fðtÞ is independent of the local intensity only
in a first approximation, a fact that affects the accuracy of
the obtained field evolution. When the intensity distribution
presents large intensity variations or strong spatial inho-
mogeneities, intensity-dependent corrections to fðtÞ should
be taken into account to have a quantitative reconstruction
along the evolution coordinate. These high-order terms are
nonlocal in space and time; their main effect is that the time
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evolution of high-intensity regions slows down [38].
Therefore, in the present case, the method is particularly
accurate up to a distance Z1 (first-appearance time). Small
longitudinal deformations appear at longer evolution scales
[Figs. 2(a) and 2(b)], and the relative distance between the
observed AB structures cannot be accurately evaluated.
This fact explains the discrepancy with theory for the
value of the recurrent period when measured through the
Z distance between returning intensity maxima. In particu-
lar, the recurrent AB seems to appear at an effective
distance that is always shorter than expected according
to theoretical predictions. Moreover, as the nonlinearity
finally saturates in time, the field dynamics at large
Z departs from that of the integrable model, and evolution
towards thermalization is observed.

3. Analysis of the recurrence

The intensity traces detected as the normalized distribu-
tion I=I0 ¼ jψ j2 reaches their maxima are compared with
the Akhmediev breather profile in Eq. (4). In fitting the data
in Figs. 2(c)–(d), the coefficients ξm, k, ϑ, and Xm are
considered as bounded parameters. The detected recurrence
partial period is analyzed according to Eq. (3); for
the measurements in Fig. 3(a), we consider a logðb=εÞ
as a fitting function, with a and b free parameters. In
Fig. 3(b), we use a logðbðk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

max − k2
p

Þ2Þ=k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

max − k2
p

,
where a and b are free parameters andKmax ≈ 0.03 μm−1 is
the wave vector with maximum gain that we independently
measure from spontaneous MI of the background
wave. In Fig. 3(d), the detected Zm is compared to
logða=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c21 þ c22 − 2c1c2 cosðϕþ bÞ

p
Þ, with a, b, c1, and

c2 being bounded parameters. In this case, it is interesting
to note that the fitting procedure returns c1 ≃ c2, that is, a
balanced condition for the interferometer arms, as settled in
the experiment. In Fig. 3(e), the fitting functions
are aþ b=½cosðϕÞ − cosðcÞ�, as predicted for the symmet-
ric case jc1j ≈ jc2j. As for the retrieval of the input
perturbation, from the observed recurrences in Figs. 4(a)
and 4(b), we measure, for example, k ¼ 0.021 μm−1,
Δ ¼ 1� 1 μm, Z0

1 ¼ 2.6� 0.1, ϑ ¼ 0.1, which, for X1 ¼
208 μm, gives B ¼ −40.1� 0.3 and A ¼ 0.33� 0.02. For
comparison, B ¼ −40.9� 0.2 and A ¼ 0.34� 0.01 are the
values obtained by fitting the experimental initial intensity.
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