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Abstract: Every optical imaging technique is limited in its penetration depth by scattering 
occurring in biological tissues. Possible solutions to overcome this problem consist of 
limiting the detrimental effects of scattering by reducing optical inhomogeneities within the 
sample. This can be achieved either by using physical methods (such as refractive index 
matching solutions) or by chemical methods (such as the removal of scatterers), based on 
tissue transformation protocols. This review provides an overview of the current state-of-the-
art methods used for both ex-vivo and in-vivo optical clearing of biological tissues. We start 
with a brief history of the development of the most widespread clearing methods across the 
new millennium, then we describe the working principles of both physical and chemical 
methods. Clearing methods are then reviewed, pointing the attention of the reader on both 
physical and chemical methods, classified based on the tissue size and type for each specific 
application. A small section is reserved for methods that have already found in-vivo 
applications at the research level. Finally, a detailed discussion highlighting both the most 
relevant results achieved and the new ongoing developments in this field is reported in the 
last part, together with future perspectives for the clearing methodology. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

In every optical and microscopic technique, the capability of imaging deep into a biological 
sample is conditioned by the limited penetration depth of light within biological tissues that 
are optical media characterized by high turbidity [1]. Even if this phenomenon has been well 
known for a long time, the study of Optical Clearing Agents (OCAs), and more in general of 
exogenous agents capable of reducing scattering in biological tissues, enhancing image 
contrast, and increasing imaging penetration depth is relatively recent [2–5]. In the last years, 
OCAs have been largely and successfully used to reduce scattering in both fixed animal and 
plant tissue sections [6], as well as in bulk samples [7], demonstrating their benefits in 
providing a deeper imaging capability for a large variety of optical techniques, including 
optical coherence tomography [4,8], second harmonic generation microscopy [9], confocal 
reflectance microscopy [10–12], two-photon microscopy [13,14] and light sheet microscopy 
[15–17]. The reduction of scattering has proved particularly powerful when performing two-
photon deep tissue imaging, since it has been demonstrated that scattering causes a drastic 
reduction in penetration depth (to less than that of the equivalent single-photon fluorescence) 
while leaving resolution largely unchanged [18,19]. On the other hand, the advent of light 
sheet microscopy (LSM) has opened the possibility of performing fast volumetric imaging 
with optical sectioning capability [20,21]. This technique drastically reduces acquisition time 
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These years coincide with the revival of light sheet microscopy [17] that, together with 
two-photon fluorescence microscopy, provides the possibility of performing large volume 
sample imaging and of obtaining the three-dimensional reconstruction of the tissue anatomy. 
Indeed, thanks to light sheet microscopy, tissue clearing started to have an application not 
only on thin slices but also on bulk samples, like organs or entire organisms (e.g embryos, 
Drosophila) [16]. 

To obtain high tissue transparency, it is necessary to homogenize the tissue refractive 
index with that of the surrounding medium (more detail will follow in the next chapter). 
Biological tissues are characterized by a high refractive index (≈1.50) [28]; also organic 
compounds are characterized by high refractive indexes, therefore they were the first choice 
to clear whole organs. Various methods based on hydrophobic compounds were developed 
[16] to achieve complete transparency of the sample. However, an important drawback of this 
kind of compounds is the quenching of fluorescent proteins (e.g GFP) that occurs even with a 
short time of exposure to these solvents. To avoid this phenomenon water-based solutions 
with high refractive index were tested, giving rise to various hydrophilic-based clearing 
methods. These methodologies, although ensuring the preservation of fluorescence, are 
characterized by an inferior tissue-clearing performance [29]. In 2013, a tissue transformation 
technique called CLARITY [30] opened the way to a new approach: clearing was obtained 
with a manipulation of the sample chemical structure. A hydrogel-tissue-hybridization 
method secures proteins and nucleic acids at their physiological locations by covalently 
linking the molecules to an acryl-based hydrogel, while lipids are removed uniformly from 
the tissue. The resulting specimen is characterized by a low refractive index that can be 
successfully matched with aqueous solutions or mixtures, achieving high transparency. 

In the following chapter, we will discuss in detail the major clearing methods developed 
during the past 20 years and based on both physical and chemical processes. 

3. Physical methods 

Physical methods are based on reducing optical inhomogeneities in the sample by means of a 
refractive index matching reversible process. This is generally achieved using an exogenous 
agent with a refractive index similar to that of tissue scatterers. 

From the optical point of view, biological tissues can be schematically represented as a 
large ensemble of constituents with different sizes, shapes and refractive indexes, acting as 
scatterers, immersed in a homogenous optical medium with the refractive index of water (n = 
1.33). Most tissue components as cells, cell nuclei, collagen and elastin fibers, have refractive 
indexes in the range between n = 1.47 and n = 1.51 [28]. In this naïve depiction, a fluid with a 
refractive index in the range of tissue scatterers, able to diffuse inside a tissue specimen and 
substitute water, would reduce optical turbidity and allow deeper imaging. Refractive index 
matching is not the only process at the basis of tissue optical clearing. In fact, most of the 
agents used are hyperosmotic agents able to cause tissue dehydration thanks to the exerted 
hyperosmotic pressure. The reversible clearing process has not yet been totally explained at 
the microscopic level. The most widespread hypothesis [3,5,8,11,31,32] is based on the 
osmotic pressure exerted by the index matching fluid that diffuses into the tissue specimen 
and causes the subsequent water outflow. The net effect of such a process is an increase of the 
tissue background refractive index with a consequent reduction of scattering through a 
decrease of refractive index gradients within the sample. Based on that, the agent can 
substitute water molecules within the tissue, providing a better refractive index matching with 
respect to that of water, since clearing agents have refractive indices in the range n = 1.43-
1.53, more similar to that of tissue components (n = 1.47-1.51) than to that of water (n = 
1.33). Hence, the two processes of refractive index matching and tissue dehydration under 
osmotic pressure are intimately connected. All the above considerations are valid for ex-vivo 
tissues, whereas the in-vivo description of the clearing process is much more complex since 
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several other physiological aspects have to be considered, including homeostasis, 
physiological temperature, metabolic effects of the agents, blood circulation, and others. 

3.1 Organic agents 

As already mentioned in the historical chapter, the first attempt to optically clear a tissue was 
performed using organic solvents characterized by a high refractive index. Organic solvent-
based clearing obtains remarkable transparency in a relatively short time (hours/days). Since 
biological tissues are constituted mainly of water, to permit an optimal diffusion of of the 
organic solvent inside the sample, it is first necessary to remove water from the tissue 
(dehydration step), and then perform the refractive index matching (clearing step) so to 
achieve the final transparency. 

Different protocols were developed trying to combine various solutions either for the 
dehydration and/or for the clearing step. The most common compounds used for dehydration 
are ethanol, methanol, tert-butanol, and tetrahydrofuran (THF); while for the clearing step are 
methyl salicylate, benzyl alcohol/ benzyl benzoate (BABB), dichloromethane (DCM), tert-
butanol and dibenzyl ether (DBE) [16,22,23,33–39]. 

A specific characteristic of all these methods is the tissue shrinkage caused by the 
dehydration step. Indeed, the diffusion of water outside the tissue is faster than the one of the 
dehydrated solution going inside the sample. Another peculiarity of these techniques is that at 
the end of the process the tissue is hard and difficult to cut. Moreover, during the dehydration 
step, the removal of water molecules from the sample results in fluorescence quenching. In 
fact, the presence of wateris usually mandatory to maintain the folding of the endogenous 
fluorescent proteins. To overcome this particular issue FluoClearBABB by Schwarz et al. 
[36] proposed to use specific solutions to increase protein stability and reduce denaturation. A 
different approach consists of combining the organic clearing with whole-mount 
immunostaining (iDISCO) [35] instead of using endogenous fluorescent proteins. Finally, the 
procedures rely on hazardous and corrosive chemicals that require specific mounting 
approaches and microscope objectives to perform the imaging, besides special caution during 
tissue clearing. Indeed, some of the abovementioned solutions are toxic (e.g methanol) or can 
form peroxides (e.g THF, DBE), which with insufficient stabilizer can explode after 
prolonged exposure to oxygen and/or sunlight. Therefore, it is necessary to perform a specific 
procedure to remove them [33], and use safely the solutions under a fume hood (for example 
the melting of tert-butanol prior to use [39]). 

3.2 Aqueous agents 

Clearing methods based on aqueous agents were developed to try to preserve endogenous 
fluorescence and tissue structure. The idea of using aqueous solutions for tissue clearing 
stemmed from the observation that dipping specimens in a solution of glycerol and water 
(80% of glycerol, n = 1.44), routinely used for tissue mounting, led to sample clearing. Such 
clearing, as explained before, is due to the reduction in the refractive index mismatch between 
tissue constituents and interstitial fluids caused by the solution. In fact, the most abundant 
tissue component (i.e. collagen) has a group refractive index in the 1.43 - 1.53 range, 
depending on hydration [40], and glycerol has a phase refractive index of 1.47 [4]. Starting 
from this observation, various works used glycerol, alone or in combination with other 
compounds, to perform thin tissue clearing [4,24,27,41–44]. 

Other approaches used saturated sugar solutions, such as sucrose, glucose, and fructose 
(SeeDB, n = 1.48) [4,24,26,45,46]. A drawback of sugar solutions is their high viscosity. 
High viscosity generally implies a slow diffusion of the agent into the specimen, having a 
negative impact on the speed of the clearing process, and limiting the possibilities for 
application to bulk samples clearing. To solve this problem, alternative approaches, based on 
water-soluble compounds like 2,2′-thiodiethanol (TDE) [47–49], have been proposed. 
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Another strategy, introduced in 2011 by Hama et al [50], used a hyperhydrated compound 
to decrease scattering of light. By the serendipitous observation that 4 M urea makes 
polyvinylidene fluoride membranes transparent, they introduced the Scale protocol. The 
distinctive aspect of this method relies on the capability of urea of entering in tightly folded 
regions of high refractive index proteins creating an osmotic gradient that pulls out water. 
During the process, proteins are partially denatured but also hydrated, leading to an overall 
refractive index decrease of the tissue. Following this approach, various methods were 
proposed (ClearT, ClearT2, PEGASOS, RTF) [51–53]. Hyperosmotic agents, such as 
propylene glycol and acetic acid, have been reported to increase imaging depth in optical 
coherence tomography [4,8], second harmonic generation microscopy [9,54], confocal 
reflectance microscopy [10,11], and two-photon microscopy [13]. 

Even though all these techniques allow fluorescence preservation, they also cause massive 
tissue swelling and alteration. Moreover, the transparency is only achieved in tissue slices or 
in the brain of newborn mice but not in the entire brain of adult mice or bulk samples. 

As a compromise between hyper-hydration and saturated sugar solutions, other protocols 
were studied. The CUBIC method [55] utilizes a hyper-hydration urea-based mechanism but 
includes a high refractive index sucrose solution in the clearing process. However, to remove 
lipids and obtain transparent samples, it also uses very high levels of Triton (50%), resulting 
in protein loss (24%-41%), which lowers epitopes concentrations and weakens possible 
immunostaining. The same approach was used in the FRUIT technique [56], that combines 
SeeDB and Scale techniques by mixing urea with fructose, and by the ScaleS method [57] 
that uses urea and sorbitol. 

Generally, aqueous techniques improve protein fluorescence preservation and are not 
toxic, but they do not clear the tissue as well as the organic methods, thus limiting the quality 
of the acquired images. 

4. Chemical methods 

4.1 Tissue transformation 

Biological tissues are constituted by different kinds of molecules and are characterized by the 
presence of lipid-aqueous interfaces that contribute to create refractive index heterogeneities 
in the various cell compartments leading to light scattering. In addition to that, cell 
membranes create a natural diffusion barrier that renders tissues poorly accessible to 
macromolecules. Starting from these considerations, in 2013 a new clearing approach based 
on the chemical transformation of the sample was developed: the CLARITY method [30]. 
The basic idea behind this technique is to obtain a construct that physically supports the tissue 
without lipids’ structural contribution. The removal of cell lipid bilayers permits light and 
macromolecules to penetrate deep into the tissue, allowing three-dimensional imaging and 
immunohistological analysis of large volume samples. To provide structural integrity and 
retention of biomolecules, CLARITY incorporates the sample into an acrylamide and bis-
acrylamide nanoporous hydrogel. Importantly, lipids and biomolecules lacking functional 
groups for conjugation remain unbound. Subsequently, lipids are removed by applying an 
electric field combined with a strong SDS-based detergent (authors term this method ETC: 
electrophoretic tissue clearing). During the procedure, there is an overall loss of protein of 
about 8% [30]. Even though a characterization of which proteins are more susceptible to the 
treatment has not been performed, it is reasonable to think that membrane proteins remain 
detached from the hydrogel and are extracted or damaged. Nevertheless, the resulting 
hydrogel is highly transparent, fluorescent compatible and permeable to macromolecules. 
Without cell membranes, antibodies can easily penetrate deep into the tissue, allowing large 
volume labeling. Moreover, the overall tissue is characterized by a lower refractive index that 
can be matched with aqueous solutions which are easier to handle, less toxic, and more 
biocompatible (the endogenous fluorescence signals are maintained). In the CLARITY paper, 
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the authors chose FocusClear as refractive index matching medium, a commercial compound 
very expensive and with unknown composition. 

Even with some limitation, CLARITY opened the way to new clearing approaches based 
on tissue transformation that, by means of hydrogel embedding and lipids removal, produce 
permeable tissues characterized by low refractive index. In order to obtain easier procedures, 
lower costs, and, above all, less protein degradation and tissue damage, plenty of 
modifications, based on different hydrogels compositions, mechanisms for lipids removal, 
and/or refractive index matching mediums, were published. One of the first improvements 
was to perform lipids removal without ETC using passive approaches that reduce tissue 
damage and protein loss, usually in combination with alternatives to FocusClear more easy to 
handle and with lower cost: CLARITY/glycerol87% [58], PACT/PARS [59], 
CLARITY/TDE [47,60]. Then, alternatives to tissue labeling were proposed. One example is 
stochastic electrotransport [61] which increases the velocity of labeling by promoting active 
diffusion of the antibodies inside the tissue with an electrotransport. Subsequently, 
approaches like SWITCH [62] and SHIELD [63] proposed fixative alternatives to obtain 
more stable hydrogels and reach higher preservation of protein antigenicity, transcripts, and 
tissue architecture. In parallel, the tissue transformation technique was exploited also to 
perform super-resolution imaging. MAP [64] proposed to expand the hydrogel embedding the 
proteins in order to separate them without digesting and altering the proteins as in classic 
expansion microscopy (ExM [65]). These advanced technologies are characterized by 
laborious protocols but enable three-dimensional mapping of biomolecules at subcellular 
resolution in large volume samples. Indeed, the high transparency achieved allows the use of 
high-throughput imaging technologies, such as light sheet microscopy, to obtain 3D 
reconstruction of the sample in a short time. Moreover, the possibility of performing 
immunostaining and RNA transcripts analysis on bulk not fluorescent tissues (e.g human 
samples) opens the door to new applications in medicine and pathology. 

5. Applicability 

The big and various plethora of clearing methods published in the latest years makes it very 
difficult for a person that approaches the field to decide which is the best technology to use. 
Here, we will try to analyze the use of the major clearing approaches focusing on their 
applicability and diffusion in the scientific community. 

An important discrimination is based on the possibility to clear bulk or thin samples. The 
first clearing methods were applied on mm-size samples. Even though that was a big 
innovation at the time, now the state-of-the-art clearing methods allow clearing of large 
volume specimens (cm-size). The advent of light sheet microscopy makes it now possible to 
reconstruct whole organs (like mouse brain) at high-resolution in a very short time. Therefore, 
some methods have gone out-of-use in favor of new volumetric technologies. Also, most 
clearing protocols were developed on the mouse brain; today, however, clearing starts to be 
applied also to other organs. The versatility of some methodologies with respect to others has 
favored their preferential usage among in the scientific community, increasing their diffusion. 

An objective analysis of the applicability of the various clearing methods published during 
the last decades was done analyzing the literature in an unbiased way. We excluded papers 
related to technological development in either clearing or imaging techniques, reviews, and 
perspectives. For each paper, we annotated the clearing used, the sample analyzed (and if it 
was imaged completely or not), the imaging method used, and the resolution of the data 
shown. We identify 410 papers published since 2008 that reported the use of clearing 
methods for biological applications. The complete list of these articles can be found in Data 
File 1. Literature analysis shows that some of the clearing approaches have become more 
widely used compared to others. Specifically, as reported in Fig. 2, DISCO’s methods obtain 
the biggest success among all methodologies. 
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Fig. 3. (a) Whole mouse brain before and after FDISCO clearing. (b) Thy1-GFP-M mouse 
brain images with insets at high resolution (c) 3D visualization of the vasculature in the mouse 
brain labeled by injection of CD31-A647 antibody. Images modified with permission from Qi 
et al [44]. 

The second most used clearing method in large-scale imaging is the CLARITY 
transformation technique (with all its variants, see Fig. 2). CLARITY methods are more 
laborious but are chosen for their preservation of endogenous fluorescence and compatibility 
with aqueous refractive index matching medium that allows obtaining high transparency. The 
possibility of using transgenic animals allows obtaining not only morphological information 
but also functional information when combined with activity reporting gene. In particular, 
various studies used CLARITY in combination with behavioral tests to follow the activation 
of biological pathways in various conditions with the use of transgenic animals expressing 
fluorescent proteins under early genes promoters (e.g fos/arc) activated in specific conditions 
[66]. Moreover, the high permeability obtained with the modification of the sample 
composition makes it suitable for whole mount immunohistochemistry. CLARITY is also 
very versatile and, with minor modifications, has been applied to different organs (Data File 
1). Since it is based on tissue transformation, organs containing high levels of pigments, like 
heart, are cleared very well thanks to the molecule’s detergent removal, as shown in Fig. 4 
[67]. Finally, the compatibility with aqueous refractive index matching medium avoids 
mounting problems allowing the use of different kinds of fluorescence microscope to perform 
measurements, both commercial or custom-made apparatus, with various resolutions and 
performances (from confocal to light sheet microscopy) [47]. 
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Fig. 4. (a) Whole mouse heart before and after CLARITY clearing. (b) Representative 
fluorescent microscope images of Rainbow heart at a different stage of development E14.5, P1, 
and P21 expressing Cre under the control of early cardiovascular progenitor transcription 
factors Mesp1 and Nkx2.5. Images modified with permission from Sereti et al. [67]. 

As shown in Fig. 2, DISCO and CLARITY are the most used clearing protocols for large-
scale imaging with light-sheet microscopy. However, they are not the standard techniques to 
study the three-dimensional organization of the sample. Indeed, most of the previously 
described clearing methodologies have been used for biological applications, on smaller 
sample in combination with confocal rather than light sheet microscopy. 

The lack of a unique methodology underlines the fact that, even if clearing efficacy has 
improved considerably in the last few years, we still miss a standard method that convinces 
the whole scientific community. A routine approach will improve not only the study of ex-
vivo samples but also the possibility of widening the application of clearing methods for in-
vivo analysis. Indeed, clearing protocols are widely used for fixed tissues but they are still in 
their infancy concerning in-vivo analysis, as described in the next chapter. 

6. In-vivo tissue clearing 

During the last decades, optical clearing agents have been deeply explored and largely 
exploited for clearing tissues, allowing deeper light penetration into optically turbid media. 
Clearly, one of the major goals of all the research activities carried out up to now in this field 
consists in translating the methodology at the clinical level and allowing in vivo optical 
clearing of biological tissues. When moving from ex vivo to in vivo tissue clearing, several 
issues have to be taken into consideration. In particular, safety and biocompatibility issues 
drastically limit the panorama of clearing methods that can be employed in vivo on humans. 
Basically, the set of agents suitable for this purpose is limited those described in the aqueous 
methods section above. In fact, the need of a reversible clearing process confines the choice 
to aqueous solutions of glycerol, sugars, polyethylene glycol, propylene glycol, or acetic acid, 
excluding any other compound because of toxicity and/or chemical aggressiveness. 

Only a few examples of in vivo optical clearing can be found in literature, most of them 
targeting the skin [41,54,68–74]. It is worth to mention also a recent pioneering in vivo study 
(Fig. 5), where the authors performed optical clearing of the mouse skull, allowing spine-
resolution deep-brain imaging in the mouse cortex through the intact skull [75]. Apart from 
that, as one can expect, the first organ to be targeted by optical clearing methods is the skin, 
since it is the largest organ in the human body, offering also the easiest optical accessibility. 
The aim is to provide skin clearing in order to optically access dermal structure and 
components such as blood vessels, glands, and others. For the optical clearing of skin, it is 
worth noting that this tissue is basically made by two distinct layers: an overlying epidermis 
containing cells and interstitial fluids, and an underlying dermis made of a network of 
collagen and elastic fibers, filled by hyaluronic acid and glycosaminoglycans. Considering the 
specific morphology and composition of these two skin compartments, the clearing process 
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also explored, including the illumination with a flashlamp [42] or a 1064 nm laser [74]. 
Chemical methods are based on the use of chemical enhancers such as alcohol, propylene 
glycol (PG), azone, thiazone, dimethylsulfoxide, fatty acids, and oleic acid [70,100–102]. 
Among these chemical enhancers, thiazone was found to be a very good chemical enhancer 
for in vivo optical clearing of skin when used either alone [25] or in combination with 
polyethylene glycol [103] (Fig. 6), without causing any significant histopathological or 
microstructural changes in the treated skin tissue. A recent method, proposed by Shi et al [93] 
is based on the combination of both physical and chemical methods in a hybrid approach 
consisting of using a chemical enhancer after multiple tape stripping. In this way, the SC is 
partially removed by the physical method, allowing for better effectiveness of the chemical 
enhancer. Although many methods aimed at overcoming the SC barrier have been developed 
up to now, none of them has yet resulted in a universally accepted standard. A lot of work has 
still to be done in terms of standardization of both used agents and administration protocols 
before in vivo optical clearing could become a procedure used at the clinical level. 
Nevertheless, we believe that the right way to reach this ambitious goal is being pursued in 
these years so that in vivo optical clearing of skin at a clinical level is much closer than one 
can expect. 

7. Discussion 

Since its advent at the beginning of the 20th century, optical clearing has undergone several 
improvements thanks to a broad range of different methods developed, each with different 
variants and ways of application. Nonetheless, a universally recognized standard is still far 
from being defined and accepted, especially considering that the clearing process dynamics is 
different in every tissue, as it is affected by the morphological and biochemical features of the 
tissue itself. This paper reviewed all the developed optical clearing methods, trying to 
describe them in a historical perspective and to group them based on the action they have on 
biological tissues and specimens. Distinct approaches have to be considered, depending on 
the specific application, especially when considering the clearing of thin tissue samples, bulk 
specimens or living animals/subjects. In particular, when choosing the most appropriate 
approach for the specimen to be cleared, it is important to consider the trade-off among 
clearing efficacy, speed of the process, chemical aggressiveness, reversibility, endogenous 
fluorescence preservation, immunostaining capability and potential side-effects for in-vivo 
applications, that characterize each approach. 

The large amount of publications that exploit ex-vivo tissue clearing to perform three-
dimensional architectural reconstruction of large samples for both anatomical and 
pathological analysis underlines the high potentiality of this subject. However, the large 
number of methods developed also points out the fact that a unique technique for this analysis 
is still missing. Various adjustments of protocols were proposed depending on sample type, 
imaging acquisition technology, or tissue labeling. This leads to each laboratory using its own 
methodology, thus preventing a standardization of the procedure and the results. To date, it is 
still not possible to claim that one procedure is better than others, since all the methods used 
thus far are characterized by both advantages and disadvantages. For a reliable routine 
analysis we still lack a robust protocol compatible with all different types of tissue labeling 
and imaging techniques. Only such a protocol would allow to finally standardize the 
applications of ex-vivo tissue-clearing methods. 

For in-vivo application the clearing efficacy depends on the agent used as well as on its 
concentration, leading generally to a more effective clearing as the agent concentration 
increases. Anyway, this feature has to be considered together with the speed of the process. In 
fact, both clearing efficacy and speed are strongly affected by the diffusive behavior of the 
agent within the tissue to be cleared, with a faster and more effective clearing as the agent 
diffusion time decreases. In this scenario, the use of chemical enhancers able to facilitate the 
diffusion of the agent in deep tissue has demonstrated to be a key-to-success for an effective 
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in-vivo optical clearing in a reasonable amount of time. A good example is reported in Fig. 5, 
where the combination of PEG-400 and thiazone is providing faster and more effective 
clearing of skin in-vivo with respect to the administration of PEG-400 alone. In particular, 
even if the latter might in principle provide a better refractive index matching for skin dermis, 
the long diffusion time causes a clearing effect insufficient for monitoring dermal blood flow 
through intact mouse skin, unless administered in tandem with a chemical enhancer, as 
thiazone. Other features, such as chemical aggressiveness, reversibility, and side-effects have 
to be considered with particular attention, especially for in-vivo applications, whereas these 
are less important in ex-vivo applications. However, it is difficult to describe the motivations 
for opting toward an approach rather than another when applying clearing agents in-vivo, as 
the clearing process has been partially clarified at the microscopic and molecular scale only 
ex-vivo; the mechanisms for in-vivo optical clearing, on the other hand, are still far from 
being well understood, considering the major physiological complexity with respect to ex-
vivo condition. Anyway, few empirical hints could be provided on the basis of the 
experimental results obtained up to now; for example, the use of aqueous solutions instead of 
pure agents could limit side-effects due to the chemical aggressiveness of the agent used, such 
as edema for glycerol in the skin. In addition, the reversibility of the process has been fully 
demonstrated for aqueous solutions of the agents, in contrast to irreversible effects, such as 
tissue swelling and morphological transformation occurring when the clearing agent is 
administered undiluted (for example the fibrillar rearrangement of collagen fibers following 
the immersion in 100% glycerol). 

Even though many studies and protocols have been developed and carried out during the 
last twenty years, the field of optical clearing of tissues is still extremely active, with new 
approaches and challenges that are continuously emerging in terms of agents (or combination 
of agents) used, ways of administration, optical modality to benefit from the clearing. 
Considering that any optical technique that targets biological tissues can benefit from the 
optical clearing process, we are convinced that the exploration of new methods will continue 
in the near future, together with the pre-clinical validation of the old methods, with the final 
goal of translating tissue optical clearing from the optical bench to the clinical bedside. 
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