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An Artificial Neural Network-based Forecasting Model of Energy-

Related Time Series for Electrical Grid Management 

A. Di Piazza, M. C. Di Piazzaa,**, G. La Tonaa, M. Lunaa 

Consiglio Nazionale delle Ricerche (CNR), Istituto di Ingegneria del Mare (INM), Palermo, Italy 

Abstract  

Forecasting of energy-related variables is crucial for accurate planning and management of electrical power grids, aiming 

at improving overall efficiency and performance. In this paper, an artificial neural network (ANN)-based model is 

investigated for short-term forecasting of the hourly wind speed, solar radiation, and electrical power demand. Specifically, 

the non-linear autoregressive network with exogenous inputs (NARX) ANN is considered, compared to other models, and 

then selected to perform multi-step-ahead forecasting. Different time horizons have been considered in the range between 

8 and 24 hours ahead. The simulation analysis has put in evidence the main advantage of the proposed method, i.e., its 

capability to reconcile good forecasting performance in the short-term time horizon with a very simple network structure, 

which is potentially implementable on a low-cost processing platform.  

1 Introduction  

Forecasting of solar radiation and wind speed lets energy stakeholders estimate the output power of a PV/wind generator 

in advance; this can help to reduce the effects of power fluctuations on the power grid, thus allowing the overall efficiency 

and power quality of the plant to be increased [1]–[4]. Similar considerations apply to power load demand, considered one 

of the most important tasks in power systems operations since its accuracy has an impact on both operational security and 

economics of the power grids [5].  

Optimal energy management and economic planning of a smart grid (SG), including renewable distributed generation, can 

then be aided by a robust and reliable energy-related data forecasting to optimize decision making at the grid operator level. 

Besides, both the renewables and the load demand forecasting are useful to give the input to intelligent Energy Management 

Systems (EMSs), considered today one of the most significant techniques which can enhance the efficiency, reliability, and 

economy of the SGs [6]–[9]. 

Many contributions on both wind speed and solar radiation forecasting are present in the technical literature [9]–[13]. 

Moreover, several contributions have been proposed on the forecasting of energy from renewables and load profiles 

associated with smart grid management [9], [14]–[16]. As for load demand forecasting, the deep learning approach, together 

with specific machine learning based approaches, such as support vector machines (SVM) [17], has been often proposed in 

recent years to obtain more accurate results using, for example, convolutional and recurrent neural networks [18], [19]. 

However, despite the high performance exhibited by the deep learning approach, it should be observed that it is well suited 

to very large and complex datasets [18] and this can be an issue if the available dataset for learning is small, as it usually 

occurs in the case of electrical power production/consumption datasets.  

According to a general classification, forecasting methods can be divided into five families: 1. persistence method, also 

known as Naïve predictor; 2. physical models; 3. time series linear models; 4. Artificial Intelligence (AI)-based models, 

including machine learning-based approaches; 5. hybrid structures [9]–[12], [20]. In general, the need for a trade-off 

between good forecasting results for a given time horizon and a simple implementation of the forecasting technique is 

recognizable. In [21], the suitability of the different models for performing forecasting at specific time scales has been 

established. Naïve predictor assumes that the variable to be forecast at time ‘t0+Δt’ will be the same as it was at time ‘t0’. 

Despite its simplicity, this method is very accurate but only for short/very-short term forecasting (from few seconds to 30 

minutes ahead); physical models, such as Numerical Weather Predictors (NWP) are based on complex mathematical models 

using several weather-related data; for this reason, they require significant computational resources and usually are run no 

more than one or two times a day. As a result, physical models are useful only for medium/long-term forecasts (i.e., for 

time horizons exceeding 6 hours ahead); additionally, they produce best results when weather conditions are stable. Time 

series linear models are generally easy to implement, inexpensive, and provide timely results; they are based on error 

minimization between the model-based predictions and historical trends and work well for short term horizons (from 30 

minutes to 6 hours); on the other hand, they are unsuitable for modelling strongly nonlinear phenomena.  
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AI-based and hybrid algorithms have proved to be more effective than other classical autoregressive predictors, due to the 

behaviour of electric production/consumption-related data that is very much non-linear and seasonal [19]. Indeed, such 

methods generally outperform linear time series-based models for different time horizons from very short to medium [9], 

but their formulation and parameter tuning is a challenging task. 

For short/medium term (30 minutes- up to 1 day-ahead), several approaches have given satisfactory results, so the choice 

of the most suitable approach to use is not straightforward. Among them, in general, artificial neural networks (ANNs) have 

provided accurate forecasting results. This behavior has been assessed for both solar radiation and wind speed modeling 

[22], [23],[24], as well as for load power demand [25]. Based on the above considerations, in this paper, the nonlinear 

autoregressive network with exogenous inputs (NARX) ANN has been considered for performing the forecasting of wind 

speed, solar radiation, and load power demand. This network has been chosen because it is well suited to model nonlinear 

dynamic systems, such as dependencies among meteorological time series; in addition, its use in time-series-based models 

has proved to be successful thanks to its capability to suitably reproduce relationships among data even if a small dataset is 

available for learning [26]. Furthermore, it combines the computational power of fully recurrent ANNs with the advantage 

of a simpler structure due to the feedback being limited only to the output neuron, rather than extended to the hidden states 

[27]. In this paper, the NARX network is first compared with some common time series linear models to assess its superior 

capability to learn and reproduce the behavior of the considered variable. Then, considering a case study involving an 

extensive use of electrical heating/cooling devices in the power grid, such an ANN is used for forecasting the hourly wind 

speed, solar radiation, and load demand time series, by using the environmental temperature as the ANN’s exogenous input.  

The main contribution of the proposed forecasting technique is the simplicity of the chosen network and its high 

performance, which gives comparable or better results with respect to time series-based models, in particular the vastly 

used linear models. This result is achieved without resorting to more complex methods such as ANNs with multiple 

recurrent layers, which require very large datasets, or complex pre-processing procedures [14], [18], [20], [28], [29]. 

Therefore, the implementation of the proposed network is also feasible on low-cost hardware platforms, such as small 

single-board computers (e.g., Raspberry Pi boards). As such, it can ease the use of forecasting processes in energy 

management schemes that optimize the efficiency and performance of the smart grids. Moreover, in addition to the 

forecasting method and its assessment, this paper provides an evaluation of the NARX capability to handle different 

forecasting horizons for the two considered variables. The obtained results allow finding the optimal time horizon for each 

variable and assessing whether its forecasting by NARX is suitable to the decision processes and actions on which smart 

grid management is based (e.g., regulation, load dispatch, maintenance, etc.). 

2 Case Studies and Data Description 

The meteorological dataset used in this study for solar radiation forecasting comes from a station placed in northwestern 

Sicily (Italy) and has been provided by SIAS (Servizio Informativo Agrometeorologico Siciliano). The used dataset is 

complete and contains hourly global solar radiation (MJ/m2) and hourly maximum/minimum temperature recorded for 

seven consecutive years; for this study, the hourly mean temperature has been calculated and used.  

The meteorological dataset used for wind speed forecasting comes from a publicly available database published by the U.S. 

National Renewable Energy Laboratory (NREL) [30]. Hourly wind speed (m/s) and outdoor temperature values have been 

extracted from this database considering a period of seven consecutive years. Specifically, the data used for simulations 

refer to the city of Amarillo, Texas, USA. 

As for the load demand dataset, the public dataset for the Global Energy Forecasting Competition 2012 [31] is used. This 

dataset consists of 4.5 years of hourly load power demand (in kW) for a US utility and temperature history data. The load 

power demand profiles are reported for 20 zones, and one of those is considered for the case study. 

3 Performance Indices 

The Normalized Root Mean Square Error (NRMSE) and the Coefficient of Variation of the Root Mean Squared Error 

CV(RMSE) are used in this study to define the deviation between observed and estimated values. They are defined 

respectively as: 
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where Yi is the observed sample of the time series, �̂�𝑖 is the predicted sample of the time series, Ymax, Ymin are the maximum 

and minimum observed values, and �̅� is the mean of the observed values. In this paper, the tables that show the performance 

indices report the above described indices with subscripts e, v, t, r, and f that indicate, respectively, estimation set, and 

validation set for the time series linear models, training phase, and recalling phase (application of models to validation set) 

for the neural models, and forecasting phase for both time series linear models and neural models. With specific reference 

to the forecasting results, they are evaluated considering an additional index, i.e., the mean absolute percentage error 

(MAPE), which provides information on the short-term performance and represents a measure of the variation of the 

forecast values around the measured data. The MAPE is defined according to equation (3): 

 
(3) 

4 The NARX Model 

The NARX neural network is derived by a class of discrete-time nonlinear systems, i.e., the nonlinear autoregressive with 

exogenous input (NARX) models. It is well suited to model nonlinear dynamic systems. In a dynamic system, the values 

of the output signals depend on both the instantaneous values of its input signals and the past behavior of the system [32]. 

The NARX network has been used in time-series modeling thanks to its adaptive learning process which works very well 

also with small-scale data, e.g., collected in less than one year [26]. 

The mathematical formulation of the NARX model is expressed in (4): 

𝑦(𝑡) = 𝐹 (𝑢(𝑡 − 𝑛𝑘), 𝑢(𝑡 − 𝑛𝑘 − 1), . . . , 𝑢(𝑡 − 𝑛𝑘 − 𝑛𝑢), 𝑦(𝑡 − 1), . . . , 𝑦(𝑡 − 𝑛𝑦)) (4) 

where y(t) and u(t) are the output and the input of the model at a discrete time step t, ny≥1, nu≥1, nu≤ny are the input and 

output memory orders (delay), nk≥0 is the number of input samples after which the output is affected by the input, and F is 

a nonlinear mapping function. When the function F is approximated by a multilayer perceptron (MLP), the resulting neural 

network is called a NARX network. In other words, a NARX network consists of a MLP that takes as input a window of 

past independent (exogenous) inputs and past outputs and then calculates the current output. It is possible to introduce x as 

the vector of the state variables, so that xi(t) is the i-th state variable in the NARX network. Then, it is possible to say that 

the states of the NARX, given by a set of two tapped-delay lines (i.e., nu taps on the input values and ny taps on the output 

values), are updated according to the law described in (5): 

𝑥𝑖(𝑡 + 1) = {

𝑢(𝑡 − 𝑛𝑘) 𝑖 = 𝑛𝑢
𝑦(𝑡) 𝑖 = 𝑛𝑢 + 𝑛𝑦

𝑥𝑖+1(𝑡) 1 ≤ 𝑖 < 𝑛𝑢 𝑜𝑟 𝑛𝑢 < 𝑖 < 𝑛𝑢 + 𝑛𝑦

 (5) 

Therefore, at the time t, the taps correspond to the values given by (6): 

𝒙(𝑡) = [𝑢(𝑡 − 𝑛𝑘 − 1), . . . , 𝑢(𝑡 − 𝑛𝑘 − 𝑛𝑢),  𝑦(𝑡 − 1), . . . , 𝑦(𝑡 − 𝑛𝑦)] (6) 

The MLP is a network organized into two layers (hidden and output layers of the NARX). The Nk nodes of the hidden layer 

perform the function (7) 
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where ai,j, bi and ci are fixed real-valued weights,  is the sigmoid function, and N is the number of state variables. 

Finally, the output layer is formed of a single linear node defined as in (8). 

 

(8) 

The activation function of the hidden neurons is the usual sigmoid function , which approximates the Heaviside step 

function to assess whether its input is above or below a threshold. On the other hand, the activation function of the output 

neuron is linear because a continuous output is desired. 

Unlike a conventional recurrent neural network, the NARX network has limited feedback coming only by the output neuron 

rather than by the hidden states. Only the output of the NARX is fed back to the input of the feed-forward neural network. 

Nevertheless, it has been demonstrated that such a neural network is as computationally powerful as a fully-connected 

recurrent neural network [33]. The NARX block scheme is illustrated in Fig. 1. 

The NARX network is trained in open loop removing the feedback from the output neuron and presenting it with observed 

data of the considered time series (wind speed, solar radiation, and load power demand) and of the exogenous variable 
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(temperature). This means that the network can be trained like a classic feed-forward network using the backpropagation 

algorithm instead of the more complicated backpropagation through time algorithm [33], which considers the recursion of 

the output. Furthermore, another advantage is that with the open loop configuration the training is more accurate since it 

only considers observed values. 

In order to exploit these two advantages, the following approach is used in the application under study. Firstly, the network 

has been implemented as an open loop network, as shown in Fig.  2, which is used for learning the wind speed/solar 

radiation/power demand versus temperature behavior and for evaluating its performance for the prediction of independent 

variables (wind speed, solar radiation, power demand) in the recalling phase. Then, the NARX structure, shown in Fig. 1, 

is used to obtain the forecasting, according to the multi-step-ahead approach by iterating the execution in closed loop for a 

number of times corresponding to the desired forecasting horizon. 

The use of temperature as exogenous input for load power demand forecasting deserves a further explanation. This study 

considers an electrical power consumption profile framed in a decarbonization scenario where massive use of electrical 

heating/cooling devices such as heat pumps is envisaged [34] [35]. In such a scenario, that is going to be established 

worldwide to pursue the goals of Paris climate agreement, the electrical power load has a strong dependence on 

environmental temperature. 

 

 

Fig. 1 Structure of the NARX network 

4.1. The training algorithm 

The training method is the conjugate gradient backpropagation with Polak-Ribiére algorithm [27]. This algorithm has been 

chosen because it converges faster than other more widespread algorithms, such as gradient descent and gradient descent 

with momentum. In the case under study, the value of the learning rate, initially equal to 0.01, decreases according to an 

exponential law. The epochs used for the training phase are determined using the early stopping approach [36], and the best 

model is defined evaluating the performance indices defined in Section 3, calculated both in training and recalling phases. 

In order to make the ANN training more efficient, a normalization step is applied to both the input vectors and the output 

vectors in the datasets; then, a post-processing procedure is applied to the network outputs transforming them back into the 

units of the original data. 

 

Fig.  2 Structure of the “open loop” NARX network, used for training 



 

It should be observed that the parameter nk is usually set to zero in the literature. However, this would be a severe constraint, 

because it would imply the need to know future values of temperature in the forecasting horizon. To avoid this problem, nk 

was set equal to the considered forecasting horizon. 

In order to define the best set of NARX parameters (delay, number of neurons in the hidden layer), several simulations 

have been run. In particular, simulations have been performed with the delay ranging between 1 and 7 and the number of 

neurons in the hidden layers ranging between 3 and 10. Each dataset has been split into two parts: a training set using 80% 

of data and a validation set using the remaining 20%. A pre-processing procedure (i.e., detrending) has been applied to the 

variables to focus their dynamics better. The flow chart in Fig.  3 describes the approach followed to tune the parameters 

of the NARX network. 

 

4.2. ANN structure and parameters 

The open loop structure is used to perform the time series prediction of wind speed, solar radiation, and load power demand 

hourly profiles. It is worth observing that the ability to predict a given variable is intended as the ability to correctly learn 

and reproduce the behavior of the considered variable during the validation (open loop execution) phase. 

As for the solar radiation prediction, the best configuration is 2-5-1 (where the three digits are the number of neurons in the 

input, hidden, and output layer, respectively) with a time delay of 7, and it exhibits the following values of the performance 

indices: NRMSEt=0.062, NRMSEr=0.063, CV(RMSE)t=0.34, and CV(RMSE)r=0.34. The performance of the NARX for 

this case is defined by the indices given in Table 1. 

  

Table 1 Performance indices on training and validation datasets for the NARX in predicting solar radiation 

Neural network 

structure 

Delay NRMSEt NRMSEr CV(RMSE)t CV(RMSE)r 

2-3-1 1 0.096 0.096 0.522 0.528 

2-3-1 3 0.071 0.071 0.383 0.391 

2-3-1 5 0.068 0.069 0.370 0.381 

2-3-1 7 0.067 0.068 0.366 0.374 

2-5-1 1 0.095 0.095 0.517 0.518 

2-5-1 3 0.069 0.069 0.377 0.378 

2-5-1 5 0.064 0.064 0.348 0.351 

2-5-1 7 0.062 0.063 0.340 0.340 

2-10-1 1 0.095 0.095 0.516 0.518 

2-10-1 3 0.066 0.067 0.361 0.365 

2-10-1 5 0.062 0.063 0.342 0.342 

2-10-1 7 0.064 0.064 0.345 0.350 



 

Fig.  3 Approach followed to tune the parameters of the NARX network 

 

Table 2 shows that, for the wind speed case, the best configuration is 2-5-1 with a delay of 7, exhibiting the following 

values of the performance indices: NRMSEt=0.0236, NRMSEr=0.0297, CV(RMSE)t=0.0943, and CV(RMSE)r=0.0911.  

As far as the load demand is concerned, the best performing configuration is 2-10-1 with a time delay of 7. As shown in 

Table 3, the performance indices for this case are the following: NRMSEt=0.0217, NRMSEr=0.024, CV(RMSE)t=0.0345, 

and CV(RMSE)r=0.0368. 

Table 2 Performance indices on training and validation datasets for the NARX in predicting wind speed 

Neural network 

structure 
Delay NRMSEt NRMSEr CV(RMSE)t CV(RMSE)r 

2-3-1 1 0.0344 0.0439 0.1375 0.1345 

2-3-1 3 0.0247 0.0312 0.0989 0.0956 

2-3-1 5 0.0243 0.0306 0.0972 0.0938 

2-3-1 7 0.0243 0.0306 0.0973 0.0938 

2-5-1 1 0.0344 0.0439 0.1376 0.1347 

2-5-1 3 0.0245 0.0307 0.0978 0.0942 

2-5-1 5 0.0243 0.0306 0.0970 0.0937 

2-5-1 7 0.0236 0.0297 0.0943 0.0911 

2-10-1 1 0.0347 0.0445 0.1388 0.1364 

2-10-1 3 0.0242 0.0304 0.0967 0.0933 

2-10-1 5 0.0241 0.0304 0.0966 0.0932 

2-10-1 7 0.0237 0.0298 0.0950 0.0914 



 

Table 3 Performance indices on training and validation datasets for the NARX in predicting power load demand 

Neural network 

structure 
delay NRMSEt NRMSEr CV(RMSE)t CV(RMSE)r 

2-3-1 1 0.0375 0.0389 0.0595 0.0597 

2-3-1 3 0.0257 0.0283 0.0408 0.0434 

2-3-1 5 0.0245 0.0266 0.0389 0.0409 

2-3-1 7 0.0242 0.0272 0.0384 0.0416 

2-5-1 1 0.0347 0.0381 0.0550 0.0584 

2-5-1 3 0.0255 0.0283 0.0404 0.0434 

2-5-1 5 0.0250 0.0277 0.0396 0.0425 

2-5-1 7 0.0228 0.0248 0.0362 0.0380 

2-10-1 1 0.0341 0.0373 0.0541 0.0572 

2-10-1 3 0.0247 0.0272 0.0392 0.0417 

2-10-1 5 0.0229 0.0251 0.0363 0.0385 

2-10-1 7 0.0217 0.0240 0.0345 0.0368 

5 Prediction by Linear Approaches 

In order to benchmark the proposed approach in terms of performance indices, predictions of wind speed, solar radiation, 

and load power demand for the case study, have also been performed by some common time series linear models.  

The most commonly used models for time series data are the autoregressive processes, also known as linear time series 

models. In particular, in this study, the three couples of related variables (wind speed vs. temperature, solar radiation vs. 

temperature, and load power demand vs. temperature) are taken into account and studied as dynamic systems. 

The linear models considered for this study are autoregressive exogenous models. In particular, the following processes 

have been used: ARX model, ARMAX model, Box-Jenkins (BJ) model, and Output-Error (OE) model [37], [38]. The 

parameters of the models have been estimated using the corresponding training set used for the NARX (80% of each 

dataset). Then, validation of the models has been performed using the corresponding validation set used for the NARX (the 

remaining 20%). Table 4 summarizes the obtained performance indices for each of the considered models, for solar 

radiation, wind speed, and load power demand prediction. From the comparison of the performance indices obtained by 

different methods, it is possible to observe that the NARX network, in its best performing configurations, outperforms all 

the considered time series linear models at predicting the one-step-ahead evolution of all the considered time series. As far 

as the NARX performance is concerned, it is possible to note that an improvement of about 8.8% on NRMSE and of about 

49.4% on CV(RMSE) is achieved in solar radiation prediction in comparison with the best performing linear model (ARX). 

Moreover, a slight reduction of about 0.1% on NRMSE and of about 0.2% on CV(RMSE) is obtained in wind speed 

prediction in comparison with the best performing linear model (BJ). Finally, with reference to load demand prediction, an 

improvement of about 0.4% on NRMSE and of about 0.6% on CV(RMSE) is observed with respect to the results obtained 

by the best performing linear model (BJ). 

  

Table 4 Performance indices on estimation and validation datasets for the time series linear models 

 Linear Models NRMSEe NRMSEv CV(RMSE)e CV(RMSE)v 

Radiation 

prediction 

ARMAX 0.174 0.186 0.943 1.033 

BJ 0.149 0.167 0.808 0.926 

ARX 0.144 0.151 0.790 0.834 

OE 0.149 0.167 0.808 0.840 

Wind speed 

prediction 

ARMAX 0.0243 0.306 0.0971 0.0940 

BJ 0.0241 0.0305 0.0965 0.0937 

ARX 0.0260 0.0326 0.1038 0.0999 

OE 0.117 0.154 0.470 0.474 

Load 

demand 

prediction 

ARMAX 0.0263 0.0296 0.0429 0.0453 

BJ 0.0252 0.0279 0.0410 0.0427 

ARX 0.0264 0.0298 0.0429 0.0456 

OE 0.1680 0.1924 0.2738 0.2948 

6 Forecasting Results 

Once the effectiveness of the NARX network in predicting the one-step ahead evolution of all the considered variables has 

been demonstrated, this ANN has been used for performing the forecasting (closed loop execution) of the same variables 



using the validation datasets (data not seen during training). For each considered time series, the NARX network with the 

best performing structure (delays and numbers of neurons) as defined in Section 4.1, is then used for this purpose, and 

compared to best performing linear model. Table 5 shows the selected linear models and NARX structures. 

Table 5 Selected linear models and NARX structures for assessing forecasting results  

 Selected Linear Model Selected NARX structure 

Radiation ARX 2-5-1 delay 7 

Wind Speed BJ 2-5-1 delay 7 

Load Demand BJ 2-10-1 delay 7 

 

Several time horizons ranging from 8 to 24 hours ahead have been explored. In the case of forecasting results, the indices 

selected to measure the performance of the network are the NRMSE, the CV(RMSE), and the MAPE. Table 6 and Table 7 

show the forecasting results obtained with the selected NARX structure and linear model respectively for each time series 

at different time horizons. It is possible to observe that the best forecasting for solar radiation is obtained by NARX for 12-

hours-ahead with the following values: {NRMSEf=0.087, CV(RMSE)f= 0.627} @12h. Furthermore, the best forecasting 

results for wind speed are found by NARX for 8-hours-ahead time horizon with the following values: {NRMSEf=0.136, 

CV(RMSE)f= 0.288} @8h. Finally, for the load power demand, the best forecasting results are found by NARX for 8-

hours-ahead time horizon with the following values: {NRMSEf = 0.177, CV(RMSE)f = 0.113} @8h. 

Fig.  4 shows the 12-hours-ahead forecasting result for solar radiation; Fig.  5 shows the 8-hours-ahead forecasting result 

for wind speed, and the 8-hour-ahead forecasting result for power load demand is illustrated in Fig.  6. 

 

Table 6 Performance indices for the selected NARX in forecasting for several time horizons 

 Hours ahead 

forecast (h) 

NRMSEf CV(RMSE)f MAPE (%) 

Radiation 

prediction 

8 0.113 0.816 21.0 

12 0.087 0.627 15.2 

24 0.136 0.976 30.7 

Wind speed 

prediction 

8 0.136 0.288 36.99 

12 0.140 0.296 38.34 

24 0.168 0.356 47.92 

Load demand 

prediction 

8 0.177 0.113 7.9 

12 0.262 0.168 11.7 

24 0.250 0.160 11.2 

Table 7 Performance indices for the selected linear model in forecasting for several time horizons 

 Hours ahead 

forecast (h) 

NRMSEf CV(RMSE)f MAPE (%) 

Radiation 

prediction 

8 0.205 0.769 24.00 

12 0.185 0.693 20.51 

24 0.197 0.738 22.14 

Wind speed 

prediction 

8 0.139 0.296 38.003 

12 0.149 0.316 43.88 

24 0.184 0.390 58.83 

Load demand 

prediction 

8 0.181 0.203 14.25 

12 0.284 0.240 15.92 

24 0.293 0.261 18.44 

It should be observed that, for PV plants under uniform radiation, the forecast of solar radiation can be used to forecast 

their output power, once the main geometric and electric characteristics of the plant are known. Similarly, the power from 

a wind generator can be easily deduced by wind speed information, once the wind plant parameters are set. Therefore, the 

proposed approach is particularly suitable to optimize decision making at the grid manager level. In particular, the good 

forecasting obtained in this study in the range between 8 and 12 hours ahead is useful for electricity market and 

characterization of the viability of solar/wind production in a given location [39]. 



 

Fig.  4 Twelve-hours-ahead solar radiation forecasting result 

 

Fig.  5 Eight-hour-ahead wind speed forecasting result 
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Fig.  6 Eight-hours-ahead power load demand forecasting result 

7 Conclusions 

In this paper, the use of a NARX ANN-based model for solar radiation, wind speed, and load power demand forecasting is 

presented. This forecasting technique is aimed at knowing in advance, with a time horizon that is within 24 hours ahead, 

the output power of renewable sources and the power demand from users of the electrical grid. This result is useful to 

reduce the impact of power fluctuations on the power grid, and therefore to increase its overall efficiency and power quality. 

Meteorological datasets, spanning seven years have been used for this study, together with an hourly load power demand 

dataset spanning 4.5 years. The performance obtained by classic time series linear models and by the proposed ANN is 

compared in terms of both prediction and forecasting results. The NARX network exhibits the best behavior in terms of 

both prediction and multi-step-ahead forecasting of the considered variables. The best forecasting results are obtained for 

the 12-hours-ahead time horizon for solar radiation and for 8-hour-ahead for both wind speed and load power demand. The 

obtained results show that the NARX model is well suited to perform energy-related time series forecasting in the short-

term time horizon. Due to this optimal forecasting time horizon, the proposed method is particularly useful for electricity 

market management, for characterization of solar/wind production viability, as well as for supporting intelligent EMS in 

optimal scheduling of electrical power flows. Furthermore, despite the good forecasting performance, the ANN structure is 

very simple, with a limited number of neurons in a single hidden layer; this is an additional advantage of the chosen 

approach in comparison to other more complex methods proposed in the literature, where ANNs with multiple recurrent 

layers are employed. 
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