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A P P L I E D  P H Y S I C S

Deep learning for enhanced spectral analysis of MA-XRF 
datasets of paintings
Zdenek Preisler1*, Rosario Andolina1, Andrea Busacca1, Claudia Caliri1,2,  
Costanza Miliani1, Francesco P. Romano1,2*

Recent advancements of noninvasive imaging techniques applied for the study and conservation of paintings 
have driven a rapid development of cutting-edge computational methods. Macro x-ray fluorescence (MA-XRF), a 
well-established tool in this domain, generates complex and voluminous datasets that pose analytical challenges. 
To address this, we have incorporated machine learning strategies specifically designed for the analysis as they 
allow for identification of nontrivial dependencies and classification within these high-dimensional data, thereby 
promising comprehensive interrogation. We introduce a deep learning algorithm trained on a synthetic dataset 
that allows for fast and accurate analysis of the XRF spectra in MA-XRF datasets. This approach successfully over-
comes the limitations commonly associated with traditional deconvolution methods. Applying this methodology 
to a painting by Raphael, we demonstrate that our model not only achieves superior accuracy in quantifying the 
fluorescence line intensities but also effectively eliminates the artifacts typically observed in elemental maps 
generated through conventional analysis methods.

INTRODUCTION
In the past decade, the use of imaging techniques for the noninvasive 
investigation of paintings has seen rapid progress. Their capabilities 
have been demonstrated in various applications focused on pigment 
identification, pigment degradation, virtual restoration, and technical 
art history (1–8). However, each of these techniques produces large 
datasets, and the analysis requires specific scientific expertise, as well 
as a solid knowledge of instruments and measurement conditions 
used. It is therefore natural that the availability of these complex data 
has driven in parallel new developments of elaborate analytical proce-
dures and computational methods. More recently, the heritage sci-
ence domain has benefited from cutting-edge artificial intelligence 
algorithms used for addressing challenging tasks and for finding out 
insights that can go unnoticed using classical analysis (9–13). Macro 
x-ray fluorescence (MA-XRF) is a well-established noninvasive tech-
nique becoming routinely used in museums and conservation studios 
for painting investigation (14–18).

It is performed by scanning the painted surface providing ele-
mental distribution images that are relevant for pigment identifica-
tion and to better elucidate the painting technique and the creative 
process of the artist. The MA-XRF scan collects XRF spectra across 
the surface of the object generating a large amount of data. The out-
put is a three-dimensional (3D) data cube with a total number of 
pixels over the scanned area that can be on the scale of megapixel, 
i.e., millions of XRF spectra. This commonly happens when the 
measurement is operated on large artworks or when it is performed 
at high lateral resolution, often available in devices where the pri-
mary radiation is focused down to the micrometric scale with x-ray 
optics. It is evident that a manual analysis of such a large amount of 
XRF spectra is not feasible, and batch procedures have been elabo-
rated overtime to approach this task (19–21).

A typical analysis of a MA-XRF data cube consists of using de-
convolution algorithms that, through a minimization procedure, 
estimate the number of net counts per selected elemental fluores-
cence lines presented in each XRF pixel spectrum. The analysis is 
run by using average models prepared a priori that describes the 
experimental setup used and the assumed elemental composition of 
the investigated sample. This latter information is generally extracted 
at the end of the scan from the integral XRF spectrum of the full 
dataset. However, the rules governing the XRF spectra are complex 
with several nontrivial effects that depend on both the experimental 
conditions and on the chemical composition and structure of the 
sample. This means that shape and intensity of the spectrum, back-
ground, signal-to-noise ratio, and the presence of scattering and dif-
fraction peaks can be different pixel by pixel. In addition, even the 
calculation of concentrations of pure elements (e.g., pictorial layers 
with a specific pigment) is strenuous due to the complex physics at 
play involving the unknown sample stratigraphy and composition. 
As a result, both the data processing and data interpretation pose a 
challenge ordinarily requiring an expert in the field to perform the 
analysis as accurately as possible.

In recent years, this has led to a plethora of novel computational 
methods aimed at automating and assisting MA-XRF analysis or the 
XRF analysis in general. In particular, the application of unsuper-
vised machine learning algorithms has been attempted to improve 
data interpretation. This often leads to clustering methods such as 
K-means, principal components analysis, non-negative matrix fac-
torization, unified manifold approximation and projection, self-
organizing maps, t-distributed stochastic neighbor embedding 
(t-SNE), and their various modifications (12, 22–26). While these 
approaches are useful, they are still not without drawbacks. A par-
ticular challenge is to interpret their outputs and assign them a 
physical meaning.

An alternative is to use supervised machine learning, where one 
trains an artificial intelligence network using labeled XRF spectra. 
To our best knowledge, this has been used only to train convolu-
tional neural network (CNN) classifiers where one attempts to 
predict whether a specific pigment is present in the spectra. One 

1CNR, Istituto di Scienze del Patrimonio Culturale, Via Biblioteca 4, 95124 Catania, 
Italy. 2INFN, Laboratori Nazionali del Sud, Via Santa Sofia 62, 95123 Catania, Italy.
*Corresponding author. Email: zdenek.​preisler@​cnr.​it (Z.P.); francescopaolo.​romano@​
cnr.​it (F.P.R.)

Copyright © 2024 The 
Authors, some rights 
reserved; exclusive 
licensee American 
Association for the 
Advancement of 
Science. No claim to 
original U.S. 
Government Works. 
Distributed under a 
Creative Commons 
Attribution 
NonCommercial 
License 4.0 (CC BY-NC). 

D
ow

nloaded from
 https://w

w
w

.science.org on January 28, 2025

mailto:zdenek.​preisler@​cnr.​it
mailto:francescopaolo.​romano@​cnr.​it
mailto:francescopaolo.​romano@​cnr.​it
http://crossmark.crossref.org/dialog/?doi=10.1126%2Fsciadv.adp6234&domain=pdf&date_stamp=2024-09-25


Preisler et al., Sci. Adv. 10, eadp6234 (2024)     25 September 2024

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A r t i c l e

2 of 13

example is the work by Jones et al. (27) and another work is by Xu et al. 
(28). In both cases, they used a fundamental parameters approach to 
generate synthetic spectra used for training. In the second case, they 
also include experimental spectra from a mockup. We, however, 
believe that the classification task to identify pigments from XRF 
spectra itself is an ill-defined problem. In general, without addition-
al information coming from complementary molecular techniques 
and assumptions on stratigraphy and composition, it is particu-
larly challenging to distinguish and identify pigments containing 
the same elements from the XRF spectra alone.

Here, we introduce a deep learning model, trained using synthetic 
spectra only, providing fast and accurate estimates of the elemental 
distribution maps. The model is trained using more than 500,000 syn-
thetic spectra generated by Monte Carlo (MC) simulations (29). 
Our simulations assume a five-layer physical model describing the 
painting’s structure (see Fig. 1A). The simulation configuration is set 
to match our instrumental setup as closely as possible to maximize the 
fidelity of the spectra (see Fig. 2). Notably, with the use of our trained 
model, we recover not only the correct elemental distributions of 
paintings but also the absolute number of counts for each chemical 
element in the XRF spectra by introducing scale in the neural 

network. Hence, we present it as an alternative to classical deconvolu-
tion analysis substantially reducing the time for the analysis and the 
expertise needed. We demonstrate that the use of our trained network 
is robust enough to provide reliable results of complex pictorial con-
texts. We show that, in some cases, the model even yields superior 
quality results and helps to avoid artifacts present in elemental distri-
bution images calculated using traditional deconvolution.

As a pilot study for this research, we apply the new methodology to 
two paintings by Raphael in exhibition at the Museo di Capodimonte 
(Napoli, Italy). The paintings considered here, God the Father (wood 
panel, 110 cm by 73 cm), and Virgin Mary (wood panel, 51 cm by 
41 cm), represent two of only four preserved fragments of a grand al-
tarpiece painted by Raphael in 1500–1501 (see fig. S1). MA-XRF data 
were recorded in situ in several scanning sessions with different lat-
eral resolutions ranging from the millimetric to the micrometric scale 
by using our custom-developed MA-XRF system (15, 30).

RESULTS
We apply the neural network model to the MA-XRF datasets from 
the two panel paintings by Raphael. In addition, we perform a 

Fig. 1. Schematics of the proposed approach. (A) Schematics of the pictorial model used in the MC simulation to generate the synthetic XRF spectra for training the 
network. (B) Schematics of the neural network used here. We divide the network into two parts: the convolutional blocks and the dense block. The dense block is kept 
fixed in the first part of training and is enabled only after the convolutional blocks are trained. ReLU, rectified linear unit.
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comparative analysis with classical deconvolution algorithms to fur-
ther establish the validity of the model’s results. As will be elaborated 
further below, our approach involves training of the neural network 
with a synthetic dataset mimicking a generic painting with a hydro-
cerussite preparation layer. This is a step forward in the ability to 
perform the MA-XRF analysis because it eliminates the needs for a 
priori assumption about the elemental composition as necessary in 
the classical analysis. Instead, we use a general list of pigments with 
a simple stratigraphy model to describe the painting and run the 
simulations to generate the synthetic training dataset. Besides the 
historical pigments used during the 15th century, we also include 
anachronistic pigments as they are often detected by the MA-XRF 
scans in repainted areas and restorations. Together, 57 pigments and 
compounds are used to generate the synthetic dataset (see table S1).

We show not only that it is possible to train the network using 
only the synthetic dataset but also that we can obtain state-of-the art 
performances using this methodology in analyzing complex picto-
rial contexts. To demonstrate the accuracy and applicability of our 
approach, we compare the elemental distribution maps calculat-
ed using traditional deconvolutional algorithms and our neural 
network predictions. In this research, the classical analysis of the 
MA-XRF datasets was done using the open-source software PyMCA 
(19). In the following, we refer to this analysis as a reference for the 
purpose of comparing and validating our results.

AI/ML maps of the two panel paintings
In our study, we analyzed four datasets from two panel paintings by 
Raphael. This included two MA-XRF scanning datasets covering the 
entire panel paintings, conducted with a step size of 1 mm, alongside 
two high-resolution scans focusing on selected areas of interest in 
the pictorial composition. These scans were executed at a step size of 
250 μm for God the Father panel and a step size of 50 μm for the 
Virgin Mary.

The resulting MA-XRF elemental distribution images, obtained 
from both traditional analysis and artificial intelligence/machine 
learning (AI/ML) methodology, are compiled in figs. S2 and S3 for 

the full paintings and fig. S4 for the high-resolution datasets. Across 
all datasets, the congruence between reference images and AI/ML-
generated elemental distributions is notable, validating the efficacy 
of neural network predictions as an alternative option to the classi-
cal MA-XRF analysis in the examination of painted artworks. The 
pigment palette inferred from the neural network aligns with 15th 
century practices and matches the one used by Raphael in its early 
work (31–33). Notice that MA-XRF is an elemental technique, 
and it should be combined with other analytical techniques to 
elucidate pigment-specific information. In addition, x-rays that 
have penetrating power and information provided by the elemental 
distribution images are integrated over the pictorial layer.

Key findings that can be deduced from the elemental distribu-
tion images include the use of lead white in preparatory layer and 
highlights, red vermillion in skin tones and chiaroscuro enhance-
ments, copper green in draperies, and iron and manganese oxides in 
depicting the two figures and the other elements of the pictorial 
composition in of the background. The copper green is associated 
with potassium, suggesting the use of a copper resinate or the use of 
azurite mixed with a yellow organic lake. The blue pigment is also 
characterized by the presence of copper (suggesting the use of azur-
ite) layered with lapis lazuli (or with a lake) mixed with lead white, 
as can be deduced from the potassium and lead distribution maps 
(34). Some key elemental distribution images are presented in Fig. 3 
for the panel “Virgin Mary,” showcasing the distribution of lead 
(Fig. 3B), mercury (Fig. 3C), gold (Fig. 3D), copper (Fig. 3E), and 
iron (Fig. 3F).

The MA-XRF scans also revealed the gilded motifs of the two 
panel paintings, partially obscured in the current visible pictorial 
composition, and detected restorative work occurred over time involv-
ing anachronistic pigments. Figures 4 and 5 offer a high-resolution 
view of relevant elemental distributions in selected areas of God the 
Father and Virgin Mary, respectively. These images shed light on 
Raphael’s early pictorial techniques. Notably, the correlation map in 
Fig. 4D, with color components red (Hg-L), green (Fe-K), and blue 
(Cu-K), elucidates the use of the subtle modeling technique in the 

Fig. 2. Synthetic spectra. (A) Simulated spectrum of calcite. The graph shows our ability to simulate a spectrum of a known sample. The geometry used in the simulation 
is the same as the one used to build the synthetic dataset. (B) Simulated spectrum of a group of pixels taken from a specific region in the Virgin Mary panel dataset. The 
red dashed line corresponds to the spectrum simulated using the same model and the setting as the spectra in the synthetic dataset. The concentrations of the detected 
elements are found numerically and used in the simulation to define the painting model. The blue line is an average spectrum over a ROI indicated by the red rectangle 
in the image. The gray area indicates the SD of the experimental spectra selected. a.u., arbitrary unit.
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facial painting, leaving the lead white preparation exposed (not vis-
ible in the figure) and using ochres to impart three-dimensionality 
and shadowing while red vermillion with a layer of a Cu-based 
pigment around the eyes to create nuanced skin tones. The high-
resolution maps in Fig.  5B provide insights into Raphael’s under-
drawing techniques, especially evident with the use of a lead tip for 
delimiting the architectural details.

A notable correlation between iron and zinc, visible in Fig. 5 (C 
to E), points to the origin of the ochre used by Raphael (35). We 
used MC simulations to model this area of the painting and extract 
XRF spectra matching our experimental data. We estimate the aver-
age weight ratio of ZnO to Fe2O3 to be 0.12 ± 0.03, aligning with 
previous estimates for this specific pigment (35). This average value 
is calculated over eights regions of interest (ROIs) indicated in 
fig. S5B.

Comparative analysis of AI/ML predictions versus the 
deconvolution analysis
For the elemental lines with mid and high net counts such as Pb-L, 
Cu-K, and Fe-K, the results obtained from the AI/ML model and the 
classical deconvolution method are mostly indistinguishable with-
out a statistical/quantitative analysis. The most notable differences 
are visible where the elemental line counts are low, i.e., low signal-
to-noise ratio. We find that deconvolutional analysis has a slight ten-
dency to overestimate the counts in these instances, including cases 
when the element is not present. Consider, for example, the elemental 

map of Au-L in Fig. 3D. The Au-L low counts detected in the refer-
ence map in the background are an artifact because there is no 
gold present.

The network provides superior results in this case as there are no 
false-positive net counts. In the case of Hg-L, the classical deconvo-
lution tends to detect mercury even if it is not present (see Fig. 3C) 
or to overestimate its counts in the simultaneous presence of lead in 
the flesh tones. Differences can also be seen when evaluating sepa-
rate maps of the Hg-L series. For example, the Hg-L1 reference map 
is expected to be problematic by default as it includes line energies 
below and above the Pb-L3 edge, and the continuum background in 
the experimental spectrum is not properly elaborated by the decon-
volution fitting procedure. We see this in the elemental maps of 
Hg-L1 and Hg-L3 in Fig. 6 (A and B), where in the case of Hg-L1, the 
Pb contribution makes the image noisier. On the other hand, the 
Hg-L3 line reference estimate and the model prediction correspond 
to each other. The difference between the reference and our estimate 
for Hg-L3 lines is shown in Fig. 6C.

Another pair of interests are iron and manganese. The Fe-Kα and 
Mn-Kβ emission lines are very close in energy, 6.40 and 6.49 keV 
respectively, which renders their estimate more problematic com-
pared to the other elements. Mn-Kα has an energy of 5.90 keV, and 
Fe-Kβ has an energy of 7.06 keV. The proposed AI/ML model can 
separate the contributions of both elements more precisely, hence 
providing an improved estimate of counts. In the case of the Virgin 
Mary (see Fig. 5), we estimate less than 1 count of Mn-K per pixel, 

Fig. 3. Elemental distribution maps of MA-XRF of the Virgin Mary. In all cases, we display the AI/ML predictions on the left and the reference estimates on the right. 
(A) Visible image of the scanned area. (B) Elemental maps of Pb-L. The maps match very closely. (C) Elemental map of the Hg-L shows that the reference net counts are 
higher for the low net counts, especially in the presence of Pb-L. This is particularly pronounced in the facial features and the hand. This effect is an artifact of the decon-
volution procedure. (D) Elemental counts of Au-L show the background noise produced by the deconvolution in the reference map on the right. The network, on the 
other hand, is much less susceptible to this. (E) Elemental distribution maps of Cu-K. (F) Elemental distribution maps of Fe-K. These match the net intensity inferred very 
closely. [Credits: Photo (A) by Danilo Pavone, ISPC-CNR, Catania]
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suggesting the accurate prediction of the network. On the contrary, 
the reference Mn-K is overestimated due to the Fe-K and the con-
tinuum contribution. The same occurs in the case of the manganese 
and iron distribution images in God the Father (see Fig. 6). We show 
the Mn-K image that contains Mn-Kβ that overlaps with Fe-Kα 
lines. To further elaborate, we display the Mn-Kα image only. In this 
case, the reference estimate is more appropriate and in better agree-
ment with the network prediction. Here again, we estimate the aver-
age number of net counts of the Mn-K in a ROI obtaining 5 counts 
per pixel, which is below the reference estimate.

Besides the above examples, we can also separate the contribu-
tions from Pb-M and S-K (see Fig. 4, E and F). Not only are these 
lines close in energy, 2.31 and 2.46 keV for S-K and 2.35 keV for 
Pb-M, but also they are in a low-energy region where estimates are 

challenging due to low intensities and many elemental lines present 
(i.e., scattering L-lines peaks from the sources or other L lines from 
heavy elements). The S-K map is very noisy, while the AI/ML 
prediction shows the pictorial details (i.e., the sulfur in the red 
gemstone on the crown and the lips as expected from the use of red 
vermillion, confirmed in the Hg map). We set the same colormap 
for both the references and for our predictions, so a specific number 
of net counts correspond to the same color.

Apart from the above, we also provide a quantification of the 
results to demonstrate that we recover an absolute number of net 
counts for the elemental lines and not only their distribution. In 
Fig. 7, we show histograms and plots of AI/ML estimates versus 
the reference for each pixel for selected elements. The histograms 
provide information about how the counts are distributed in the 

Fig. 4. High-resolution MA-XRF elemental distribution maps of the detail of God the Father. (A) Visible image of the scanned area. (B) Elemental map of Pb-L. (C) El-
emental maps of the Hg-L. (D) Composed Red-Green-Blue (RGB) image of the elemental distribution maps of Hg-L, Fe-K, and Cu-K. The image provides insight into the 
painting technique of Raphael. (E) The elemental distribution maps of Pb-M. The AI/ML estimates are lower than the ones of the reference. The network, however, provides 
a less noisy output. (F) Elemental distribution maps of S-K. The AI/ML image is predicted, while the reference, due to the low net counts of sulfur and the energy overlap 
of S-K with the Pb-M, is too noisy to be interpreted. [Credits: Photo (A) by Danilo Pavone, ISPC-CNR, Catania]

D
ow

nloaded from
 https://w

w
w

.science.org on January 28, 2025



Preisler et al., Sci. Adv. 10, eadp6234 (2024)     25 September 2024

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A r t i c l e

6 of 13

corresponding maps, where for identical predictions, the curves 
will overlap. In the case of experimental spectra, the actual net 
counts of the elemental lines, i.e., the ground truth, are not known. 
Hence, we use the reference estimate as a close approximation for 
the purposes of the evaluation of the model, although it can vary 
slightly depending on the settings of the fitting model used for the 
deconvolution.

We find that our predictions and the reference match very close-
ly. In particular, the net counts follow the same distributions, and we 
recover the same scale for both estimates. The most notable differ-
ences are again in the low count regions. The reference displays a 
pillar as it tends to slightly overestimate when the element is not 
present, which follows the arguments presented above. In the case of 
the very high counts, we observe that the reference occasionally 
slightly underestimates with respect to the network estimates. To 
further quantify the results, we plot the reference versus the predic-
tion for each pixel, where the same predictions correspond to the 
indicated dashed black line. All the graphs show good agreement 
with the reference. Again, the only exceptions are the low count 

backgrounds and the high counts, where the points drift above the 
black dashed line discussed above.

Figure of merit of the AI/ML model
To further evaluate the precision of the network and to provide 
more insight, we build an additional synthetic dataset using lead 
white as preparatory layer and a mixture of two pigments mixed 
with a binder as pictorial layer: vermilion, HgS, and lead white 
[Pb3(CO3)2(OH)2] (see Fig. 8A). The volume fraction of the binder 
is fixed at 50%, and we vary the mass fraction of the lead white and 
vermilion (see fig. S7). Because the dataset is synthetic, we have the 
exact labels associated with each simulated spectrum, which in turn 
allows us to better estimate the errors of both the AI/ML model and 
the reference deconvolution method. To populate the dataset, we 
vary the vermilion mass fraction on the logarithmic scale, and we 
generate 1000 spectra for each data point to compute a mean and an 
SD for our estimates. We analyze this dataset by both our AI/ML 
model and the deconvolution procedure estimating the fluorescence 
lines net counts. To obtain better fit results when performing the 

Fig. 5. High-resolution MA-XRF elemental distribution maps of the architectural detail in the painting of the Virgin Mary. (A) Visible image of the scanned area. 
(B) Elemental map of Pb-L. This image shows the lead tip used by Raphael in the preparation drawing. (C) Elemental distribution maps of Zn-K. (D) Elemental distribution 
map of Fe-K. (E) Correlation between Zn-K and the Fe-K indicates that the natural ochre used by Raphael is associated with a high concentration of zinc. (F) Elemental 
distribution map of Mn-K. The AI/ML prediction shows no signals. We find that the average number of net counts per pixel is less than 1. The counts detected in the refer-
ence are artifacts. [Credits: Photo (A) by Danilo Pavone, ISPC-CNR, Catania]
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deconvolution, the fitting model includes the characterization of 
the x-ray source of our MA-XRF setup, the geometry, and the 
matrix composition as defined in the simulation generating the 
synthetic dataset.

The outcome of this analysis is aligned with the findings de-
scribed above. Despite the fine-tuned setting, the deconvolution ap-
proach slightly undervalues the Pb-L, while the neural network 
model recovers the simulation values (see Fig. 8B). Figure 7C shows 
that the deconvolution fits the Hg-L lines even in the absence of 
mercury when lead is present; hence, it gives false-positive counts. 
This agrees with our observations in the elemental maps. The neural 
network accurately estimates Hg-L down to 70 net counts. Below 
this number, it will underestimate. Both the network and the decon-
volution estimate average S-K counts well (see Fig. 8F). However, 
the deconvolution has a larger SD, meaning that estimate is noisier. 
This corresponds to our findings as well when evaluating the ele-
mental distribution maps (see Fig. 5). The network slightly under-
estimates the net counts of Pb-M compared to the deconvolution, 
but at the same time, the SD is smaller, resulting in less noisy maps. 

This again reflects our observation when analyzing the elemental 
distribution images of the two panel paintings.

In addition to the above, we evaluate the same synthetic dataset 
using the deconvolution with the fitting model corresponding to the 
one used for the painting where many elements are included in the 
fitting procedure. In Fig.  8E, we show estimates for As-K and 
Au-L. In both cases, the deconvolution shows false counts. This is 
unavoidable for paintings where many pigments are present and a 
general fitting configuration model including many elemental lines 
is necessary. The As-K lines are close in energy to Pb-L lines, and 
hence, the fitting procedure tends to assign counts to As-K when 
Pb-L is present. The network, however, in both cases provides an 
appropriate estimate.

DISCUSSION
The primary achievement of this study lies in the effective imple-
mentation of a neural network model for the analysis of MA-XRF 
datasets obtained from complex pictorial contexts. It marks a 

Fig. 6. High-resolution MA-XRF elemental distribution maps of the detail of the God the Father for separate lines of Hg. (A) Elemental maps of Hg-L1. (B) Elemental 
map of Hg-L3. (C) Difference between the elemental maps of the Hg-L3 for the reference and our model. (D) Elemental map of Mn-K. (E) Elemental map of Mn-Kα. This 
elemental line does not overlap with the Fe-Kα, which results in the mismatch between the AI/ML model prediction and the reference. (F) Elemental map of Fe-K.
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notable advancement in processing the XRF spectra, yielding ele-
mental distribution images from MA-XRF scans of enhanced accu-
racy. The AI/ML model of this study effectively overcomes the 
limitations and artifacts commonly associated with traditional de-
convolution analysis methods. Quantitatively, we have proven its 
capability in precisely predicting the absolute number of net counts 

for each elemental line analyzed. A noteworthy aspect of the model’s 
performance is its superior accuracy in scenarios with low net 
counts, a situation where the traditional analytical methods typi-
cally tend to overestimate. Furthermore, the CNN model adeptly 
manages the identification and separation of closely overlapping 
fluorescence lines within the XRF spectra, and it is currently one of 

Fig. 7. Comparisons of the elemental distribution maps. (A) Histograms of the net counts for selected elements. The histograms of the Pb-L are shown on the linear 
scale, while the rest are shown on the logarithm scale for clarity. The graphs show that both the AI/ML and the reference recover the net counts on comparable scales. The 
histograms indicate that the reference predicts slightly lower net count at high intensities. On the other hand, at the very low counts, the reference overestimates, creating 
a pillar which in the images corresponds to the background noise. (B) Plots of AI/ML estimates versus the reference for each pixel for selected elements. Identical results 
lie on the black dashed line. The color gradient is a guide for the eye, where the darker red indicates more points present. The graphs show that both approaches generate 
closely matching results, and the combined estimates follow the black dashed line very tightly.
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the most effective methods for the precise analysis of interfering 
characteristic x-ray peaks. This capability is crucial for accurately 
estimating the distribution of the chemical elements, i.e., of the pig-
ment materials in the painting, improving the interpretation of the 
results and, in turn, the knowledge of the artist’s materials and tech-
nique. We have demonstrated that it is possible to train our neural 
network model using solely synthetic XRF spectra and to analyze 
extensive datasets of experimental spectra effectively without the 
need of any a priori assumption of the elemental composition. Fur-
thermore, the construction of specific synthetic datasets provided a 
controlled environment to test the model’s precision and to under-
stand its detection limits and response variability across different 
pigment compositions and painting stratigraphy.

These findings represent a pivotal advancement in the integration 
of artificial intelligence for more accurate and efficient analysis of XRF 
spectra. This is particularly relevant for handling large datasets, such 
as those produced by MA-XRF imaging techniques commonly used 
in Heritage Science and thus further fostering interdisciplinary col-
laboration among the experts from various scientific disciplines in the 
field. The success of our approach is founded on two key pillars. First, 
the existed knowledge in the description of x-rays generation and in-
teractions with matter, including the spectral responses of energy 

dispersive detectors, and second, the availability of advanced simula-
tion software capable of generating synthetic spectra that closely emu-
late those obtained by XRF instruments. While in the present study 
we have demonstrated the application of this methodology related to 
a specific XRF spectrometer and the set of analyzed materials, its ap-
plicability can be easily extended.

In principle, we can generate large datasets of synthetic spectra 
within short timeframes, facilitating the production of reliable ana-
lytical results. This capability not only allows for the simulation of 
additional spectra but also enables the preservation of all simulation 
settings and parameters. These parameters, some unattainable 
through experimental methods, can be inferred, giving way to fu-
ture extensions going beyond what is possible with conventional 
approaches. One can, for example, extend the methodology to at-
tempt to infer a model stratigraphy or to estimate a conversion of 
spectra obtained with different instrumentations to make the data 
directly comparable. Nevertheless, we consider the dependence of 
the synthetic dataset on the experimental setup parameters (includ-
ing x-ray source, geometry, optics, detector, etc.), on the sample ma-
trix composition and stratigraphy, as the main limitation of the 
proposed methodology. We expect that this constraint will be pro-
gressively mitigated with future developments.

Fig. 8. Quantification of accuracy using a known synthetic dataset. (A) Composition of the synthetic dataset. We use the same stratigraphy model as the one used for 
the painting except for the pictorial layer, which is a mixture of lead white, vermilion, and binder. The volume fraction of oil is fixed, and we vary the mass fraction of the 
lead white and vermilion (B) Predicted net counts of Pb-L. The red lines correspond to our prediction, while the blue lines denote the reference estimates. The shaded 
regions indicate the SDs, respectively. The black line indicates the XMI counts, i.e., the ground truth. (C) Predicted net counts of Hg-L. The inlet shows that the neural 
network follows the ground truth to around 70 counts, after which it predicts zero. (D) Here, we perform the reference analysis using additional elemental lines not present 
in the sample. The graph shows that the reference fits the elemental lines even in their absence. The network is much less susceptible to this, not resulting in false-positive 
net counts. (E) Prediction for the net counts of Pb-M. The network underestimates the counts more compared to the reference. The reference, however, has a higher SD, 
resulting in noisier images. (F) Predictions for the net counts of S-K. Both the network and the reference provide appropriate estimates. Here too, the network exhibits a 
lower SD compared to the reference.
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MATERIALS AND METHODS
AI/ML model structure
The AI/ML model presented in this work is based on CNN architec-
ture, and the network is trained to infer the number of net counts 
per each selected series of emission fluorescence lines in XRF spec-
tra. Note that this differs from other until date reported works (10, 
11) where CNN is used as a classifier, and it presents its unique chal-
lenges. In the design of the neural network, we consider that mea-
sured counts are affected by Poisson noise, and hence, the measured 
spectra cannot be individually rescaled. Because our task is to esti-
mate the absolute number of counts, certain commonly used opera-
tions for training CNNs are purposefully avoided. This includes 
normalization, batch normalization, and dropout; in addition, all 
the biases in all layers are disabled. We use the 1D convolution layers 
as they are a natural choice to represent the XRF peaks. We aim to 
train the network kernels that give rise to expected shapes and po-
sitions of peaks present in the spectra. This contrasts with a typical 
CNN classifier where one hopes to learn distinguishing features of 
various classes. In that sense, the methodology is more analogous to 
the standard deconvolution methods used in XRF analysis, where 
the peaks themselves are modeled using deep convolutional layers 
rather than using Gaussian distributions.

This is also reflected in the training of the network. A typical 
CNN is translationally invariant. This property comes from the 
dense layer at the end of the network that picks relevant features for 
the classification. In our case, the fluorescence lines are character-
ized by their energies, i.e., their position in the arrays, and hence, we 
want to prohibit translational invariance. To this end, the training is 
carried out in two stages. In the first stage, the training of the dense 
layers is partially disabled, and we allow the training of all dense lay-
ers only after the network learns to represent the shapes of the peaks. 
Further, we adjust the training to introduce changes of scale that 
respect the Poisson noise. In other words, we want the network to 
predict the counts across a few orders of magnitudes. The absolute 
number of counts scales with dwell time per pixel, current and volt-
age of the primary x-ray source, and total detection active area, 
which are all factors commonly adjusted based on the experimental 
needs. While it is not possible to rescale a single experimental spec-
trum, the same is not true for our simulated spectra (i.e., the ones 
used for generating the synthetic training dataset), which do not 
include the Poisson noise. This allows us to simply rescale, i.e., mul-
tiply by a scale factor, the convoluted spectra first and consequently 
apply the Poisson noise on-the-fly during training. This also in-
creases the training dataset diversity as no spectrum is fed to the 
network twice during the process, reducing issues with overfitting. 
We use L1 loss function with Adam optimizer with a learning rate of 
10−4 and the batch size of 512. The L1 loss is divided by the scale 
factor used for each spectrum during training to calculate the back-
propagation, i.e., the ratio loss = L1(label, prediction)/scale factor. 
The scale factor is chosen randomly on-the-fly per each spectrum 
between 0.05 and 100. We use spectra in the energy range from 0 to 
30 keV, and the spectra are resampled from 2048 bins to 1024 bins to 
lower the computational requirements and to speed up the training. 
The network we use is a CNN structured as follows (see Fig. 1):

1) The 1024 bins spectrum is multiplied by a scale factor, and the 
Poisson noise is added.

2) The first convolutional layer with 24 kernels with a kernel size 
of 5 is applied with a zero padding of 2, producing 24 × 1024 fea-
ture maps.

Max-pooling layer with a kernel size and a stride of 2 together 
with a rectified linear unit (ReLU) is applied generating 24 × 512 
feature maps.

3) The second convolutional layer with 48 kernels and a zero 
padding of 2 is applied, producing 48 × 512 feature maps.

4) Another ReLU and Max-pooling layer with both a stride and 
kernel size of 2 are applied, generating 48 × 256 feature maps.

5) The third convolutional layer is applied with 96 kernels and a 
zero padding of 2, obtaining 96 × 256 feature maps.

6) Follows the third ReLU and Max-pooling layer with a stride 
and kernel size of 2, which produces 96 × 128 feature maps.

7) The fourth convolution layer with 192 kernels with a stride of 
2 is applied, generating 192 × 128 feature maps.

8) Follows another convolution with 192 kernels with a kernel 
size of 4 and a stride of 4 replacing both Max-Pooling and ReLU 
layer, producing 192 × 32 maps.

9) Then, the feature maps are flattened, obtaining 6144 values, 
and a fully connected (FC) layer of 6144 neurons is applied, leaving 
the number of values unaltered. This layer is not trained during the 
first phase of the training.

10) The second FC layer is the last layer of the network gener-
ating the output.

The network infers an estimate of the net number of counts for 
58 XRF spectral series, of which 38 are summarized in table S2, and 
additional 20 XRF single emission lines are listed in table S3. Once 
the network is trained, we add a Softplus layer at the end of the net-
work and train again. This further increases the accuracy of the net-
work and removes negative counts.

Synthetic training dataset
We consider two relevant ways to build the training datasets. The first 
one consists of the use of experimental data, i.e., datasets of already 
analyzed paintings, while the second way consists of generating an 
artificial synthetic dataset. While building the training datasets with 
experimental data is feasible, we find it challenging for several rea-
sons. First, the composition of the dataset is dependent on the ana-
lyzed paintings or mockups. This readily becomes a limiting factor as 
the model cannot be trained to predict elements not previously mea-
sured, and any extensions of these datasets can present noteworthy 
challenges as these data are not only sample dependent. They are also 
instrumentation specific. In addition, the resulting datasets are not 
balanced, there are chemical elements that are present often, e.g., 
white lead used in the preparatory layer, while others can be found 
only in later repainting, and restoration materials that can vary wildly 
even regarding artworks from the same period that otherwise have 
similar compositions. Another issue is that these datasets often come 
with systematic errors. These systematic errors are likely to vary for 
different analyzed paintings. Each scan has its own setup, both ex-
perimental and the settings used for the analysis. While this, in gen-
eral, will not affect on the actual analysis of the elemental maps, it can 
lead to hindering of the training, resulting in suboptimal performance 
and inability to correctly predict the intensities. Alternatively, one can 
use synthetic datasets to train the networks. Given that one can gener-
ate reasonable synthetic spectra, this offers many benefits. Mainly, (i) 
each spectrum has associated known labels; (ii) we obtain convoluted 
spectra without Poisson noise; (iii) it can be expanded easily with re-
spect to the experimental one, introducing any combination of ele-
ments if needed. Last, the spectra are not dependent on a set of 
paintings and balancing.
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The synthetic dataset generated for our model is based on simu-
lations covering combinations of all the chemical elements needed. 
We have used XMI-MSIM software that is an open-source tool de-
signed for predicting XRF spectra using MC simulations (22). It 
allows the user to customize the elemental composition of the data-
set by using real scanning configurations. The synthetic XRF spectra 
are generated using MC simulations based on a fundamental pa-
rameters approach and tuned for the geometry and the x-ray source 
of our MA-XRF setup. In the case presented here, we have used a 
Rh-anode x-ray source coupled with a polycapillary. To reproduce 
the experimental spectral distribution of the source, the transmis-
sion function of the optic and the following emission spectrum are 
calculated semi-empirically using Compton scattering of a Mylar 
standard. The most challenging step here is to estimate the transmis-
sion function. However, this step only must be done once for the 
given optics. Once the excitation source is well defined, it is possible 
to reproduce the experimental XRF spectra with high fidelity. The 
one drawback of the calculation is that diffraction peaks modeling 
are not included in the MC simulations. This remains a limitation in 
XRF analysis, affecting even traditional deconvolution methods.

We show the comparison of synthetic and experimental spectra 
for a geological calcite in Fig. 2A. To create the synthetic dataset, 
we model the paintings using a five-layer model as depicted in 
Fig. 1A. At the bottom, we place a gypsum support followed by a 
preparation layer. The preparation layer is modeled as a white lead 
pigment mixed with linseed oil as a binder. We set the thickness of 
the preparation layer to 60 μm. Next is the pictorial layer that we 
model as a mixture of pigments and a binder. We keep a fixed vol-
ume ratio of pigments/binder 1:1. We use volume fractions rather 
than the mass fractions to better account for varying densities of the 
pigments. The pigments are chosen randomly from a list of 57 pig-
ments. Both historical and modern pigments are included (see ta-
ble S1). The number of pigments in the layer is not fixed and instead 

is taken from a Poisson distribution. On average, two pigments are 
selected. The thickness of the pictorial layer is chosen randomly 
from a uniform distribution ranging from 1 to 120 μm. On top, we 
add a layer of varnish. The last layer models the air path correspond-
ing to the space between the sample and the x-ray source.

In Fig. 2B, we show a simulated spectrum compared with an ex-
perimental spectrum from the MA-XRF dataset of the Virgin Mary 
panel. This is to demonstrate that we reliably reproduce the experi-
mental spectra including the background. In addition to the above 
physical model of the painting, we also generate a dataset without 
the hydrocerussite layer to model spectra where we do not measure 
any lead (see fig. S6). The main goal of this exercise is to construct a 
dataset that appropriately represents any typical 15th century paint-
ing. Ideally, the space covered by the synthetic dataset is larger than 
the union of all the relevant experimental datasets. This is to guaran-
tee that the solutions of the network are not based on extrapolation 
but rather on interpolation. We generated a synthetic dataset of 
500,000 random spectra following the procedure described above. 
We make a great deal of effort to make sure that the synthetic data-
set is as representative as possible. Figure 9 displays the logarithms 
of 2D distributions, i.e., the projections of n-dimensional elemental 
maps to show that we indeed cover the experimental datasets. We 
divided by the counts of Pb-L to make the distributions scale 
invariant.

Experimental dataset
The experimental datasets used for validating our AI/ML model 
were obtained through in-situ MA-XRF investigations of Raphael’s 
artworks at the Museo e Real Bosco di Capodimonte in Napoli. 
Specifically, we show the MA-XRF datasets of the panels, God the 
Father and head of Virgin Mary, which are fragments of the Bar-
onci Altarpiece painted by Raphel in 1500–1501 (see fig. S1). Two 
distinct MA-XRF setups, both developed at the XRAYLab of 

Fig. 9. Synthetic spectra datasets. We show logarithms of ratios of selected elemental lines and corresponding net counts of Pb-L. The blue 2D histograms in the back-
ground represent the spectra of the synthetic datasets used. The red contours indicate the experimental spectra. All net counts are normalized by Pb-L to make them in-
dependent to the change of scale. The graphs show that the synthetic spectra cover the space where we expect the experimental datasets. The experimental datasets 
correspond to the net counts estimated using the deconvolution. (A) Experimental datasets of MA-XRF of the Virgin Mary. (B) Experimental dataset of the micro-XRF of the 
detail of the God the Father.
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ISPC-CNR in Catania, were used across different scanning ses-
sions. The first setup, used for scanning the entire panels, com-
prises an Rh anode source, focused with a polycapillary, and a 
detection system with two silicon drift detectors (SDDs) (15). The 
second setup, used for the high-resolution acquisitions, features a 
3D array of six SDDs (30). The dataset of the panel God the Father 
was taken at a 1-mm scanning step and 12-ms dwell time per pixel 
and consists of 1.1 M pixels; the dataset of the panel head of the 
Virgin Mary was taken at a step size of 1 mm and 12-ms dwell-time 
per pixel and consists of 210,000 pixels. The close-up on the God 
the Father was taken at a step size of 250 μm and 5-ms dwell time 
and consists of 1.2 M pixels. The high-resolution details of the 
Virgin Mary were taken at a step size of 50 μm and 10 ms and con-
sist of 340,000 pixels.

Supplementary Materials
This PDF file includes:
Supplementary Text
Figs. S1 to S9
Tables S1 to S5
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