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Abstract
The unpredictable chronic mild stress (UCMS) mouse model of depression causes a variety of neuronal structural alterations ranging from dendritic spines loss 
and dendrite arbor retraction to spine proliferation in brain regions involved in the control of mood. Based on data showing that the plant stress hormone methyl 
jasmonate (MJ: methyl acetate-2,2-d2) mimics the effect of imipramine in rescuing the UCMS-induced depressive behavioral phenotype, here we examine whether 
the UCMS protocol used to demonstrate the antidepressant action of the compound triggers structural alterations in basolateral amygdala, hippocampus and 
prefrontal cortex which can be rescued by MJ treatment. Male C57BL/6 mice were injected with MJ (50 mg/kg) or saline (SAL) before each of the two daily 
exposures to UCMS administered over a 10-day period. Home cage, daily manipulated, SAL-injected mice served as controls (CTRL). On day 11, mice were 
sacrificed for Golgi-staining. Results show that in comparison with CTRL mice, SAL+UCMS mice exhibit a massive reduction in spine density and dendritic arbor 
extension/complexity in the three regions examined. Remarkably, MJ+UCMS mice show an alleviation of neuronal structural alterations in the three regions, with a 
more complete recovery observed in the prefrontal cortex. Our data provide further validation of the antidepressant action of the compound by revealing its efficacy 
in globally preventing the collapse in synaptic density and neuronal connectivity identified as key nodes of the mood circuitry.
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Introduction
Unpredictable chronic mild stress (UCMS) is a well-validated 

rodent model of depression [1-3] based on the presentation of multiple 
minor stressors which gradually induce a learned helplessness state and 
produce anhedonia-like symptoms [4]. Extensive evidence indicates 
that the UCMS-induced depressive phenotype associates with dendrite 
atrophy and spine loss in the hippocampus [5-7] and the prefrontal 
orbital cortex [8], and with a reduction of synaptic density [9] or an 
increase in spines [10] in the amygdala. Molecular dysregulations 
involved in these structural alterations include downregulation of 
brain-derived neurotrophic factor (BDNF), cAMP-response element 
binding protein (CREB), and calcium/calmodulin-dependent protein 
kinase II (CaMKII) pathways [11] with an established role in synaptic 
plasticity, and reduced expression of proteins implicated in cytoskeletal 
reorganization [12-14] and synaptic activity [15,16].

Methyl jasmonate-(MJ: methyl acetate-2,2-d2) is a phytohormone 
endowed with antidepressant properties. Specifically, MJ potentiates the 
toxic effect of yohimbine in the yohimbine lethality test, and reduces the 
immobility time in the forced swim (FS) and tail suspension tests [17-
19]. Of note, MJ and imipramine similarly alleviate anhedonia in the 
sucrose preference test, prevent the increase in serum corticosterone 
levels, attenuate neuro-inflammation, and decrease oxidative stress 
markers in brain extracts [20].

Although the current challenge is to verify that drugs which 
reduce depressive symptoms also rescue the structural abnormalities of 
neurons, only few studies support this possibility [21-23]. Accordingly, 
here we examine if the UCMS protocol used to demonstrate the 
antidepressant action of the compound triggers a specific pattern 
of structural alterations of neurons in key brain regions of the mood 
circuitry - basolateral amygdala, hippocampus and prefrontal cortex - 
which can be rescued by MJ treatment.

Methods
Animals: We used male C57BL/6J@Ico (C57) mice which were 

9-week-old at the beginning of the experiments. They were housed 
5 per cage and maintained in a temperature-controlled facility (22 ± 
1°C) on a 12:12 h light-dark cycle with free access to food and water. 
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All experimental procedures were conducted in accordance with the 
official European Guidelines for the care and use of laboratory animals 
(86/609/EEC).

Methyl jasmonate treatment: 1,2 µl of Methyl jasmonate (MJ: 
methyl acetate-2,2-d2, Sigma-Aldrich) was dissolved in 1.2 µl of ethanol 
(95%). This solution was further diluted in 197.6 µl of distilled water to 
get a 200 µl of 50 mg/kg dose for each mouse of an average weight of 25 
g. This dose was chosen on the basis of data showing that it produced 
maximal rescue of UCMS-induced behavioural indexes of depression 
[17]. Saline (SAL) was used as vehicle.

Experimental design and UCMS protocol: Mice (N=10 per 
group) were randomly assigned to the following three experimental 
conditions: SAL+UCMS (Stress), MJ+UCMS (MJ+Stress), and home 
cage+SAL (CTRL). The UCMS protocol was a revised version of the 
one described by Yalcin et al., 2008 [24] and Wilner et al., 2017 [3]. 
It consisted of exposing mice twice per day to one of the 10 stressors 
listed in table 1 over 10 consecutive days. The UCMS schedule was 
delivered on random time intervals to avoid habituation or foresight. 
Control mice did not experience the stressors but were handled daily in 
the experimental room for 5 minutes.

Golgi staining: On day 11, mice were deeply anaesthetized with a 
cocktail of Zoletil (800 mg/kg) and Rompum (200 mg/kg) and perfused 
transcardially with 0.9% saline solution (N = 7 mice per group). Brains 
were dissected and immediately immersed in a Golgi-Cox solution 
(1% potassium dichromate, 1% mercuric chloride, and 0.8% potassium 
chromate) at room temperature for 6 days. On the seventh day, brains 
were transferred in a 30% sucrose solution for cryoprotection and 
then sectioned with a vibratome. Coronal sections (100 μm) were 
collected and stained according to the method described by Gibb 
and Kolb (1998) [25]. Sections were stained through consecutive 
steps in water (1 minute), ammonium hydroxide (30 minutes), water 
(1 minute), developer solution (Kodak fix 100%, 30 minutes), and 
water (1 minute). Sections were then dehydrated through successive 
steps in alcohol at rising concentrations (50%, 75%, 95%, and 100%) 
before being closed with slide cover slips. Neurons were identified 
with a light microscope (Leica DMLB) under low magnification (20×/
NA 0.5). In each region, six fully impregnated neurons (three per 
hemisphere) displaying dendritic trees without obvious truncations 
and isolated from neighboring impregnated neurons were retained for 
the analysis [26]. Because no interhemispheric difference was detected, 
the data were pooled so that 6 neurons per region and per animal were 
considered in each analysis. Measurements were carried out using 
a microscope (DMLB, Leica) equipped with a motorized stage and a 
camera connected to a software for morphological analyses allowing 
quantitative 3D analysis of complete dendritic arbor (Neurolucida 7.5; 
MicroBrightField, Inc.).

Morphological analysis

Spine density: Five 30-100 μm dendritic segments of secondary 
and tertiary branch order of CA1 pyramidal neuron basal and apical 
dendrites, BLA spiny neurons, and layer V prelimbic cortex pyramidal 
neurons were randomly selected and counted using Neurolucida 
software. Only protrusions with a clear connection of the head of the 
spine to the shaft of the dendrite were counted as spines. Statistical 
comparisons were made on single neuron values obtained by averaging 
the number of spines counted on segments of the same neuron. Inter-
regional comparisons were made after spine density scores variations 
were normalized to the CTRL group in each region.

Dendritic Arbor: The dendritic arbor of BLA spiny neurons, and of 
CA1 and PFC pyramidal neurons (apical and basal) selected for spine 
density counts were traced by means of Neurolucida software. Three 
parameters were examined: total dendritic length, number of nodes, 
and number of endings. Dendritic arbor complexity was then evaluated 
by Sholl analysis. Briefly, in each region, the number of neuron dendrite 
intersections with concentric circles traced at increasing radial distances 
(segment radius: 25 μm) from the center of the soma was counted by 
adding up all values in each successive radius.

Statistical analysis: Two-way ANOVAs with group and brain 
region as main factors were used for statistical comparison of dendritic 
spines, dendrite length, number of nodes, number of endings and PV+ 
immuno- reactive puncta. Post hoc pair comparisons were carried 
out where necessary using the LSD test. In each region, the number 
of dendrite intersections with concentric circles was calculated and 
compared among groups by means of a two-way ANOVA with group 
and radius distance from the soma as main factors.

Results
Methyl jasmonate rescues UCMS-induced dendritic spine loss

Data are shown in figure 1. Histograms (Figure 1D) report spine 
density data in each group x region condition. There was a significant 
effect of group [F2,129 = 330,4, p < 0.001], of region [F2,129 = 3,40, 
p < 0.05], and a significant group x region interaction [F4,129 = 3,08, 
p < 0.05]. Pair comparisons showed that SAL-injected mice exposed 
to UCMS exhibited significantly less spines than their counterparts 
non-exposed to UCMS (Stress vs CTRL, p< 0.001 for all regions). 
Remarkably, MJ treatment significantly increased dendritic spines in 
the stressed mice (MJ+Stress vs Stress, p < 0.001 for all regions). The 
treatment, however, produced only a partial rescue of spines, since they 
were still more numerous in the Control group (CTRL vs MJ+ Stress, p 
< 0.01 for all regions). Of note, the partial rescue was stronger in PFC 
where more spines were counted than in BLA and CA1 (PFC vs BLA, p 
< 0.001; PFC vs CA1, p < 0.05).

Methyl jasmonate rescues UCMS-induced dendrite retraction

Dendrite length: (Figures 2D-2F) There was a significant effect 
of group [F2,130 = 87,56, p < 0.001], of region [F2,130 = 16,92, p < 
0.01], but no effect of the group x region interaction [F4,130 = 0,92, 
p = 0.454]. Dendrites were significantly shorter in SAL-injected mice 
exposed to UCMS than in their counterpart non-exposed to UCMS 
(Stress vs CTRL, p < 0.001 for all regions). Remarkably, MJ significantly 
increased dendritic length in the stressed mice (MJ+Stress vs Stress, p < 
0.001 for all regions). This increase partially rescued dendrite retraction 
in BLA and CA1 neurons since dendritic length values were still higher 
in the CTRL group than in the MJ+Stress group (BLA: p < 0.05; CA1: p 
< 0.001). Differently, a full rescue was found in PFC neurons (CTRL vs 
MJ+Stress, p = 0.40).

Number of nodes: (Figures 2G-2I) There was a significant effect 
of group [F2,130 = 41,72, p < 0.001] but no effect of region [F2,130 = 
1,46, p = 0.238] or of the group x region interaction [F4,130 = 0,290, 
p = 0.887]. Less nodes were counted in SAL-injected mice exposed 
to UCMS than in their non-exposed counterparts (Stress vs Control, 
p < 0.001 for all regions). MJ fully rescued this morphological defect 
as more nodes were counted in the MJ+Stress group compared to the 
Stress group (p < 0.001 for all regions), and no difference in the number 
of nodes was found between CTRL and MJ+Stress groups (p > 0.1 for 
all regions).
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Figure 1. (A-B) Photomicrographs of a Golgi-stained sections of basolateral amygdala (BLA), dorsal hippocampus (CA1) and prefrontal cortex (PFC) at 5x (A) and 20x (B) magnification 
(scale bar: 250 μm (A); 50 μm (B). (C) Representative dendritic segments from BLA, CA1 and PFC neurons in control (CTRL), stressed (Stress), and treated (MJ+Stress) mice (scale bar: 
5 μm). (D) Histograms showing spine density values (number of spines/μm) in BLA, CA1 and PFC neurons from CTRL, Stress, and MJ+Stress mice groups. Data are plotted as mean +/- 
s.e.m. *** p<0.001: Stress vs CTRL or MJ+Stress; ## p<0.01: CTRL vs MJ+Stress; °°p<0.01: BLA vs PFC, °p<0.05: CA1 vs PFC

Number of endings: (Figures 2J-2L) There was a significant effect 
of group [F2,130 = 81,37, p < 0.001] of region [F2,130= 39,84, p > 
0.001] but no effect of the group x region interaction [F4,130 = 1,03, 
p = 0.397]. Less endingswere counted in saline-injected mice exposed 
to UCMS than in their counterpart non –exposed to UCMS (Stress vs 
CTRL, p < 0.001 for all regions). MJ significantly increased the number 
of endings in neurons from all regions (MJ+Stress vs Stress p < 0.001). 
The number of endings was fully rescued in BLA and PFC neurons 
(CTRL vs MJ+Stress p > 0.05 for each region), but partially rescued in 
CA1 neurons as more endings were still counted in the CTRL group 
than in the MJ+Stress group (p < 0.05).

Dendritic arbor complexity: (Figures 2M-2O) The data are shown 
in figure 2. In each region, statistical analyses revealed a significant 
effect of group [BLA: F2,546 = 43,32; CA1: F2,860 = 56,60; PFC: F2,817 
= 59,10, p < 0.001 for all comparisons], of radius [BLA: F13,546 = 91,69; 
CA1: F20,860= 175,5; PFC: F19,817 = 143,00, p < 0.001] and of the 
group x radius interaction [F26,546 = 6,27; CA1: F40,860 = 12.03; PFC: 
F38,817= 10,47, p < 0.001]. For BLA and CA1, post hoc comparisons 
showed that dendrites lying 30/40–110 μm from the soma intersected 

concentric circles significantly less in the Stress group than in the CTRL 
and MJ+Stress groups where the number of intersections was in the 
same range. For PFC, the same decreased number of intersections 
was found in the Stress group compared to the CTRL group but for 
dendrites lying farther from the soma (100-200 μm). Notably, the MJ + 
Stress group started to show more intersections than the Stress group 
already at the 60 μm radius. Altogether, these findings reveal that the 
treatment restored dendritic arbor complexity in all regions although a 
more complete recovery was observed in the BLA.

Discussion
The main finding of this study is that pre-treatment with MJ 

globally rescues UCMS-induced structural neuronal abnormalities in 
cortico-limbic regions involved in the control of mood. Specifically, 
dendritic spine elimination and dendrite arbor retraction that 
developed concurrently in the BLA, CA1 and PFC of UCMS- exposed 
mice were either alleviated or entirely reverted by MJ treatment. For 
example, spine density and dendritic length were fully rescued in PFC 
but partially rescued in BLA and CA1. Differently, dendrite arbor 
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Figure 2. Representative traces of the dendritic arbor extension from basolateral amygdala (BLA) (A), dorsal hippocampus (CA1) (B) and prefrontal cortex (PFC) (C) in control (CTRL), 
stressed (Stress), and treated (MJ+Stress) mice (scale bar: 50 μm). Total dendritic length (D-F), number of nodes (G-I) and number of endings (J-L) counted in BLA, CA1 and PFC from 
control (CTRL), stressed (Stress), and treated (MJ+Stress) mice. (M-O) curves depict Sholl analysis data (number of dendrite intersections with concentric circles traced at increasing 
radial distances from the soma; segment radius: 25 μm) in BLA (M) CA1 (N) and PFC (O). Data are plotted as mean +/- s.e.m. *** p<0.001: Stress vs CTRL or MJ+Stress. ### p<0.001, 
#p<0.05: CTRL vs MJ+Stress
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complexity, estimated by the number of endings and the sholl analysis, 
was entirely reinstated in BLA but partially reinstated in CA1 and PFC. 
Together, these data show that MJ preserves cortico-limbic circuits 
from structural collapse upon UCMS exposure.

Dendritic spines are the subcellular elements which host the 
majority of glutamatergic excitatory synapses [27]. At a higher scale, 
single synaptic inputs are integrated at the level of dendrites to finely 
regulate neuronal connectivity and function [28]. Dysregulation 
of this integrative process due to aberrant dendritic morphology is 
a key feature of a variety of neurological and psychiatric diseases 
including anxiety and depression [29,30]. Consistently, rodent 
models of depression trigger structural alterations of neurons [16] 
and decrease synaptic proteins level [31] in brain regions involved in 
mood regulation although variations in the severity and localization of 
these dysfunctions have been reported. For example, coherently with 
the amygdaloid centered model of stress [32] UCMS administered for 
periods ranging between 1 to 3 months elicits spine loss and dendritic 
arbor retraction in hippocampus and medial prefrontal cortex [12,33] 
but increases spines in amygdala and nucleus accumbens [6,34]. On the 
functional level, it has been suggested that reduction of mPFC synaptic 
density decreases cortical activity, prevents fear extinction to develop 
but, at the same time, is permissive for amygdala hyperactivation 
due to the diminished control of PFC projections on BLA excitatory 
neurons. Differently, UCMS administered for longer duration (9 
months) triggers PFC hyperexcitability [35,36] and decrease synaptic 
density in the amygdala [9,11], i.e., a pattern of finding reminiscent of 
the dissociative anhedonic subtype where the hyper-activation of PFC 
excessively dampens the activation of the amygdala [37,38].

Thus, by showing that a shorter (10 days) UCMS protocol produces 
spine loss and dendrite retraction in both cortical and subcortical 
regions, our data do not align with the above models, but with the Dorze 
et al. observation [39] that rats exposed to the single prolonged stress 
(SPS) model of PTSD exhibit a helplessness- like depressive phenotype 
associated with a concurrent retraction of BLA and PFC dendrites. Data 
showing that both UCMS and SPS decrease microtubule dynamics in 
the rat hippocampus [40] indicate that depression and PTSD act on the 
same cytoskeleton target.

Although the current challenge is to demonstrate that anti-
depressants can stably modify brain structure, i.e., revert depression-
associated structural alterations of neurons, only few in vivo studies 
support this possibility. Among those, a 4-week treatment with 
the natural polyphenols paeonol or resveratrol endowed with 
antidepressant properties were found to antagonize the UCMS-
induced loss of spines in hippocampus and medial prefrontal cortex 
via activation of the scaffolding protein cofilin 1 [21,22]. More recently, 
imipramine administered before each session of a 21-day restraint 
stress protocol paradoxically reverted the opposed structural and 
molecular alterations detected in BLA and mPFC [23]. Specifically, 
the compound rectified spine density, pCAMKII/CREB levels and 
PSD-95 expression that were increased in BLA and decreased in PFC 
respectively, in strong discrepancy with the expected unidirectional 
effect of imipramine on transcription factors or scaffolding proteins. 
Instead, a possibility exists that the primary effect of the compound 
might be to normalize glutamatergic excitatory synaptic activity 
whose control on spine morphology and function has been extensively 
demonstrated [41]. Supporting this view, compelling evidence indicates 
that (i) chronic stress-induced enhancement of glutamate transmission 
remodels amygdala synapses in a circuit-specific manner [42] whereas 
(ii) monoaminergic-based antidepressants reduce glutamate release 
[43] and reverse neuronal structural abnormalities [44].

Conclusion
Together, our findings first show that a 10-day UCMS protocol 

disrupts spine density and dendrite extension at several nodes of the 
mood circuitry coherently with the structural alterations observed in a 
PTSD rodent model [39]. Then, they demonstrate that MJ, which mimics 
the effect of imipramine in reducing depressive symptoms [17,20] and 
enhancing monoamine activity [45] prevents spines and dendrites from 
collapsing upon UCMS exposure. In view of its neuroprotective action 
against a major neurological symptom of depression and its absence 
of side effects, MJ might be taken into consideration as a potential 
therapeutic agent, especially for treating PTSD-like depressive subtypes 
characterized by multiregional and unidirectional maladaptive 
remodeling of synapses and circuits.
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