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Abstract: The iron industry is the largest energy-consuming manufacturing sector in the world,
emitting 4–5% of the total carbon dioxide (CO2). The development of iron-based systems for CO2

capture and storage could effectively contribute to reducing CO2 emissions. A wide set of different
iron oxides, such as hematite (Fe2O3), magnetite (Fe3O4), and wüstite (Fe(1−y)O) could in fact be
employed for CO2 capture at room temperature and pressure upon an investigation of their capturing
properties. In order to achieve the most functional iron oxide form for CO2 capture, starting from
Fe2O3, a reducing agent such as hydrogen (H2) or carbon monoxide (CO) can be employed. In this
review, we present the state-of-the-art and recent advances on the different iron oxide materials
employed, as well as on their reduction reactions with H2 and CO.
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1. Introduction

In the last few decades, CO2 emissions have significantly increased, attracting the
attention of the scientific community because these emissions are the main cause of the
greenhouse effect [1,2]. The rise of the CO2 concentration in the atmosphere is due to
deforestation [3] and highly energetic industries, particularly in the sectors of chemicals [4],
power, and steel, largely sustained by fossil fuels [5,6]. The steel industry alone is responsi-
ble for ~7% of the total CO2 emission because of the wide use of fossil fuels [7,8].

Despite the increasing share of renewables for power generation and the acceleration
towards the utilization of H2 as a combustible in the steel industry [9,10], the International
Energy Agency (IEA) reports that currently more than 80% of the world’s energy is still
based on fossil fuel combustion [11,12], and in a mid-term scenario all large scale/industrial
plants should employ some type of equipment in order to reduce CO2 emissions [13,14].
For this reason, a wide set of energy companies are developing and testing strategies of
carbon capture and sequestration (CCS) [15,16]

CCS [17,18] includes the separation, liquefaction, and finally storage of CO2. The CO2
can be stored (i) in deep ocean masses, (ii) in deep geological formations, or (iii) in the form
of carbonates [19,20]. The most promising sequestration sites are the geological formations
due to the possibility of storing ~2000 Gigatons of CO2 [21,22]. In particular, the injection
of CO2 in oil reservoirs, mixed with different types of surfactants [23–27], is a validated
technology to enhance oil recovery (EOR) [28,29]. Indeed, the combination based on the
capture of CO2 and its employment in EOR technology effectively reduces the CCS costs.
Unfortunately, nowadays there are no power plants present that can operate with complete
CCS methods because of the high cost and energy penalty of the capture stage, especially
for hot and dilute flows derived from power plants [30,31]. Recent advances in research
are primarily aimed at reducing costs and increasing the efficiency and selectivity of CO2
separation and capture [32,33].

CO2 capture technologies are based on either chemical [34] or physical methods [35].
In physical methods, CO2 is adsorbed by a solid and is further released by decompression
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and/or heating under different conditions of temperature and pressure [36,37]. Contrari-
wise, the chemical methods are based on chemical reactions between CO2 and liquids, such
as amine solutions, or reactive solid sorbents, such as CaO [38,39]. The current benchmark
for CO2 capture in coal, oil, or natural gas power plants and other heavy industrial pro-
cesses is absorption with amine solutions [40–45], while calcium looping capture is one
step back in the Technology Readiness Level (TRL) [46]. Unfortunately, capture with amine
solutions is very energy-intensive and expensive [47,48]; indeed, amine systems are capable
of capturing ~85% of the CO2 from the exhaust gas of a fossil-fuel power plant but with a
penalty of ~25% of the plant electricity production [49,50].

CO2 capture with membranes is a more recent solution but does not yet represent a
mature alternative to amine capture. Indeed, their convenience is hampered by the large
amount of exhaust gas that has to be treated [51,52]. The scientific community is, in fact,
focusing on the enhancement of CO2-nitrogen (N2) membrane selectivity by using the
facilitated mechanism membranes [53,54].

Another approach which has been recently gaining a prominent role is the use of
metal oxides, such as iron oxides, magnesium oxides (MgO), and calcium oxides (CaO), for
CO2 capture, via the formation of carbonates [55,56]. In the second step, carbonates can
be heated up to release back pure CO2 gas and regenerate metal oxides [57,58]. Overall
a cyclic process can be set, which includes the exothermic carbonation reaction and the
endothermic carbonate decomposition [59,60].

In this review, we discuss the prospects of iron oxides in the context of energy transi-
tion, with a particular focus on their application for CCS. The features of the different types
of iron oxides and their suitability for CO2 capture will be surveyed. The thermodynamic
and kinetic aspects of iron oxides reduction with H2 or CO are also addressed.

2. Iron Oxides in the Context of Energy Transition and CCS
2.1. Motivation for the Use of Iron Oxides in CCS

The use of iron in the context of CCS is particularly appealing thanks to its large
availability across the globe [61–63] and relative economy.

Iron is present in the planet mainly as hematite (Fe2O3), magnetite (Fe3O4), and wüstite
(FeO). Other iron-based compounds include sulfides, hydroxides, and carbonates [64–66].

Iron oxides have been proposed both for pre-capture processes, such as chemical-
looping combustion (CLC) [67–69], and for post combustion CO2 capture. CLC processes
have been developed in order to increase the concentration of CO2 in the exhaust gases,
thus reducing the costs of post combustion CO2 capture processes. The high concentration
of CO2 is attained by performing carbon oxidation in a Fuel reactor, where the airflow is
replaced by recycled flue gas. Here the oxygen necessary for carbon oxidation is released
from the metal oxygen carriers, in particular iron oxides, which reduce to iron. The latter is,
then, re-oxidized in a reactor, named the Air reactor, and recycled back to the Fuel reactor.

As far as the post combustion capture applications are concerned, iron has been pro-
posed for the preparation of enhanced sorbents and used in combination with carbonaceous
supports. However, the simplest and probably most direct and economic way to exploit
iron oxides, in particular Fe2O3 and Fe3O4, is for capturing CO2 from exhaust gases through
the formation of carbonates (siderite FeCO3). The carbonation stage can be followed by a
high temperature decarbonation step to regenerate iron and release gaseous CO2. Such a
solution appears particularly appealing for capturing CO2 from steel plants, where iron
powders (even waste) are available on site and can be profitably exploited. Iron carbonates
can be regenerated through the decarbonation reaction either in the same facility [70], or at
locations far from the CO2 emission/capture sites.

In this context, another important advantage can be envisaged: siderites can be safely
transported via trucks, allowing CO2 transport without the need of pipelines. However,
in the techno-economic analysis, it must be considered that for the transport of 44 ton of
CO2, approximately 116 ton of material (in the form of siderite) must be handled (for a
ratio of 44/156 = 0.38 g/g, which can be compared with the values of 0.1–0.3 g/g reported
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for CO2 capture over metal organic frameworks (MOFs) [71]. Another issue that has
to be considered for the economy of the process is that, in order to capture CO2, the
divalent or trivalent oxides of iron must be previously reduced in the metallic state [72,73]
by a reduction agent, such as H2 or CO. This step is crucial and might end up being
the bottleneck of the process. This step will, indeed, be addressed in detail in the next
paragraphs. Finally, the possibility of the utilization of iron materials over repeated cycles
needs to be further investigated.

2.2. Hematite

Fe2O3 is one of the most important ores for industrial applications and represents
60%, of the iron ore reserve worldwide [74]. Oxygen (O2) carriers using Fe2O3 as an active
phase [75] or natural Fe2O3 have been widely investigated in the context of CLC. Notably,
Al2O3 and SiO2 in combination with Fe2O3, can further enhance the properties of O2
carriers in CLC, their durability and reactivity [76].

Some studies investigated the use of Fe2O3 in natural ores and in waste materials as
oxygen carriers in the CLC of fossil fuels, including coal and biomass with gas. Indeed,
Zhang et al. studied the use of natural Fe2O3 in the CLC of coal under pressurized
conditions and their results found no sintering on the Fe2O3 surface and good reaction
performance [77]. Gu et al. used natural Fe2O3 [78] in the CLC of sawdust at 800 ◦C. Song
et al. investigated the natural Fe2O3 CLC combustion of ShenHua bituminous coal and
HuaiBei anthracite [79].

Furthermore, Fe3O4 and Fe2O3 can be employed as sorbents for CO2 capture. Indeed,
Mendoza et al. have investigated CO2 capture and release employing Fe2O3 and Fe3O4. In
particular, the chemical reactions among CO2 and iron oxides were explored versus both
the CO2 pressure and ball mill process parameters. The experimental results indicated
that the carbonation of iron oxides can be achieved at 10–30 bar and at room temperature.
Furthermore, the complete calcination of FeCO3, was investigated under Ar and vacuum
atmospheres and it was found that at 367 ◦C FeCO3 decomposed, yielding carbon and or
ion and Fe3O4. In particular, it was highlighted that this mixture can reversibly capture
CO2 in several carbonation–calcination cycles [36].

2.3. Magnetite

Fe3O4 is an iron oxide widely employed as a component of industrial heterogeneous
catalysts for its availability, stability, and low cost [80]. It has a spinel structure, and the
mixed valence state, +2/+3, of the Fe can catalyze both acid–base and oxidation–reduction
reactions [81]. For instance, in the Haber–Bosch process, Fe3O4 is part of the catalysts
employed for ammonia production, in which Fe3O4 is reduced by H2 to the active form
α-Fe, allowing the adsorption and dissociation of the N2 molecules [82].

In the last decade, in the CO2 capture scenario, Fe3O4 has also been used to produce
amine-functionalized nanofluids with higher CO2 absorption rates than pure solvents [83].
Fe3O4 nanoparticles attracted scientific attention thanks to their low toxicity and high stabil-
ity [84]. Park et al. have developed novel nano absorbents composed of Fe3O4 nanoparticles
functionalized with different organic and inorganic materials such as (3-Aminopropyl) tri-
ethoxysilane (ATS), tetraethyl orthosilicate (TeOS), and L (+)-ascorbic acid (A). In order
to synthesize an Fe3O4 double-functionalization, a primary coating with A followed by
a secondary SiO2 shell and subsequently, the amine functionalization by means of ATS
was applied. The CO2 absorption capacity of newly functionalized material, with A, was
11% higher than that of the un-functionalized ones, Fe3O4-SiO2-NH2. However, in order
to determine the absorption improvement of functionalized material at 25 ◦C, concentra-
tions ranging from 0.1 to 0.4 wt% were compared with those in which water was used
as a reference. The highest CO2 absorption improvement of 59.2% was achieved at a
concentration of 0.3 wt% which is higher than blank Fe3O4, Fe3O4-A-SiO2 at 0.3 wt%.
Furthermore, a demonstration of cyclic performances was established in order to test its
potential employment for industrial applications [85].
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The observed enhancement of the CO2 absorption of iron-amine-based nanofluids
has been attributed to improved mass transfer compared to conventional amines solu-
tions, thanks to a combination of effects [86]: the hydrodynamic effect [87,88], the shuttle
effect [86,89], and the bubble-breaking effect [90,91]. However, these nanofluids still have
limitations for industrial applications because they are susceptible to acid and oxidation
conditions.

Furthermore, recently, a mechanochemical process aiming at capturing CO2 by using
Fe2O3 and Fe3O4 has been employed in the CO2 capture field; this process led to the
formation of FeCO3 via carbonation reactions (1) and (2) [36].

Fe3O4(s) + Fe(s) + 4CO2 → 4FeCO3(s) (1)

Fe2O3(s) + Fe(s) + 3CO2 → 3FeCO3(s) (2)

In particular, Mendoza et al. [36], have investigated the ball milling condition effects
(revolution speed, pressure, and reaction time) for both reactions (1) and (2) and found
that the capturing capacity of the Fe2O3 and Fe system was higher than that of Fe3O4 and
Fe at the same conditions of pressure, temperature, and reaction. In particular, the results
demonstrated a capture capacity of 7.98 mmol CO2 g−1

sorbent in 3 h at 200 ◦C and 10 bar
CO2 pressure. Furthermore, the oxides could be completely regenerated by applying an
oxidation step at 350 ◦C under airflow [15].

2.4. Wüstite

Wüstite is not commonly found as a natural material but is an intermediate derived
from the reduction of iron ores, Fe2O3 and Fe3O4. The chemical formula of wüstite is
Fe(1−y)O, where y is the relative number of the ferrous iron ion vacancies. The O2 content
can change at different temperatures from a 23.16 wt% to 25.60 wt% range in variation.
Fe(1−y)O is thermodynamically unstable and prone to re-oxidize at ambient conditions;
however, it can be also further reduced to metallic iron using agents such as carbon (C),
CO, and H2.

Recently O2 carriers composed of Fe(1−y)O mixed with other oxides, such as those of
manganese (Mn) have been used in the chemical looping combustion of coal. It has been
found that a fraction of O2 was transferred via an uncoupling mechanism [92]. Perèz-Vega
et al. prepared particles starting from Mn3O4 and Fe2O3 powders with an atomic ratio
fixed at Mn:Fe, 77:23 by a ball mill. Subsequently, the solids mixture was calcined for 4 h at
1050 ◦C, and the calcined solid was milled for 300 min. Furthermore, the material behavior
was evaluated during both the decomposition–regeneration of the [(Mn0.77Fe0.23)2O3]
phase, bixbyite, in chemical looping with O2 uncoupling, and the reduction–oxidation of
[(Mn0.77Fe0.23)3O4], spinel phase, with CO, H2, and CH4. In particular, the chemical looping
combustion redox cycle, using gaseous fuels, highlighted high reactivity with CO and H2
and high O2 transport capacity due to the reduction of [(Mn0.77Fe0.23)O], mangano-wüstite
phase. Therefore, this material is considered a promising candidate to be employed in CLC
with both coal and gas [93].

Furthermore, even if the wüstite is not stable, it has been used in combination with
MgO in order to increase the CO2 capture capability of MgO sorbents. Chen et al. investi-
gated the ferric salt effect on the adsorption of strong solid bases in order to determine the
optimal FeO amount to increase the CO2 capture in flue-gas at T > 150 ◦C. They synthesized
the FeO–MgO using magnesium acetate and ferrous acetate. In particular, after grinding
and carbonization treatments of the two salts at 550 ◦C, a composite FeO-MgO is obtained
in which the ferric species are surrounded by magnesia particles with a surface area higher
than 160 m2 g−1. Furthermore, with a 3% mass ratio of FeO the basic sorbent can capture
35 mg g−1 CO2 at 150◦. The CO2 capture capacity and the ratio of strong basic sites results
are higher than those of other MgO sorbents, resulting in an optimal situation for warm
CO2 capture [94].
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3. Thermodynamics of Carbon Capture with Iron Oxides

In order to obtain low-cost iron products with high performances from natural iron
ores, the reactions with reducing agents such as H2 and CO need to be investigated in
detail. The kinetics and thermodynamics of these reduction reactions will be discussed in
the following chapter.

The reduction of Fe2O3 to the metallic iron (Fe) occurs stepwise. At temperatures >
570 ◦C, reduction is composed of three steps (Fe2O3 → Fe3O4 → Fe(1−y)O → Fe) according
to the Equation (3a–c). At temperatures < 570 ◦C, Fe2O3 reduces firstly to Fe3O4 and then
to Fe (Fe2O3 → Fe3O4 → Fe), according to the two-step reaction reported in Equation (4a,b),
while the Fe(1−y)O intermediate is unstable.

3Fe2O3 + H2 → 2Fe3O4 + H2O T > 570 ◦C (3a)

(1 − y)Fe3O4 + (1 − 4y)H2 → 3Fe(1−y)O + (1 − 4y)H2O (3b)

Fe(1−y)O + H2 → (1 − y)Fe + H2O (3c)

3Fe2O3 + H2 → 2Fe3O4 + H2O, T < 570 ◦C (4a)

Fe3O4 + 4H2 → 3Fe + 4H2O, (4b)

The stability of different iron oxide forms can be analyzed by the diagram composed
of temperature versus O (wt%/100) reported in Figure 1.

Energies 2024, 17, x FOR PEER REVIEW 5 of 22 
 

 

can capture 35 mg g−1 CO2 at 150°. The CO2 capture capacity and the ratio of strong basic 
sites results are higher than those of other MgO sorbents, resulting in an optimal situation 
for warm CO2 capture [94].  

3. Thermodynamics of Carbon Capture with Iron Oxides 
In order to obtain low-cost iron products with high performances from natural iron 

ores, the reactions with reducing agents such as H2 and CO need to be investigated in 
detail. The kinetics and thermodynamics of these reduction reactions will be discussed in 
the following chapter.  

The reduction of Fe2O3 to the metallic iron (Fe) occurs stepwise. At temperatures >570 
°C, reduction is composed of three steps (Fe2O3→Fe3O4→Fe(1−y)O→Fe) according to the 
Equations (3a–c). At temperatures <570 °C, Fe2O3 reduces firstly to Fe3O4 and then to Fe 
(Fe2O3→Fe3O4→Fe), according to the two-step reaction reported in Equations (4a,b), while 
the Fe(1−y)O intermediate is unstable. 

2 3 2 3 4 23Fe O H 2FeO H O+ → +  T > 570 °C (1a)

( )( ) ( ) ( )3 4 2 1 y 21 y Fe O 1 4y H 3Fe O 1 4y H O−− + − → + −
 (3b)

( ) ( )1 y 2 2Fe O H 1 y Fe H O− + → − +
 (3c)

2 3 2 3 4 23Fe O H 2FeO H O+ → + , T < 570 °C (4a)

3 4 2 2Fe O 4H 3Fe 4H O+ → +
, (4b)

The stability of different iron oxide forms can be analyzed by the diagram composed 
of temperature versus O (wt%/100) reported in Figure 1.  

 
Figure 1. Binary system of Fe-O in which the effect of temperature versus O wt%/100 is reported. 
Reprinted from [95]. 

Figure 1. Binary system of Fe-O in which the effect of temperature versus O wt%/100 is reported.
Reprinted from [95].

The oxygen-to-iron content in the Fe-based systems scales in the following order:
Fe2O3 > Fe3O4 > FeO. As previously mentioned, FeO is stable at T > 570 ◦C while at
T < 570 ◦C Fe2O3 decomposes to Fe3O4 and Fe. However, the FeO stability area expands
by increasing the temperature, because not all places in the lattice are occupied by iron ions.
For this reason, the FeO formula has to be considered as Fe(1−y)O in which 1−y represents
vacancies in the iron lattice [96].

The Baur–Glässner diagram based on the thermodynamics of iron ore reduction is
shown in Figure 2.
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equilibrium for 1 bar and a carbon activity of 1. Reprinted from [95].

In particular, the diagram describes the stability areas of the different iron oxide
phases during the reaction with H2 (continuous three-phase line) and with CO (dashed
three-phase line) as a function of gas oxidation degree (GOD) and temperature [95,97]. The
GOD value is determined as the ratio of oxidized gas components over the sum of oxidized
and oxidizable gas components (e.g., for a CO-CO2 mixture, GOD = CO/(CO + CO2)) and
is an indicator of the reduction force of a gas mixture (the lower the GOD, the higher the
reduction force of the gas mixture). It is possible to note from the diagram that when
reduction is carried out with H2, the stability region of Fe increases with temperature
and GOD. Contrariwise, when reduction is carried out with CO, Fe is never stable for
GOD > 0.5 and the iron stability region decreases with temperature for GOD < 0.5.

Therefore, in order to achieve Fe with H2 the temperature of reduction must be lowered
as the GOD decreases. Instead, in order to achieve Fe with CO, GOD must be kept above
0.5 and the temperature of reduction must be increased as the GOD decreases. For the best
possible gas utilization, it is therefore recommended to operate at high temperatures with
H2 and at low temperatures with CO.

For the Fe-C-O system, the Boudouard reaction, see Equation (5), must also be consid-
ered. For this reason, the corresponding equilibrium line (calculated assuming a carbon
activity of 1 and a pressure of 1 bar) is also reported in the diagram.

2CO ⇄ CO2 + C (5)

The Boudouard equilibrium line delimitates the Baur–Glässner diagram into two sec-
tions. For a CO-CO2 gas mixture with composition and temperature below the equilibrium
line, carbon precipitation can occur and hinder the reduction.

Furthermore, it is necessary to highlight that the reduction with CO is exothermic,
while the reduction with H2 is endothermic; therefore, in this case energy must be added to
the system in order to maintain a constant reaction temperature. From an industrial point
of view, an adequate process design, that involves the pre-heating of the materials, could
aid in overcoming issues due to the supply of energy to the system [95].

4. Morphology and Microstructural Properties of Iron Oxides

Iron oxides involved in industrial processes and research activities have different
features such as particle size, porosity, and purity degree. The true density of iron oxides
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decreases in the order Fe > Fe(1−y)O > Fe2O3 > Fe3O4 (7.86 > 5.46 > 5.20 > 5.16 kg/m3 [98].
However, bulk or apparent density depends on porosity. In several industrial applications
cm-size pellets or briquettes are used, compacting finer grains, from tens of micrometers to
a few millimeters in size. The interstices between the grains generate large macroporosity
from micro to even millimetric scale, while pores inside the fine grains contribute with
smaller (micro and mesopore) range porosity.

Hakim et al. investigated the microstructure of fine powders of different iron oxides
by SEM, shown in Figure 3. In particular, a honeycomb structure can be observed for FeO,
a rhombohedral lattice for Fe2O3, and a clear cubical structure for Fe3O4. In terms of poros-
ity, the following average pore diameters (dpore) and pore volumes (Vpore) are reported:
dpore= 62.5 nm and Vpore = 0.0003 cm3/g for FeO; dpore = 17.5 nm and Vpore = 0.029 cm3/g
for Fe2O3; and dpore = 15.5 nm and Vpore = 0.018 cm3/g for Fe3O4 [99].
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4.1. Porosity Changes in Reduction of Iron Ores

The porosity and density of the iron ore materials are key parameters controlling the
reduction kinetics of the iron ore materials [100]. An analysis of the cross sections of large
and hard particles after partial reduction reveals that reduction follows a topochemical
pattern and concentric layers of different oxides are established, composed of Fe2O3, Fe3O4,
Fe(1−y)O and Fe, respectively. Concentric layers are not observed for porous particles,
yet a topochemical type of reduction could still be possible at a smaller scale, within the
micro-grains which constitute larger pellets, Figure 4.
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In several papers, the mutual relationship between porosity and reduction rate or
progress was addressed [96,101,102].

Ghadi et al. compared several pellets of iron ores and highlighted the porosity, grain
size, and particle size effect and found that the rate of reduction increased linearly with the
initial porosity degree of the samples, Figure 5 [103,104].
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Figure 5. Pellet porosity effect on the rate of reduction for different iron ore samples. Reprinted
from [104].

Sarkar et al. [100] reported, instead, for twenty different samples of Fe2O3 pellets
(diameter 12 mm), a progressive decrease in porosity and increase in density upon reduction
at 900 ◦C with CO and H2.

El-Geassy et al. studied the effects of temperature on the structure of Fe2O3 pellets
upon reduction with H2 and reported different trends in the evolution of porosity, according
to the compaction degree and grains particles size. Indeed, for the less porous/more com-
pact pellets and larger grains size, high temperature and prolonged reduction treatments
induce sintering, which reduces the reactivity of the samples [101]. On the other hand, for
highly porous pellets and small grain sizes [105], sintering effects are less important, while
the densification of the unreduced oxide grains results in an overall increase in porosity
and reduction reactivity.

4.2. Effect of Gangue on Reduction Kinetics and Porosity

Iron ores also contain additional gangue, such as Al2O3, SiO2, CaO, and MgO, in
different amounts, depending on the ore and the enrichment process. In general, gangue
can have a prominent effect on the reduction rate of iron oxides and on sintering [101].

Teplov et al. investigated the rate of reduction with H2 of natural Fe3O4 concentrates
in the range 300–570 ◦C and observed that stronger oxides, such as Al2O3, Ti2O3, V2O3,
Mn3O4, and MgO, that form solid solutions with Fe3O4, decrease reduction rate, because
they decrease the Gibbs thermodynamic potential and the equilibrium oxygen pressure
over Fe3O4. Among these oxides, Al2O3 strongly decreases the rate of hydrogen reduction
of Fe3O4, while MgO showed a weak effect [106].

Kapelyushin et al. investigated the effect of Al2O3 on the reactivity of iron ore reduc-
tion. In particular, they compared the reduction rate of undoped and doped Fe3O4 with
CO-CO2 gas mixtures at different temperatures. As shown in Figure 5 of [107], an amount
of alumina, 3%, enhances the reduction reactivity of iron ore, but for higher amounts of
alumina the effect is reversed and reduction rate decreases [107,108].

Paananen et al. also investigated the effect of alumina on Fe3O4 during reduction
in a CO/CO2 gas mixture at 850 ◦C and found that an Al-doped Fe3O4 sample reduces
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more rapidly than the undoped Fe3O4 sample [109]. They attributed this to swelling and
crack formation, suggesting that, upon doping, Al cations diffuse into the Fe3O4 structure
forming hercynite. Upon reduction, high tension forces in the Fe3O4-hercynite phase close
to the interface with the FeO would cause the disruption of the structure and generation
of creaks.

As far as Ca is concerned, different papers addressed the effects of lime as well as of
calcium carbonate on the reducibility of iron ores, and showed that their effect is beneficial,
resulting in an enhancement of porosity upon reduction [101,110]. On the contrary, MgO
would have a detrimental effect on iron reducibility [111]. As far as SiO2 is concerned,
controversial results have been reported in the literature; however, it seems that the effect
of silica alone on the reduction reactivity of iron ores [112,113] can be considered of lower
importance than that of other gangues, however SiO2 can be involved in the formation of
several phases when it is combined with Fe and Ca, such as in fayalite and calcio-ferrite.

4.3. Microstructural Changes in CO2 Capture by Iron Oxides

The relation between microstructure and CO2 captures by Fe2O3, Fe3O4, and FeO has
been widely investigated in the literature [96,99,114].

Hakim et al. [99] investigated the microstructure and morphology of different iron
oxides upon reaction with CO2. In particular, they compared materials before and after
CO2 exposure for 4, 24, and 48 h and observed differences in carbonate growth on the
surface, as shown in Figure 6.
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In particular, the formation of bicarbonate, monodentate carbonate, and bidentate
carbonates, as well as the morphological changes of the iron particles were observed.
For FeO, SEM micrographs highlighted the honeycomb structure that became smooth
and groove-like upon exposure with CO2, suggesting the chemical interaction of the iron
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structure with several carbonate species. For Fe3O4 some sharp nanoparticles, indicative
of carbonate formation, were clearly identified after exposure to CO2; however, the cubic
lattice of the iron oxide was preserved. A similar, but more remarkable effect was observed
for Fe3O4, where nanoparticles form larger aggregates. Among all iron oxides, the uptake
of CO2 was consistently highest with Fe2O3 (at 3.01 mgCO2/g).

5. Kinetics of Iron Ore Reduction

Several papers reported kinetic studies on iron ores reduction in different atmospheres.
The majority, in fact, addressed the kinetics of reduction with H2 and used thermogravimet-
ric methods, either isothermal or non-isothermal. The results obtained are very scattered,
as can be observed from the values of activation energies reported in Table 1, which indeed
span between 57.1 (isothermal test) and 246 (non-isothermal test) kJ/mol. Kinetic models
also spanned from simple first-order reactions to more complex models.

Table 1. Reduction of iron oxides by hydrogen with their amounts of apparent activation energy [95].

Operative Conditions Reduction Reaction Ea (kJ/mol) Reference

Non-Isothermal with H2

Fe2O3 → Fe3O4 246

[115]
Fe3O4 → Fe 93.2

Fe2O3 → Fe3O4 162.1
Fe3O4 → Fe 103.6

Fe2O3 → Fe3O4 139.2
[116]Fe3O4 → FeO 77.3

FeO → Fe 85.7

Fe2O3 → Fe3O4 89.1
[117]Fe3O4 → Fe 70.4

FeO → Fe 104.0 [118]

Isothermal with H2

Fe2O3 → Fe 57.1
[119]Fe2O3 → Fe 72.7

Fe2O3 → Fe 89.9

Fe2O3 → Fe3O4 30.1 [120]

Fe2O3 → FeO 47.0
[121]FeO → Fe 30.0

Fe2O3 → Fe 47.2
[122]Fe2O3 → Fe 51.5

Fe2O3 → FeO 42.0
[123]FeO → Fe 55.0

Fe2O3 → FeO 33.0
[124]FeO → Fe 11.0

Notably, the reliability of kinetic expressions obtained by conventional (thermogravi-
metric) methods for any heterogenous (gas–solid) reaction relies on the fulfilment of
some conditions:

1. Reactions result in a single stage of mass loss or in well-resolved and defined
sequential stages.

2. The structure of the solid reactant is relatively constant throughout the experiment.
3. Inter- and intra-particle mass and temperature diffusion resistances are negligible.
It is evident that, due to the complexity of its reaction scheme, the reduction of iron by

hydrogen does not fulfil the first condition.
The second condition is not fulfilled either, because the reduction of iron oxides leads

to different metallic iron formations (Fe2O3, Fe3O4, and FeO).
As for the third condition, the mass transfer limitation (of the gaseous reactants) can be

avoided by performing experiments at low temperature and with fine particles; however,
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in the reduction of iron ores, even for small particles size, an additional mechanism must
be considered, that is, the transfer of electrons and iron ions generated by changes in
iron oxides.

The complex interactions between physical and chemical phenomena and their impacts
on the rate of the reaction of iron oxides with H2/CO will be better explained in the
following paragraph.

6. Effect of Physical and Chemical Phenomena on the Reaction Rate

The rate of reduction of iron ore particles depends on a complex series of chemical
and transport phenomena, as reported in Scheme 1.
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Scheme 1. Physical and chemical phenomena contributing to the reduction rate of porous iron
ore particles.

The first step is the mass transfer of the reducing gas from the bulk of the gas phase to
the particles’ outer surface. This is followed by diffusion within pores and chemical reaction
(including adsorption on the iron oxide internal surface and phase boundary reaction).
Chemical reactions inside the particles produce gaseous products (CO2 or H2O), which
have to diffuse towards the particle’s outer surface, through particle pores. Electrons and
iron ions generated by changes in iron oxides, instead, diffuse towards the particle’s inner
core by means of a solid-state diffusion mechanism. Reaction fronts and even concentrical
layers of solid reduction products can therefore be established inside the particle as already
shown in Figure 4 [125].

Notably, solid-state diffusion, which involves interstitial sites and defects, is much
slower than gas diffusion and strongly dependent on the form of iron oxide. Gas transport
in porous particles, instead, occurs through molecular diffusion mechanisms in pores with
diameters larger than the mean free path, and according to a Knudsen diffusion mechanism
in pores with diameters smaller than the mean free path [126].

As reported in previous paragraphs, reduction and heat treatment can progressively
alter the porosity and microstructure of the material and modify the controlling reaction
pattern. Two opposite phenomena are possible: on one side, the formation of creaks upon
reduction can generate new porosity, which facilitates gas diffusion, and on the other
side, sintering and the formation of dense iron layers reduces porosity and slows down
gas diffusion.

Generally, in the literature, at least for fine particles [127–130], the first stage of re-
duction, Fe2O3 → Fe3O4, is relatively fast and limited by gas diffusion, while the second
stage of the reaction, whereby Fe3O4 is reduced to Fe(1−y)O or Fe, is slower and parameters
such as temperature, concentration, particle size, and porosity all contribute to determine
the rate-limiting step [123,124]. In particular, Table 2 reports a selection of experimental
works that highlighted the rate-limiting process in the reduction of Fe3O4 to Fe(1−y)O or Fe
for different particles typology (grains or pellets), size, morphology, and porosity, and for
different process parameters such as temperature, pressure, and gas composition. Results
are also summarized in Figure 7a, for the reaction with H2 and H2/CO mixtures, and in
Figure 7b, for CO and CO/H2 mixtures.
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Figure 7. Experimental works on rate-limiting step in reduction of Fe3O4 to Fe(1−y)O or Fe for
different parameters: (a) reaction with H2 and H2/CO mixtures [101,105,106,123,125,131–137] and
(b) reaction with CO and CO/H2 mixtures [101,125,130,131,133–135,138,139].

At high temperatures and for large particles size or large porosity, the rate-limiting
step is generally external mass transfer. On the contrary, for low temperatures and fine
particles size, intrinsic kinetics/phase boundary reaction controls the overall rate [140–142].
In intermediate cases, the controlling rate mechanism could be either gas or solid-state
diffusion and even mixed regimes are possible where, for example, transport and phase
boundary reaction have comparable relevance [106,132].
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Table 2. The effect of different parameters on iron oxide reduction.

Reducing
Agent Particle Size Porosity (ε) T (◦C) P (bar) Ea (kJ/mol) Limitation Steps

(2nd Reaction Step) Reference

H2

4 mm ×
4 mm ×

8 mm
- 900–1100 - 99.2 Solid-state diffusion [138]

H2, CO 125 to
500 µm 0.15 350–600 10 91 Phase boundary

reaction [125]

CO 100–150 µm - 700–850 - 80
Nucleation of FeO
and then internal

diffusion
[136]

H2 <74 µm 0.54 500–1100 68

51 for
T < 650 ◦C;

84 for
650–900 ◦C;

176 for
T > 900 ◦C

T < 650 ◦C chemical
reaction,

650–900 ◦C chemical
reaction + solid state

diffusion,
T > 900 ◦C solid state

diffusion

[105]

CO-CO2
H2

50.8 µm 0.0115 240–417 - 71 Phase boundary
reaction [134]

H2/CO/
mixtures 1.07–1.24 cm 0.06 850 - -

Mixed (chemical
reaction + pore
diffusion) at the
beginning, pore

diffusion at the end

[143]

H2/CO - - 800–1000 -
48.64 with

CO
63.19 with H2

First phase boundary
reaction, then pore

diffusion and mixed
regime (at 800 ◦C and

900 ◦C).

[144]

H2 75–180 µm 0.27 700–1000 0.25–1 33 Pore diffusion [123]

H2/CO - - 150–900 - - Solid-state diffusion [135]

H2/CO 1.5–4.4 cm 0.31 700–1200 1–2 -

Gas diffusion
At 700 ◦C in the late

stages solid state
diffusion

[133]

H2
CO/CO2

14 mm - 900 - - Pore diffusion [101]

H2/CO 12 mm - 800–1000 - -
Chemical reaction at
the beginning, pore
diffusion at the end

[137]

H2 50–160 µm 0.5 400 1 - Chemical reaction [106]

H2 100–160 µm 0.5 500 1 - External gas transport
+ chemical reaction [106]

H2 pellets 0.5 300–500 1 - Transport in the
external H2O layer [106]

CO-CO2 ~150 µm 0.69 590–1000 1 -

T < 700 ◦C, mixed
control in the pores
T > 700 ◦C external

gas transport

[130]

CO-CO2 150–500 µm 0.42 590–1000 1 - Chemical reaction [130]

CO-CO2 <75 µm 0.23 590–1000 1 - Chemical reaction [130]
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Table 2. Cont.

Reducing
Agent Particle Size Porosity (ε) T (◦C) P (bar) Ea (kJ/mol) Limitation Steps

(2nd Reaction Step) Reference

H2 0.249 µm - 400–570

131.5 Fe3O4
→ FeO

76.0 FeO →
Fe

Chemical reaction [131]

H2
CO <100 µm - 800–1100 -

41.15 with H2
54.19 with

CO

Phase boundary
reaction [145]

Notably it has also been reported that the rate-controlling step can change through-
out reduction because of changes in the microstructure of the particles [133,136,143,144].
Kawasaki et al. performed the reduction of porous Fe2O3 spherical pellets of a few cen-
timeters in size in streams of pure H2 or CO at temperatures between 700◦ and 1200 ◦C.
At the higher temperature, the reduction rate was entirely diffusion controlled and a shell
of reduction was clearly visible in sections of partially reduced specimens, which moved
concentrically into the core of the samples. However at the lower reduction temperatures,
Fe(1−y)O was trapped inside dense shells of iron impervious to the reducing gas and the
reaction proceeded by solid-state diffusion [133].

Variations in the controlling regime were also observed for finer particles. Chen
et al. studied the reduction kinetics of 100–150 µm Fe2O3 by CO between 700–850 ◦C
and concluded that the initial stage the reduction process was controlled by the gas–solid
reaction occurring at the Fe/FeO interface, but subsequently it was controlled by the
nucleation of FeO, and finally by diffusion. Moreover, the reactions of Fe2O3 → FeO and
FeO → Fe occurred simultaneously but with different time dependences [136].

The changes in reaction regimes throughout the reduction of iron ores can be explained
considering that the true density of the different oxides decreases in the order Fe > Fe(1−y)O
> Fe2O3 > Fe3O4 and that denser iron oxide forms imply slower diffusion [146–149].

Thermodynamic considerations, summarized in the Baur–Glässner diagram, shown
in Figure 2, indicate that transition from Fe3O4 to the denser Fe and Fe(1−y)O occurs above
a critical temperature, whose value, however, varies according to the reduction potential of
the gaseous atmosphere (which is the inverse of the GOD reported in Figure 2). In CO/CO2
mixtures, a transition occurs at a temperature of ~570 ◦C for GOD above 50%, while it
occurs at 1000 ◦C above 30% of GOD transition. In H2/H2O mixtures for GOD above
20%, the transition occurs above ~570 ◦C. As far as the differences between H2 and CO as
reducing agents are concerned, it can be observed that H2 and CO have the same reduction
potential at ~810 ◦C, while at higher temperatures the reduction potential of H2 is higher
than that of CO, while the CO’s reduction potential is higher than H2

′s at low temperatures.
Several authors investigated different gas composition effects on the reduction rate

of iron ores [104,150]. Turkdogan et al. highlighted that the reduction rate of iron ore
pellets in H2/CO mixtures increased with H2 concentration, likely due to its better gas
diffusivity [101]. Also, El-Geassy et al. found that for the reduction of FeO micropellets
between 900 and 1100 ◦C, the rate increased with the percentage of H2 in the gas mixture,
and they observed a neat formation of Fe nuclei. On the contrary, when reduction was
carried out with pure CO, they detected a delay in reduction resulting in an incubation
time [151]. These results confirm that the thermodynamically driven changes of iron forms
end up also having an impact on the reaction rate, because of the different densities of the
iron forms that determine different diffusional resistances which might ultimately control
the overall reaction rate.

In addition, the diffusivity of the reducing agent molecule should be considered.
Indeed, Zuo et al. investigated the reduction rate in a H2/CO atmosphere at 800 ◦C,

where the thermodynamic transition between more or less dense iron forms is comparable
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for H2 and CO, see Figure 3 of [137]. Even under these conditions, they observed that the
reduction rate is higher with H2, thanks to the better diffusivity of the H2 molecule. They
also conclude that increasing the CO amount, even by a small amount, in a gas mixture
hinders the diffusion path of H2 leading to an inhibition of the chemical reaction [137]. The
decrease in the rate when CO is present in the reducing gas was also observed by El Geassy
et al. who attributed it to a poisoning effect of CO molecules on the Fe(1−y)O surface [152].

7. Conclusions, Challenges and Future Perspectives

The use of iron-based materials for CO2 capture is still under exploration; however,
research executed in the last five years has shown that iron oxide materials could facilitate
CO2 capture thanks to their utilization directly in industrial plants. An interesting route for
CO2 capture, especially in the context of steel industry, is the reaction of Fe2O3 or Fe3O4
with reduced iron and with CO2 to form FeCO3. The CO2, captured in the form of FeCO3,
can be easily transported by truck, and on a decarbonation stage, can free the CO2 and
regenerate iron.

While the main advantages of this route are clearly the large availability and relative
cheapness of iron across the globe, a successful application of natural iron ores requires a
careful analysis and comprehension of the relationships between their structural properties
(density, porosity, etc.) and process conditions (temperature, gas composition). The pre-
reduction step, necessary to reduce iron ores to metallic iron, may, in this respect, play a
crucial role.

Luckily, a great deal of information on the microstructural properties of the different
iron oxide forms and on the kinetics and thermodynamics of their reduction can be obtained
from the large amount of literature which has been produced over the last decades in the
context of steel making. The following general indications can be pointed out:

• H2, for thermodynamic and kinetic reasons, is a better reduction agent than CO thanks
to better diffusion behavior. Indeed, the viscosity and the molecule size of H2 are
lower than CO, affecting the diffusion behavior.

• The first step of reduction, leading from Fe2O3 to Fe3O4, below 570 ◦C, is relatively fast
compared to further reduction from Fe3O4 to Fe(1−y)O or Fe; however, it is important
because it opens up porosity.

The rate of reduction of Fe3O4 to Fe(1−y)O or Fe can be limited by structural features
of the starting material and by microstructural changes occurring upon reduction and heat
treatment. The rate-controlling step at high temperatures and for large particle size or large
porosity is generally external gas transport. On the contrary, for low temperatures and finer
particles size, solid-state diffusion or phase boundary reaction can hamper the overall rate.

It is clear from the current state-of-the-art that the best conditions for the production
of iron-based materials, which are not only efficient in capturing CO2, but that can also be
re-used over several cycles, cannot be superficially selected and require a careful analysis
of the material properties, like grain size, porosity, mineralogy, and the presence of gangue.
Further research activity in this field is warmly encouraged to provide guidelines for
the utilization of natural iron ores in CO2 capture, as well as to unlock the potential of
advances/engineered iron-based materials for CCS.
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Abbreviations

Abbreviation Name
CO2 Carbon dioxide
Fe2O3 Hematite
Fe3O4 Magnetite
Fe(1−y)O Wüstite
IEA International Energy Agency
H2 Hydrogen
CO Carbon oxide
CCS Carbon Capture and Sequestration
EOR Enhance Oil Recovery
CaO Calcium oxides
TRL Technology Readiness Level
N2 Nitrogen
MgO Magnesium oxides
CLC Chemical Looping Combustion
FeCO3 Siderite
MOFs Metal organic frameworks
O2 Oxygen
Al2O3 Alumina
SiO2 Silica
Al Aluminium
Fe Iron
ATS (3-Aminopropyl) triethoxysilane
TeOS Tetraethyl orthosilicate
A L (+)-ascorbic acid
C Carbon
Mn Manganese
Mn3O4 Hausmannite
CH4 Methane
GOD Gas Oxidation Degree
SEM Scanning electron microscopy
dpore Pore diameter
Vpore Pore volume
Ti2O3 Tistarite
V2O3 Karelianite
H2O Water
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