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Alzheimer’s Disease (AD) is the most common form of dementia 
in the elderly and it is clinically characterized by gradual worsening 
of the symptoms. Patients affected by AD have, at the initial stage of 
the pathology, mild memory loss, difficulty performing routine tasks, 
trouble communicating and understanding written material. At the 
final stage of the disease they lose the ability to feed themselves, speak, 
recognize people and a constant care is typically necessary.

At microscopic level AD is characterized by neuronal cell loss and 
increasing deposition of Neurofibrillary Tangles (NTF) inside the cells 
and formation of amyloid plaques in the spaces among neurons and in 
the walls of blood vessels [1].

NTF are insoluble twisted fibers consisting primarily of the Tau 
protein, which, in physiological conditions, forms the microtubules. 
In Alzheimer’s disease, however, Tau is chemically changed and the 
microtubule structures collapse.

Amyloid plaques are mainly composed by the amyloid beta peptide 
(A-beta), a 39-to-43 peptide originating from the sequential enzymatic 
cleavage of the larger trans-membrane protein called Amyloid 
Precursor Protein (APP). Accumulation of A-beta is hypothesized to 
trigger the pathogenic cascade leading to AD [2] and in the last decade, 
many observations confirm that small A-beta oligomers, (also called 
A-beta-Derived Diffusible Ligands (ADDLs)) instead of large fibril 
aggregates, are the most dangerous and toxic species in the AD onset 
[3,4]. Their accumulation and binding in the proximity of synapses 
causes oxidative stress, loss of spines and receptors critical for neuron 
plasticity and memory [5].

On the basis of the large number of observations, since the first 
years of the XXI century it has been suggested a close tie between AD 
and disorder in insulin signaling, in particular the insulin resistance 
associated to diabetes type 2 [6-10] so that AD is recognized as a 
neuroendocrine disorder and it has been defined as a type of “diabetes 
type 3” or “brain diabetes” [11,12]. 

It has been reported [13] that insulin can protect cultured rat 
neurons against A-beta induced toxicity. Experimental data [14] 
have demonstrated that A-beta competes for binding of insulin to its 
receptor. This results in a decrease in the autophosphorylation of the 
insulin receptor. Other studies indicate that insulin, interacting with 
A-beta, inhibits its fibrillar growth, as shown in a cell-free assay and 
in the cell surface of human brain pericytes, reducing the A-beta toxic 
effect [15]. Recently, it has been proposed that physiological insulin and 
pathological ADDLs are capable to regulate their mutual binding site 
abundance, creating a competitive balance between synapse survival 
and degeneration. The decline of the insulin signaling in the brain with 
the age displaces this delicate equilibrium in favor of the ADDLs [5]; 
thus, the use of new drugs recovering this balance could be a promising 
therapeutic strategy. 

On these starting points, what is, at molecular level, the effect of 
insulin against A-beta toxicity? Some evidences indicate that insulin can 
recover the cell viability by inhibition of intrinsic apoptotic program, 
involving caspase 9 and 3 activation [10]. Moreover, insulin prevents 

mitochondrial dysfunction by inhibition of the Reactive Oxygen 
Species (ROS) formation and activation of specific cell signaling. Insulin 
activates the serine-threonine kinase Akt, a protein involved in survival 
pathway, suggesting that insulin signaling provides a physiological 
defense mechanism to contrast the death program triggered by A-beta 
oligomers [16,17]. 

Akt phosphorylation needs activation or inhibition of several 
proteins involved in the apoptotic signaling cascade such as the Bcl-
2 protein family. Furthermore, insulin promotes its survival program 
by shuttling of Akt in different sub-cellular compartments [18]. 
Translocation of Akt from the cytoplasm to the nucleus, induces 
negative regulation of gene expressions via Foxo3a, a pro-apoptotic 
transcription factor. Akt translocation from the cytoplasm to the 
mitochondrion mediates, instead, the protection of this organelle 
through phosphorylation of Bad and probably HK-II, two proteins 
involved in cell death. Thus, the same molecule, depending on its 
phosphorylated or unphosphorylated state, can be present in different 
cellular compartments such as nucleus, cytoplasm and mitochondrion 
and this localization is essential to determine whether the cell will live 
or die. Therefore, a precise balance between signals promoting survival 
and apoptosis is important for determining cell fate [18]. Because 
insulin signaling in the brain is known to decline with age the result of 
this balance represents a risk factor for AD well suited for therapeutic 
intervention with the same insulin.

In the last few years many attempts have been done to slow or stop 
the AD progression with the aid of insulin but the usual method used 
to treat diabetes could be very dangerous for AD patients and for this 
reason alternative routes of administration have been explored.

The intranasal administration of insulin, already tested for diabetes 
treatment, to AD patients has improved delayed memory. Changes in 
memory and function were associated with changes in the A-beta 42 
level and in the Tau protein–to-A-beta 42 ratio in cerebrospinal fluid 
[19]. Unfortunately, together with positive effects this method presents 
contraindications such as irritation and damage of the nasal mucosa 
[20] and, surely more important, increase of the systolic, diastolic and 
mean arterial blood pressures [21]. 

The improvement of delivery systems capable to overcome the 
blood brain barrier and deliver the insulin straight in the brain could be 
a promising route to avoid unpleasant side effects.
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