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Generalized plasma waves in layered superconductors: A unified approach

F. Gabriele, C. Castellani , and L. Benfatto *

Department of Physics and ISC-CNR, Sapienza, University of Rome, P.le A. Moro 5, 00185 Rome, Italy

(Received 25 October 2021; revised 1 April 2022; accepted 6 April 2022; published 11 May 2022)

In a layered and strongly anisotropic superconductor, the hybrid modes provided by the propagation of
electromagnetic waves in the matter identify two well-separated energy scales connected to the large in-plane
plasma frequency and to the soft out-of-plane Josephson plasmon. Despite wide interest in their detection
and manipulation by means of different experimental protocols, the physical ingredients underlying a unified
description of plasma waves valid at arbitrary energy and momentum are still poorly understood. Here we provide
a complete description of generalized plasma waves in layered superconductors in terms of the gauge-invariant
superconducting phase by including both the Coulomb interaction and the relativistic effects. We show that the
anisotropy of the superfluid response leads to two intertwined hybrid light-matter modes with mixed longitudinal
and transverse character, while a purely longitudinal plasmon is only recovered for wave vectors larger than the
crossover scale set in by the plasma-frequency anisotropy. Interestingly, below such scale both modes appear
with equal weight in the physical density response. Our results open a promising perspective for plasmonic
applications made possible by next-generation spectroscopic techniques able to combine submicron momentum
resolution with THz energy resolution.
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I. INTRODUCTION

Plasmons represent the fundamental excitations of the con-
duction electrons in metals, and their existence can be easily
understood within a classical framework based on Maxwell’s
equations. Indeed, in a source-free metal, bulk plasmons are
characterized by zero magnetic field and longitudinal electric
field (∇ × E = 0), so they trivially satisfy Maxwell’s equa-
tions under the condition of vanishing permittivity [1]. Since
the longitudinal electric field couples to density fluctuations,
the plasma excitation also appears in the charge-density re-
sponse as a collective mode of the electron gas [2,3]. Such a
hybrid light-matter mode is the longitudinal counterpart of the
so-called transverse plasma polariton. Polaritons in layered
two-dimensional materials and interfaces have attracted a lot
of attention [4], since the spatial confinement at the interface
between a thin metallic film and a dielectric gives rise to prop-
agating modes that can be launched and visualized by using
near-field optical microscopy [5]. When the metal undergoes
a superconducting (SC) transition, plasmons also characterize
the fluctuation spectrum of the SC phase of the complex
order parameter formed below the SC critical temperature Tc

[6]. Indeed, as originally pointed out by Anderson [7], the
soundlike propagating phase mode of the neutral superfluid
[2] is converted into gapped plasma oscillations in a charged
superconductor. The appearance of the plasma mode in the
spectrum of phase fluctuations is a natural consequence of the
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fact that the quantum phase of electrons is the variable con-
jugate to the density [6–9]. From a theoretical point of view,
such an equivalence has been often exploited in the literature
to determine the plasma dispersion of a superconductor via
the study of the spectrum of the phase mode. The latter can
be carried out in a rather elegant and compact way by directly
deriving the quantum action for the phase degrees of freedom
[6,8–13], as we will discuss in detail in this paper.

From an experimental point view, there is a strong
interest in materials hosting stacks of SC sheets with weak
interlayer SC Josephson coupling [14,15]. For the sake of
concreteness, we will model them as xy SC planes stacked
along the z direction, see Fig. 1(a). The benchmark example
of such a system is provided by high-temperature cuprate
superconductors [16]. The direct consequence of the weak
interlayer coupling is that the plasma energy ωz associated
with phase (or density) fluctuations among the planes is
substantially smaller than the one, ωxy, connected with
in-plane fluctuations. In the SC state, an indirect evidence of
this is the large anisotropy of the in-plane versus out-of-plane
penetration depths [17–19], given by λxy/z = c/ωxy/z. Since
the SC gap opening below Tc suppresses particle-hole
excitations, the low-energy out-of-plane Josephson plasmon
becomes undamped, and was observed long ago via
reflectivity measurements as a clear plasma edge emerging
below Tc at few THz in several cuprates [20–24]. At finite
momentum, the dispersion of the Josephson plasmon has
been derived by linearizing the sine-Gordon equations for the
phase difference among the planes [14,15,25–29], leading to

ω2
p(k) = ω2

z

(
1 + c2γ 2k2

xy

ω2
xy + c2k2

z

)
, (1)

where c is the light velocity, γ = ωxy/ωz denotes the
plasma-frequency anisotropy that can be up to two orders of
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FIG. 1. (a) Basic notation used in the paper to describe a lay-
ered superconductor. SC sheets are parallel to the xy plane and
stacked along z, at distance d . Within the context of cuprates, the SC
planes correspond to the crystallographic CuO2 planes. The angle
that the wave vector forms with the z axis will be denoted with η.
(b), (c) Plasmon dispersion for a layered superconductor discussed
so far in the literature. Panel (b) shows the dispersion Eq. (1) that
is expected to describe the plasma dispersion near the low-energy
out-of-plane plasmon ωz and for momenta much smaller than the
scale set by the light cone for the largest plasma frequency. It has
been derived [14,15,25–28] within several papers focusing on the
dynamics of the out-of-plane SC phase, in relation to the THz optical
response of the Josephson plasmon. Panel (c) shows instead the
dispersion Eq. (2) that is expected to describe the plasma dispersion
near the high-energy in-plane plasmon ωxy. It is has been derived
by studying the generic in-plane and out-of-plane phase or density
dynamics in the SC phase [10,11,13,20,30], and it corresponds to the
standard result for the layered electron gas [31–34], used to interpret
RIXS or EELS experiments, which probes relatively high momenta
and energy.

magnitude in some families of cuprates, and kxy, kz denote the
in-plane and out-of-plane momenta, respectively. Equation (1)
is sketched in Fig. 1(b) as a function of kxy at various values
of kz. As evident from Eq. (1), it represents a regular function
of k which tends always to ωz as k → 0. As we will discuss
in detail below, even though this mode corresponds to light
polarized mainly along z, at an arbitrary wave vector it has a
mixed transverse and longitudinal character, while a purely
longitudinal and transverse character is only recovered when
kxy = 0 or kz = 0, respectively. The undamped nature of
this propagating mode in the SC state recently motivated
several proposals of possible applications. From one side, the
inherent nonlinearity of the Josephson coupling among CuO2

planes may enable nonlinear photonic applications based on
the the use of intense THz laser pulses, as widely addressed
both experimentally [15,35–38] and theoretically [14,28,39–
41]. From the other side, low-energy Josephson plasmons
can be attractive for photonic applications based on near-field
nano-optics [4,5,42,43] that also focus on the regime of few
THz and small k � ωxy/c momenta.

While optics is interested in the limit of long wavelength,
other spectroscopic probes like resonant x-ray scattering
(RIXS) and electron energy-loss spectroscopy (EELS) are
mostly able to detect the plasma dispersion around ωxy and
relatively larger momenta k � ωxy/c as compared to the
scale set by the light cone [44]. In this regime, the effects

of anisotropy have been mainly discussed focusing on the
emergence of acousticlike branches of plasma excitations
dispersing below ωxy, see Fig. 1(c). In this case, theoretical
calculations focusing on the SC state derived the plasma dis-
persion either looking at the dynamics of the (in-plane and
out-of-plane) SC phase [10–13] or at the dynamics of the
density [20,30]. In both cases, the standard result is fully
analogous to the one found for the metallic state by means
of the layered electronic model in the presence of Coulomb
interactions [31–34], and reduces to a plasma dispersion given
by

ω2
p(k) = ω2

xy

k2
xy

k2
+ ω2

z

k2
z

k2
, (2)

where an additional ∼v2
Pk2 term, relevant to describe the plas-

mon dispersion with velocity vP at kz = 0, can be added [13].
As one can see in Fig. 1(c), at finite kz there is an intermediate
regime of kxy values where the plasmon softens below ωxy,
crossing from a quasilinear to a ω ∝ √

k behavior, typical of
two-dimensional plasmons. So far, such acousticlike branches
have been identified by RIXS in some high-temperature
cuprates [45–47], while EELS observed only the high-energy
optical branch, with a strong and still not well-understood
overdamping [48–51]. Despite the fairly good agreement be-
tween Eq. (2) and RIXS experiments, which probe energies
around ωxy and large momenta as compared to ωxy/c, there
is apparently no connection between Eq. (2) and the expres-
sion Eq. (1), which should represent the limit of the plasma
dispersion when one focuses around ωz and small momenta.
Indeed, in contrast to Eq. (1), Eq. (2) is nonanalytic as k → 0,
since it predicts a continuum of possible values which depend
on the angle that the wave vector k forms with the z axis. In
addition, at kz = 0 and finite kxy, as shown in Figs. 1(b) and
1(c), Eq. (1) predicts a mode dispersing away from the soft
Josephson plasmon ωz while Eq. (2) (with the additional v2

Pk2

term) predicts a mode around ωxy.
In this paper, we provide a general derivation of the

plasma dispersion in a layered superconductor which is valid
at generic momentum, and we identify a crossover value
kc =

√
(ω2

xy − ω2
z )/c such that the two previously reported

expressions Eqs. (1) and (2) emerge as the limit of small
k � kc or large k � kc momentum of the full dispersion. To
this aim, we analyze the problem focusing on the degrees of
freedom linked to the SC phase of the order parameter within
an effective-action formalism, which naturally implements
the spontaneous symmetry breaking below Tc. We introduce
explicitly the electromagnetic (e.m.) scalar and vector po-
tentials to construct a gauge-invariant (g.i.) quantum action
for the coupled system given by the matter (represented by
the SC phase) and the e.m. fields. The main technical differ-
ence with respect to previous work using the same formalism
[10,11,13], that was able to only obtain the result Eq. (2),
relies on the fact that for an anisotropic superconductor, the
role of e.m. interactions is not exhausted by the Coulomb
interaction, which originates from the scalar potential. The
reason is that, as one already observes at the level of Maxwell
equations [25–27,29,39], in a layered system the e.m. lon-
gitudinal and transverse response get intrinsically mixed,
unless light propagates along the main crystallographic axes.
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The physical reason is that once the superfluid response is
anisotropic, the induced current is no more parallel to the elec-
tric field. Within the context of the SC phase dynamics, the
anisotropy of the superfluid response leads, in contrast to the
isotropic case, to a finite coupling of phase fluctuations to both
the longitudinal and transverse components of the e.m. fields.
When both couplings are properly included, the phase spec-
trum at an arbitrary wave vector carries on the information on
a mixed longitudinal-transverse excitation, except for the two
special limits (kxy → 0, kz = 0) or (kxy = 0, kz → 0). By in-
troducing an appropriate g.i. phase variables, we can derive an
analytical expression for the generalized plasma modes valid
at generic momentum. In particular, the mode lower in energy,
that becomes purely longitudinal only well above kc, is shown
to interpolate among the two limiting behaviors provided by
Eqs. (1) and (2), then clarifying the limits of their validity. In
addition, such a formulation allows one to easily extend the re-
sult to the case of a nonlinear Josephson model, as previously
discussed within the context of the out-of-plane Josephson
plasmon [25–27,29,39]. Finally, to make a closer connec-
tion with experimental probes sensitive to density correlations
[44], we explicitly derive the density-density response in the
general case, showing that both generalized plasma modes
appear in the spectrum of the physical observables, with an
equal weight at the length scale ∼1/kc, which is typically of
the order of a fraction of micron. At larger momenta k � kc,
the density response closely matches the standard random-
phase approximation (RPA) result, as derived both for layered
metals [31–34] and layered superconductors [10,11,13,20,30],
and a single quasilongitudinal plasma mode visible in the
density spectral function. Since the crossover scale kc vanishes
for the light velocity c going to infinity, the failure of the stan-
dard RPA result at an arbitrary wave-vector propagation stems
from the relevance of relativistic effects at low momenta. Our
results represent a complete g.i. description of generalized
plasma excitations in a layered superconductor valid at dif-
ferent energy and momentum scales, providing a benchmark
behavior to analyze plasmonic effects in a wide set of experi-
ments ranging from near-field optics to RIXS and EELS.

The paper is as follows: In Sec. II, we review the standard
derivation of the Gaussian phase-only action in the isotropic
case. The section starts with an introductory subsection where
we outline the theoretical approach used in the paper, and
a second one where we show its application in the standard
isotropic case. Here we show that the plasma mode appears in
the different sectors of the matter-e.m. field action depending
on the gauge choice, but always leading to the same result.
The results of this section are not new, but their derivation is
carried out in a different way with respect to previous work,
and it allows us to introduce the formalism relevant for the rest
of the paper. In Sec. III, we derive the action for the layered 3D
case, expressed in terms of the appropriate g.i. variables. We
then show that the longitudinal and transverse e.m. excitations
are always coupled, and both excitations appear in the phase
spectrum at an arbitrary wave-vector propagation, with the ex-
ception of the two cases of light propagating purely in plane or
out-of-plane. A simplified description of the problem within
the context of the Maxwell’s equation is also provided in
Appendix B. In Sec. III C, we rephrase the same results in
terms of approximate equations of motion, that have been

widely used in the recent literature [14,15,25–29] to include
nonlinear effects of the plasmon dynamics. In Sec. IV, we
show how the mixed longitudinal-transverse modes found
in Sec. III also appear as poles of the properly computed
density-density response function. Section V contains a gen-
eral discussion about the results. Further technical details are
provided in the Appendices. Appendix A reviews the main
steps leading to the effective action for a superconductor
within the functional-integral formalism. Appendix B shows
the derivation of the mixed longitudinal-transverse modes
from the solution of the Maxwell’s equations.

II. EFFECTIVE ACTION FOR THE ISOTROPIC CASE

A. Description of the plasmon via the SC phase

Before giving technical details about the derivation of the
plasma dispersion for the layered superconductor, it can be
useful to briefly outline the general context, starting from
the isotropic case. As mentioned in the Introduction, the SC
transition carries specific signatures both in the single-particle
fermionic excitations spectrum, via the opening of the SC gap
below Tc, and in the spectrum of the bosoniclike collective
excitations. More specifically, while the gap is connected to
the equilibrium value of the SC complex order parameter, two
modes emerge connected to fluctuations of its amplitude and
phase. Since the SC order parameter breaks the continuous
gauge symmetry, a Goldstone mode is expected that is directly
linked to phase fluctuations of the SC order parameter [6].
There are several ways to see this. At the level of the classical
Ginzburg-Landau description, this appears as an energetic
cost needed to twist the phase θ with respect to its equilibrium
value. In full analogy with the elastic deformation of a solid
body, the cost E of a finite phase gradient in space scales with
a superfluidstiffness Ds, such that

E = h̄2Ds

8

∫
dx(∇θ )2. (3)

In the simplest Galilean-invariant case, Ds can be expressed
as the ratio between the density of superfluid electrons and
their mass, Ds = ns/m, with ns = n at T = 0. As the length
scale of spatial phase deformations goes to infinity, E van-
ishes. This can be interpreted as a mode at zero energy
for k = 0, as expected for a Goldstone mode. On the other
hand, to really define a propagating mode, i.e., to establish
a frequency-momentum dispersion, one needs to include dy-
namical effects, not present in the classical Ginzburg-Landau
description. A very elegant and powerful technique relies
[6] on the explicit construction of a quantum analogous of
the Ginzburg-Landau model by starting from a microscopic
interacting model for electrons. The basic idea is to start
from a fermionic model with a BCS-like interaction term and
decouple it via the Hubbard-Stratonovich (HS) procedure by
introducing two effective bosonic fields which play the role of
the order-parameter amplitude and phase. By further explicitly
integrating out the fermions, one obtains a quantum model
expressed in terms of the collective SC variables that can be
expanded in principle up to arbitrary powers in the collective-
mode fields, linking the phenomenological couplings of the
Ginzburg-Landau model to fermionic susceptibilities, which
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contain all the information on the microscopic physics under
investigation. Such a procedure is outlined in Appendix A,
and further details can be found in several books and papers
on the subject, see, e.g., Ref.s [6,8–13]. By retaining only
Gaussian terms in the fluctuations, one defines the spectrum
of the collective modes, equivalent to compute the response
functions at the RPA level in the usual diagrammatic approach
to fermionic models [2,6]. Within this quantum generalization
of the classical Ginzburg-Landau theory, one finds that the
density appears as a conjugate variable of the phase [6,8,9].
As a consequence, within the quantum phase-only action, the
energetic cost to perform a phase gradient in time is controlled
by the charge compressibility κ0 [8,9], and Eq. (3) is replaced
at T = 0 by the quantum action:

S = h̄2

8

∫
dtdx[κ0(∂tθ )2 − Ds(∇θ )2]. (4)

For weakly interacting neutral systems, κ0 in the static long-
wavelength limit can be approximated with the density of
states at the Fermi level, and in Eq. (4) one recognizes the
so-called [7] Anderson-Bogoliubov sound mode,

ω2 = v2
s |k|2, (5)

where v2
s = Ds/κ0 is the sound velocity.

The identification of the density as a conjugate vari-
able of the phase is a general result, which holds both for
neutral superfluids and for superconductors, and has pro-
found implications for the latter. Indeed, in the standard
description of charged systems, density-density interactions
are expected to be mediated by the long-range Coulomb
potential. In literature based on the effective-action formal-
ism, the difference between neutral and charged superfluids
is then usually encoded [6,9–13] via an additional HS field
which decouples density-density fermionic interactions, so its
integration dresses the charge compressibility at RPA level
by the Coulomb potential [7]. The term κ0 in Eq. (4) is
then replaced in Fourier space by κ (k) = κ0/(1 + V (k)κ0),
where V (k) is the Coulomb potential in generic D dimen-
sions. Since for k → 0 one has κ → 1/V (k), the spectrum
of the phase mode that reflects one of the density fluctuations
now identifies a plasma mode, whose energy versus momen-
tum dispersion depends on the dimensions. In the standard
isotropic three-dimensional (3D) case, one recovers the well-
known dispersion

ω2 = ω2
p + v2

s |k|2, (6)

where ω2
p = 4πe2Ds is the isotropic plasma frequency.

The procedure outlined above explains why in the SC
state the spectrum of the collective plasma excitations can be
derived in a relatively simple way by analyzing the SC phase
fluctuations. However, this analysis is not enough if one wants
to determine the spectral weight of the plasma mode, that can
only be determined by direct derivation of the density-density
response [6,10,12,13], which couples to external probes. In-
deed, on a more general ground, the SC phase itself does not
represent a physically observable quantity. Once the matter is
coupled to the e.m. field, the physical observables are related
to the g.i. four-vector ψμ, whose temporal and spatial compo-

nents read

ψ0 ≡ ∂tθ + 2e

h̄
φ ψ ≡ ∇θ − 2e

h̄c
A, (7)

where φ and A are the scalar and vector potentials, respec-
tively. In contrast to the phase alone, the observables Eq. (7)
are invariant under the simultaneous gauge transformation
of the e.m. potentials (that leaves the physical electrical and
magnetic field unchanged) and of the SC phase:

θ (x, t ) → θ (x, t ) + 2e

h̄c
λ(x, t )

A(x, t ) → A(x, t ) + ∇λ(x, t )

φ(x, t ) → φ(x, t ) − ∂tλ(x, t ). (8)

In this picture, one realizes that analyzing the spectrum of the
phase mode in the superconductor is completely equivalent
to solving the problem of the e.m. wave propagation. More
specifically, the frequency-momentum relation Eq. (6) corre-
sponds to the one of the longitudinal component of the electric
field, which couples by Maxwell’s equations to charge fluctu-
ations and then to phase fluctuations in a superconductor. In
general, e.m. waves can also be transverse, but in the isotropic
system they are not coupled to phase fluctuations. Once again,
this result can be easily understood already at classical level.
In isotropic and homogeneous systems, the minimal-coupling
substitution Eq. (7) into the gradient term Eq. (3) leads to

E = h̄2Ds

8

∫
dx
(

∇θ − 2e

h̄c
A
)2

. (9)

The explicit coupling among the phase and the gauge field in
Eq. (4) is the term

∫
dxDs(∇θ ) · A, that for a constant Ds can

be written after integrating by part as
∫

dx Dsθ (∇ · A). As a
consequence, the phase couples only to the longitudinal com-
ponent of the e.m. field, and one does not see any signature
of the transverse e.m. mode in the phase spectrum. Such a
decoupling of the longitudinal and transverse sectors makes
the description of the plasma mode completely equivalent
in the two approaches: via the matter, where the charged
nature of the system enters via the Coulomb interaction for
the density, or via e.m. potentials, where one derives directly
the equations of motions for the e.m. fields.

The situation becomes radically different for anisotropic
systems and, in particular, for layered superconductors. In this
case, which is relevant for several classes of unconventional
superconductors, as, e.g., cuprates or pnictides, the phase
stiffness in plane D‖ and in the direction perpendicular to
planes D⊥ is anisotropic, with D⊥ � D‖ [17–19]. Within the
language of Eq. (9) above, this implies that the phase can
also be coupled to the transverse vector potential. This is
the central physical effect which motivates the present pa-
per, aimed at explaining what the consequences are of such
a mixing of the transverse and longitudinal modes for the
spectrum of plasma waves. Indeed, as we mentioned in the
Introduction, so far the effect of this mixing has been included
in an approximated way in the work [25–27] aimed to derive
the dispersion Eq. (1) of the soft Josephson plasmon, but it is
completely missing in any approach extending the RPA to the
layered electron gas [31–34] or to the layered superconductors
[10,11,13,20,30]. Indeed, the standard RPA approximation is
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usually implemented by computing the charge response only
to the scalar Coulomb potential, then writing the full density
response as a resummation of bubblelike diagrams represent-
ing the bare density response, and leading to the expression
Eq. (2) for the layered plasmon. Since the Coulomb potential
is linked to the longitudinal component of the e.m. field, this
is equivalent to neglect any correction to the charge response
induced by the transverse vector potential, that is, however,
an approximation in the case of a layered system for arbitrary
wave-vector propagation.

In Sec. III, we will explicitly show how the transverse-
longitudinal mixing appears in the quantum phase-only model
for the layered superconductor, and how one can derive from it
an analytical expression for the generalized plasma dispersion
which interpolates between the two limits Eqs. (1) and (2),
clarifying at the same time their range of validity. To get better
insight into the link among the phase mode and the plasma
wave, we will first review in the next subsection the isotropic
case. In contrast to previous work [6,9–11,13] where the e.m.
field only enters via the Coulomb density-density interaction,
we introduce here the coupling Eq. (7) of the SC phase to the
internal e.m. field that we further integrate out. We then show
how the same plasmon dispersion is obtained regardless of the
gauge choice for the e.m. field, as expected. This approach
will then be extended to the layered case in Sec. III.

B. Formulation of the problem with the internal e.m. fields

As a starting point, we use the imaginary-time equivalent
of the quantum action Eq. (4) for an isotropic 3D super-
conductor, rewritten in Fourier space. As mentioned above,
its derivation relies on a rather standard technique [6,8–13],
whose details are given in Appendix A. We then have

SG[θ ] = 1

8

∑
q

[
κ0�

2
m + Ds|k|2]|θ (q)|2, (10)

where q ≡ (i�m, k) is the imaginary-time four-momentum,
�m = 2πmT are bosonic Matsubara frequencies, κ0 is the
bare compressibility, and Ds is the superfluid stiffness. In the
following, we put h̄ = kB = 1. In ordinary Maxwell equa-
tions, the source for the e.m. fields is provided both by external
charge and currents and by the induced internal charge and
current fluctuations in the matter. In the superconductor, the
latter will be described by the SC phase, coupled to the inter-
nal e.m. fields via the minimal coupling Eq. (7). To account
for the e.m. fields, we then need to first include the free
contribution, which reads [6]

Se.m.[Aμ] =
∫

dτdx
[

(∇ × A)2

8π
− ε

8π

(
i∂τ A

c
+ ∇φ

)2]

= ε

8π

∑
q

[
�2

m

c2
|A(q)|2 − |k|2|φ(q)|2

+|k|2
ε

|AT (q)|2

+ i�m

c
k · (φ(q)AL(−q) + φ(−q)AL(q))]. (11)

Here we introduced the longitudinal AL = (k̂ · A)k̂ and trans-
verse AT = A − AL = (k̂ × A) × k̂ components of A. Equa-
tion (11) is just a transcription of the usual form −|εE|2+|B|2

8π
,

where the electric field is expressed in the imaginary-time
formalism as E = − i

c ∂τ A − ∇φ. It is worth noting that to
have a definition of E analogous to the one valid for real time,
one should assume that φ is purely imaginary, i.e., one should
replace φ → iφ. In this case, by defining the imaginary-time
electric field as E ≡ − 1

c ∂τ A − ∇φ, the action for the free

e.m. field would read ε|E|2+|B|2
8π

, which is the usual expres-
sion for the energy density. Such a rescaling of the scalar
potential would also make the quadratic term in the scalar
potential arising from (∇φ)2 positive defined, as required to
perform the Gaussian integration. To make the notation more
compact, we will not explicitly rescale the potential in what
follows, but we will implicitly assume that a formal definition
of the Gaussian integration in the imaginary-time formalism
requires such a regularization. To include the ionic screen-
ing, we also introduced the background dielectric constant ε.
As mentioned above, in the superconductor [6,9,10,12] the
coupling of the e.m. radiation with the matter can be easily
implemented by using the SC phase, via the minimal coupling
substitution Eq. (7), which reads in momentum space and
Matsubara frequency:

�mθ (q) → �mθ (q) + 2eφ(q)

ikθ (q) → ikθ (q) − 2e

c
A(q). (12)

By replacing Eqs. (12) into the action Eq. (10), one obtains a
light-matter coupling term SθAμ

[θ, Aμ] and a renormalization
of the bare e.m. action, so the total action reads

S[θ, Aμ] = SG[θ ] + S′
e.m.[Aμ] + SθAμ

[θ, Aμ], (13)

where S′
e.m.[Aμ] describes the long-wavelength propagation of

light through matter. For the isotropic system, this term reads

S′
e.m.[Aμ] = ε

8π

∑
q

[
−(|k|2 + k2

TF

)|φ(q)|2

+ (�2
m + ω2

p

) |AL(q)|2
c2

+
(

�m + c2

ε
|k|2 + ω2

p

) |AT (q)|2
c2

+ 2i�m

c
k · (φ(q)AL(−q) + φ(−q)AL(q))

]
.

(14)

In the effective-action formalism, the frequency-momentum
dispersion obtained as a solution of the Maxwell’s equa-
tions appears as the zero of the determinant of the matrix
associated with the coefficients of the fields in the Gaussian
action, once the analytical continuation i�n → ω + iδ is per-
formed. As a consequence, one clearly sees that the inclusion
of the matter has two well-known effects on the e.m. fields: (i)
the scalar potential displays the usual Thomas-Fermi screen-
ing, where k2

TF = 4πe2κ0/ε; (ii) the propagating transverse
mode

ω2
T = ω2

p + c̃2|k|2 (15)
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is gapped out [52] at the isotropic (screened) SC plasma fre-
quency

ω2
p ≡ 4πe2Ds/ε, (16)

and the light velocity is renormalized as c̃ = c/
√

ε. In the
typical field-theory language, the Anderson-Higgs mechanism
[52] manifest as a mass term ω2

pA2
T in the e.m. action Eq. (14),

that, in the static limit, only survives below Tc, where Ds �= 0.
Finally, the coupling between the phase and the e.m. potential
reads

SθAμ
[θ, Aμ] = e

4

∑
q

[
κ0�m(θ (q)φ(−q) − θ (−q)φ(q))

− i
Ds

c
k · (θ (q)AL(−q) − θ (−q)AL(q))

]
.

(17)

The last term of Eq. (17) shows explicitly that in the isotropic
case phase fluctuations only couple to the longitudinal com-
ponent of the vector potential AL, as mentioned above. In
addition, the use of Eq. (12) clearly guarantees that the total
action is invariant under the gauge transformation Eq, (8),
which reads explicitly in Matsubara formalism:

θ (q) → θ (q) + 2e

c
λ(q)

φ(q) → φ(q) − �m

c
λ(q)

A(q) → A(q) + ikλ(q); (18)

λ(q) being an arbitrary function of the Fourier momenta. Such
a gauge freedom also implies that only the g.i. combination
Eq. (12) represents a physically observable quantity describ-
ing matter properties, while the information carried out by the
SC phase alone acquires a different meaning within different
gauge choices. This means that even though the phase-only
propagator is always linked to the plasma mode, it will appear
in different forms, depending on the gauge.

To clarify this point, let us start from Eq. (13) and derive
the action for the phase degrees of freedom by integrating
out the e.m. potentials. A first natural gauge choice is the
so-called Coulomb gauge ∇ · A = 0, i.e., AL = 0. Indeed, as
noted below Eq. (17), in the isotropic case the phase fluctu-
ations only couple to AL so, in the Coulomb gauge, only the
coupling between the phase and the scalar potential survives.
By integrating out φ, one is then left with

S(iso)
∇·A=0 = ε

32πe2

∑
q

[
�2

m

1 + α|k|2 + ω2
p

]
|k|2|θ (q)|2, (19)

where we defined α as

α ≡ ε

(4πe2κ0)
= 1

k2
TF

= λ2
D, (20)

where λD is the Debye screening length. The result Eq. (19)
is formally identical to the one widely discussed in pre-
vious literature [6,9,10,12,13], and obtained by adding a
Coulomb-mediated density-density interaction term in the
starting microscopic fermionic model. This is a natural conse-

quence of the fact that in the Coulomb gauge only the coupling
of the phase to the scalar potential is relevant.

An alternative but completely equivalent approach can be
followed integrating out the e.m. fields in the Weyl gauge,
where φ = 0. In this case, only the coupling to AL survives
in Eq. (17) and one obtains

S(iso)
φ=0 = κ0

8

∑
q

�2
m

�2
m + ω2

p

[
�2

m + (1 + α|k|2)ω2
p

]|θ (q)|2. (21)

We immediately see that both Eqs. (19) and (21) identify a
collective excitation as a pole of the θ (q) fluctuations, which
are controlled by the inverse of the |θ (q)|2 term. After analyt-
ical continuations to real frequencies, this is given by

ω2 = ω2
p(1 + α|k|2), (22)

that is, the usual dispersion of the longitudinal plasma mode
in a superconductor. As usual, the plasmon velocity cp =√

αωp = c̃(λD/λ), where λ is the London penetration depth,
is much smaller than the light velocity c̃ of the transverse
wave in the medium, since λD/λ � 1 even for unconventional
superconductors. It is worth noting that the velocity of the
plasmon in Eq. (22) is not the same as the one obtained
for the normal metal [3] that would correspond to ω2 =
ω2

p(1 + (9/5)α|k|2). This is due to the fact that to correctly
account for the plasma dispersion, one should also account
for the |k|2 corrections to the BCS density-density response
function in the SC state that appears as a coefficient of the
(∂tθ )2 term in the phase-only action, while in Eq. (4) only its
long wave-length limit κ0 has been retained. To simplify the
notation, we shall not explicitly perform such an expansion
that is anyway irrelevant to the physical effects we want to
discuss in the present paper. Indeed, it only gives a small
quantitative difference that can be included if one is interested
in a detailed quantitative comparison with the experiments.

While in Eq. (19) the plasma mode appears in the spectrum
of ∇θ fluctuations, in the Weyl gauge it appears in the spec-
trum of ∂τ θ fluctuations. This is a direct consequence of the
fact that the phase variable does not represent a true physical
observable. In addition, it describes, as expected, only the
longitudinal mode. For both gauge choices, the transverse e.m.
mode is described by the two remaining degrees of freedom of
the e.m. field in Eq. (13). A very elegant and convenient way
to simultaneously derive the energy-momentum dispersion for
all the transverse and longitudinal e.m. modes relies on the use
of the g.i. physical observables Eq. (7). For example, one can
use the spatial component of the g.i. phase difference,

ψ = ∇θ − 2e

c
A, (23)

and set to zero the scalar component via a proper gauge fixing.
The equivalent of Eq. (13) in the new variables reads

S[θ,ψ] = ε

32πe2

∑
q

[(
�2

m + ω2
p

)|ψ(q)|2

+ c̃2|k × ψ|2 + �2
m

α
(1 + α|k|2)|θ (q)|2

+ i�2
mk · (ψ(q)θ (−q) − ψ(−q)θ (q))

]
. (24)
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By introducing again the longitudinal ψL = (k̂ · ψ)k̂ and the
transverse ψT = ψ − ψL = (k̂ × ψ) × k̂ components, we see
that only ψL couples to the phase θ . After integrating it out,
one then finds

S[ψ] = ε

32πe2

∑
q

[(
�2

m

1 + α|k|2 + ω2
p

)
|ψL(q)|2

+ (�2
m + ω2

p + c̃2|k|2)|ψT (q)|2
]
. (25)

From Eq. (25), one immediately sees that the three compo-
nents of ψ describes all e.m. modes, as given by the poles
of the longitudinal and transverse propagators. Indeed, after
analytical continuation, one finds the solution Eq. (22) in the
longitudinal sector and the solution Eq. (15) in the trans-
verse sector, respectively. Such a result suggests that in the
anisotropic case where longitudinal and transverse modes get
mixed, a description in terms of the physical fields Eq. (23)
can be more convenient, as we shall indeed see in the next
section. In addition, this choice will make the extension of the
Gaussian action to a nonlinear Josephson model straightfor-
ward, since it will only affect the mass term for the ψ field, as
we will see in detail in Sec. III C.

III. EFFECTIVE ACTION FOR A LAYERED 3D SYSTEM

A. Derivation of the plasma dispersion
for the anisotropic system

To discuss the layered case, we should consider an exten-
sion of Eq. (10) where the stiffness is anisotropic. By using the
notation of Fig. 1(a), we will denote with Dxy and Dz the in-
plane and out-of-plane stiffness, respectively. Equation (10)
can be straightforwardly generalized [10,11,13] to

SG[θ ] = 1

8

∑
q

[
κ0�

2
m + Dxyk2

xy + Dzk
2
z

]
θ (q)θ (−q), (26)

where kxy ≡
√

k2
x + k2

y is the in-plane momentum. Note that,
despite the discrete out-of-plane structure of the system, we
still use a continuum anisotropic model, as valid when kz �
1/d . Indeed, the breakdown of the standard RPA approxi-
mation and the mixing between longitudinal and transverse
degrees of freedom, which will be the main topics of this
section, occur at very small momenta k, which are suitably
accounted for in the continuum limit. The anisotropy of the
stiffness has important consequences when the electrons are
coupled to the e.m. fields via the minimal-coupling substitu-
tion Eq. (12). Indeed, the action Eq. (14) describing the e.m.
field in the matter gets modified as

S′
e.m.[Aμ] = ε

8π

∑
q

[
−(k2

TF + |k|2)|φ(q)|2

+ 1

ε
|k × A(q)|2 +

(
�2

m + ω2
xy

)
c2

|Axy(q)|2

+
(
�2

m + ω2
z

)
c2

|Az(q)|2

+ 2i�m

c
φ(q)k · A(−q) − H.c.

]
, (27)

where we defined the two plasma frequencies:

ω2
xy = 4πe2Dxy

ε
, ω2

z = 4πe2Dz

ε
. (28)

In principle, in Eq. (27) we could also consider an anisotropic
background dielectric constant to take into account the dif-
ferent ionic screening occurring along the in-plane and
out-of-plane directions. The e.m. energy density would then
read −εα |Eα |2+|B|2

8π
, with εα = εxy for α = x, y, and εα = εz for

α = z. However, this effect does not substantially modify the
physics of the system; therefore, for the sake of simplicity we
take ε to be isotropic.

Finally, the coupling of the e.m. fields with the phase
variable is an anisotropic version of Eq. (17), that is now
expressed as

SθAμ
[θ, Aμ] = e

4

∑
q

[
κ0�mθ (q)φ(−q) + H.c.

−Dxy

c
iθ (q)kxy · Axy(−q) + H.c.

−Dz

c
iθ (q)kz · Az(−q) + H.c.

]
. (29)

As one can see, the anisotropy of the SC phase stiffness
has two main consequences in the description of the e.m.
response: (i) the massive terms in the vector potential of
Eq. (27) become anisotropic and (ii) the inclusion of the
matter via the SC phase shows that there is no way to decouple
completely the longitudinal and transverse modes at arbitrary
wave vector k. The latter result emerges more clearly by
close inspection of Eq. (29). While in the isotropic case, the
equivalent term Dsk · A of Eq. (17) implies that θ only cou-
ples to the longitudinal component of the vector potential, in
the anisotropic case the combination Dxykxy · Axy + Dzkz · Az

is different from zero even in the Coulomb gauge where
k · A = 0, unless of course propagation occurs purely in plane
(kz = 0) or out of plane (kxy = 0). This is the crucial point
that has been missed in previous work where the effect of the
anisotropy has been only included in the phase stiffness but
not on the coupling to the gauge potential. At a more general
level, the physical effect we are implementing here is the fact
that the superfluid current is no more parallel to to electric
field, so even a purely longitudinal field always induces a
transverse current and vice versa. Such an interpretation is
straightforward when the problem is studied via Maxwell’s
equations only, as we discuss in Appendix B.

To better understand the consequences of the coupling
between transverse and longitudinal modes, let us first recall
the derivation of the standard result Eq. (2). If one uses the
Coulomb gauge and retains in Eq. (29) only the coupling
to the scalar potential φ, the effect of its integration is a
straightforward generalization of Eq. (19), provided that one
accounts for the anisotropy of the stiffness of Eq. (26). The
action for the phase would then read

S(ani)
∇·A=0 
 ε

32πe2

∑
q

[
�2

m|k|2
1 + α|k|2 + ω2

xyk2
xy + ω2

z k2
z

]
|θ (q)|2.

(30)
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FIG. 2. (a) Plasmon dispersion given by Eq. (31), as obtained
by ignoring the coupling of the SC phase to the transverse vector
potential. As explained in the text, it also corresponds to the standard
result obtained by computing the density-density response in RPA in
an anisotropic superconductor [10–13,20,30] or in a metal [31–34].
In such approximation, the polarization of this mode is always lon-
gitudinal, so, e.g., at kz = 0 the mode is fully polarized in the plane.
Selected cuts of ωL at fixed kz as a function of kx are reported in
Fig. 1(c).

The plasmon dispersion obtained after analytical continuation
from the phase propagator in Eq. (30) in the limit α → 0 is
exactly the result Eq. (2), i.e.,

ω2
L(k) = 1

|k|2
(
ω2

xyk2
xy + ω2

z k2
z

)

= ω2
xy

k2
xy

|k|2 + ω2
z

k2
z

|k|2
= ω2

xy sin2 η + ω2
z cos2 η, (31)

where η denotes the angle between the k vector and the z axis.
Equation (31) is plotted in Fig. 2 for the values ωxy = 1 eV
and ωz = 0.05 eV, which lead to an anisotropy γ = ωxy/ωz

comparable to typical values in cuprates. If one retains correc-
tions due to the finite electronic compressibility, i.e., α �= 0 in
Eq. (30), the result Eq. (31) acquires an additional dispersion

such that ω2
L(k) = (ω2

xy
k2

xy

|k|2 + ω2
z

k2
z

|k|2 )(1 + α|k2|). In cuprates

[26,53], the Thomas-Fermi wave vector is kTF ∼ 10 nm−2,
so from Eq. (20) one can estimate α ∼ 10−2 nm2. As a
consequence, this term only contributes near the maximum
momentum value reported in Fig. 2, while the large variations
as a function of the angle η shown in Fig. 2 are already
accounted for by the expression Eq. (31). The result Eq. (31)
is analogous to the RPA one derived by including only the
Coulomb potential. This approach, that we will refer to as
standard RPA in what follows, has been adopted in previous
work both in the SC [10–13,20,30] and in the normal [31–34]
state. Within this scheme, it is also possible to generalize
the expression Eq. (31) by retaining the lattice periodicity in
the z direction [10,13,31–34], and to account for constrained
geometries as, e.g., in the transmission through a thin SC
slab [42]. The solutions Eq. (31) are sometimes referred to
as hyperbolic Josephson plasmons [13,42], since they can be

also obtained by the zeros of the anisotropic permittivity for
the layered superconductor [13], in analogy with the usual
derivation of the solutions for transverse-wave propagation in
the so-called hyperbolic materials, i.e., systems where the per-
mittivity has different signs along different crystallographic
axis [54,55]. Hyperbolic modes play a crucial role in the case,
e.g., of thin SC slabs, since they identify modes propagating
in the thin film but decaying exponentially in the surrounding
dielectrics [13,42].

As noted in the Introduction, the expression Eq. (31) has a
singular limit at k = 0, since its value depends on the angle
η. As we shall see below, such a singularity is removed by
inclusion of the coupling of the phase to the vector potential
A. Finally, for the sake of the following discussion, let us
also write explicitly the transverse mode obtained in the same
approximation, where one neglects the coupling between AT

and θ . In this case, assuming, e.g., that the propagating vector
is in the xz plane, and choosing the Coulomb gauge such
that k · A = kxAx + kzAz = 0, one easily finds from the A2

terms of Eq. (27) two transverse modes, one along y with the
standard dispersion ω2 = ω2

xy + c̃2|k|2 and the other one in
the xz plane with the anisotropic dispersion

ω2
T (k) ≡ ω2

z

k2
xy

|k|2 + ω2
xy

k2
z

|k|2 + c̃2|k|2. (32)

To fully account for the coupling of the SC phase to both
AL and AT , let us take advantage of the results of Sec. II and
introduce the g.i. phase variables Eq. (23). To simplify the
notation, we can assume without lack of generality that the in-
plane momentum is along the x direction. In this case, the ψy

component decouples from the phase in Eq. (29): It describes
a pure massive in-plane transverse mode. The remaining two
components are coupled, and with lengthy but straightforward
calculations one can derive the generalization of Eq. (25):

Sani[ψ] = ε

32πe2

∑
q

×
[(

1 + αk2
z

1 + α|k|2 �2
m + ω2

xy + c̃2k2
z

)
|ψx(q)|2

+
(

1 + αk2
x

1 + α|k|2 �2
m + ω2

z + c̃2k2
x

)
|ψz(q)|2

−
(

α�2
m

1 + α|k|2 + c̃2

)
kxkz(ψx(q)ψz(−q) + c.c.)

+ (�2
m + ω2

xy + c̃2|k|2)|ψy(q)|2
]
. (33)

We can now compute the propagators 〈ψα (q)ψβ (−q)〉,
whose poles identify the collective-mode excitations. From
〈|ψy(q)|2〉, one immediately finds the dispersion of the mas-
sive in-plane transverse mode ω2 = ω2

xy + c̃2|k|2 that simply
reflects the standard isotropic-case result Eq. (15). The fluc-
tuations of ψx and ψz are coupled, so the collective modes
are given by the determinant of their 2 × 2 matrix, once the
analytic continuation i�m → ω + i0+ has been performed.
The dispersion of the collective excitations is then obtained
as solutions of a quartic characteristic equation, which reads,
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FIG. 3. 2D map of the momentum dependence of the two mixed
longitudinal-transverse modes ω− (top) and ω+ (bottom) as given by
Eq. (35) in the low-momentum regime k < kc, where kc is defined
by Eq. (38). As shown in Fig. 5(a) below and detailed in Eqs. (43)
and (44), in this range of momenta the ω− mode corresponds to a
polarization along z, while ω+ describes polarization in the plane.

in the α 
 0 limit:(
ω2 − ω2

xy

)(
ω2 − ω2

z

)
−c̃2k2

x

(
ω2 − ω2

xy

)− c̃2k2
z

(
ω2 − ω2

z

) = 0. (34)

The solutions of Eq. (34) are

ω2
+/−(k)

= 1

2

(
ω2

xy + ω2
z + c̃2|k|2

±
√(

ω2
xy − ω2

z

)2 + c̃4|k|4 − 2c̃2
(
k2

x − k2
z

)(
ω2

xy − ω2
z

))
.

(35)

Equation (35) is the first central result of this paper: it
provides the general dispersion of the e.m. excitations of a
layered system for any momenta. The two solutions Eq. (35)
are shown in Fig. 3 as two-dimensional maps, while in Fig. 4
we report the modes as a function of |k| for selected value of
the angle η that k forms with the z axis. First, we note that
ω+ and ω− are regular functions as k → 0. Indeed, assuming

that ωxy > ωz, as typically happens in layered materials where
planes are weakly coupled, one immediately sees that

ω2
+(k → 0) = ω2

xy, ω2
−(k → 0) = ω2

z , (36)

regardless of the direction along which such limit is taken, as
is better shown in Fig. 4. At finite k, both solutions give an
increasing value of the plasma excitation that is limited above
by ωxy for the ω− solution, while it increases rapidly for the
ω+ solution. Such behavior can be better understood in Fig. 4,
where we plot for comparison also the standard RPA results
ω2

L and ω2
T derived neglecting the coupling of the phase to the

transverse field, see Eqs. (31) and (32), respectively. Indeed,
as |k| increases the two solutions Eq. (35) reduce to

ω−(k) 
 ωL(k)

ω+(k) 
 ωT (k). (37)

By closer inspection of Eq. (35), one sees that the crossover
among the two regimes occurs around a critical value kc of
the momentum set by the ratio between the plasma-frequency
anisotropy and the light velocity:

kc =
√

ω2
xy − ω2

z

c̃
. (38)

Indeed, as soon as k � kc the square-root term in Eq. (35) can
be expanded in powers of the small parameter kc/k and one
easily recovers the two analytical expressions of the purely
longitudinal and transverse modes ωL and ωT , respectively.
To get an idea on the order of magnitude of the momentum
scale Eq. (38), one should consider that h̄c 
 0.19 eVμm.
Thus, considering that in layered materials as, e.g., cuprates,
it is usually ωz � ωxy, with ωxy 
 1 eV, one sees that as
soon as k � kc ∼ 5 μm−1 the standard RPA result Eq. (31)
is recovered, as shown in Fig. 4. Note that at wave vectors
of order of kc, the term α|k2| for the estimated value [26,53]
α ∼ 10 nm2 in cuprates is quantitatively irrelevant, so the
contribution of α|k2| corrections can be neglected. As a con-
sequence, ω− approaches the RPA result Eq. (31) computed
at α = 0, that is, a constant for a fixed value of the angle
η, as shown in Fig. 4. For experiments like EELS or RIXS,
which measure the plasma dispersion at momenta of the or-
der of 1/a ∼ 0.1 Å−1, with a lattice spacing, and energies
of the order of the eV, the mixing between longitudinal and
transverse modes is not quantitatively relevant. Nonetheless,
the discrepancy between ω− and ωL becomes crucial to un-
derstand the radically different description of the low-energy
plasma mode provided within the context of nonlinear Joseph-
son plasmonic [14,15]. These experiments are carried out with
THz radiation approximately resonant with the low-energy
mode ω 
 ωz and which, at the boundary with the medium,
is polarized along the z axis. If one considers the solution of
Eq. (34) for ω 
 ωz, one can approximate ω2 − ω2

xy 
 −ω2
xy

since ωxy � ωz. Physically, this is equivalent to neglect the
(∂ψx/∂τ )2 term in the first line of Eq. (33) with respect to
the ω2

xyψ
2
x term, i.e., to assume a stationary in-plane current

that can be a reasonable approximation at the frequency scale
of the soft Josephson plasmon. From the point of view of the
eigenmodes of Eq. (33), this approximation turns the quartic
Eq. (34) into a quadratic one that can be easily solved leading
to Eq. (1) mentioned in the Introduction, that we can also
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FIG. 4. Momentum dependence of the mixed longitudinal-transverse modes ω−, ω+ (red and blue solid lines, respectively) as a function
of |k| at selected value of the angle η between k and the z axis [see inset of (a)]. We also show for comparison the standard RPA result for
the longitudinal ωL (dot-dashed dark red) and transverse ωT (dot-dashed dark blue) modes, as given by Eqs. (31) and (32), respectively, and
the approximated expression Eq. (39) (green solid line) for ωJ valid around ωz. Dashed grey lines denote the values of the in-plane ωxy and
out-of-plane ωz plasma modes at zero momentum. As before we set ωxy = 1.0 eV and ωz = 0.05 eV and for simplicity we assumed ε = 1.

rewrite as

ω2
J = ω2

z

(
1 + λ2

z k2
x

1 + λ2
xyk2

z

)
, (39)

where we introduced the in-plane and out-of-plane penetra-
tion depths:

λxy/z ≡ c̃

ωxy/z
. (40)

As shown in Fig. 4, Eq. (39) accounts indeed for the correct
behavior of ω− at energies around ωz and small momenta.
It should be noted that for optical THz probes the relevant
value of the momentum k in Eq. (39) is of the order of 10
to 100 cm−1, so well below the threshold Eq. (38), i.e., in the
region where the standard RPA approximation fails. This ex-
plains the apparent disagreement between the two expressions
usually quoted in the literature for the same problem, studied
within the context of different experimental probes.

B. Longitudinal-transverse mixing at generic wave vector

To gain further insight in the mechanism connecting the
general solutions ω± to the results obtained with the standard
RPA approximation, it is instructive to express the previous
results by introducing explicitly the basis spanned by the
longitudinal versor k̂ and by the transverse versors ŷ and
k̂ × ŷ. In particular, since we are assuming that k lies in the
xz plane, k̂ denotes the direction of the longitudinal standard
RPA plasmon ωL(k) of Eq. (31), and k̂ × ŷ the one of the
standard RPA pure transverse mode ωT (k) in Eq. (32). By
using the rotation matrix among the two basis, which reads

Û (q) = 1

|k|

⎛
⎝ kx 0 kz

0 1 0
−kz 0 kx

⎞
⎠, (41)

we can rotate the 3 × 3 matrix associated with the ac-
tion Eq. (33), which is written in Cartesian basis, into the
longitudinal-transverse basis. The resulting action will then
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FIG. 5. Sketch of the polarization dependence of the mixed modes in a layered superconductors. Polarization dependence of the solutions
ω− and ω+ as given by Eq. (44) at generic momentum. The black arrows denote k̂ and the transverse in-plane direction k̂ × ŷ. The orange
arc denotes the angle η between the z axis and direction k̂. The longitudinal component ψL (polarized along k̂) and the transverse in-plane
component ψxz

T (polarized along k̂ × ŷ) of the g.i. phase difference are, respectively, the dark red and dark blue arrows, while the mixed
longitudinal-transverse modes ψ− and ψ+ are the red and blue arrows. (a) Low-momentum regime |k| � kc. Here the ψ∓ modes are aligned
along the z and x axis, respectively, so at generic k they are neither pure longitudinal nor pure transverse. (b) Large-momentum regime |k| � kc.
Here the mixed mode ψ− reduces to the pure longitudinal mode ψL , while ψ+ reduces to the pure transverse mode ψT . The pure transverse
mode ψ

y
T , polarised along the y axis, does not get coupled with the other two degrees of freedom in both cases.

read, in the α 
 0 limit,

Sani[ψ] = ε

32πe2

∑
q

[(
�2

m + ω2
L(k)

)|ψL(q)|2

+ (�2
m + ω2

T (k)
)|ψxz

T (q)|2

−
(

ω2
xy − ω2

z

c̃2|k|2
)

c̃2kxkz(ψL(q)ψxz
T (−q) + c.c.)

+ (�2
m + ω2

xy + c̃2|k|2)|ψy
T (q)|2], (42)

where ψxz
T is the transverse component along k̂ × ŷ. In such

a basis, one immediately sees that if the coupling between
ψL and ψxz

T is negligible, the action Eq. (42) reduces to the
one for the standard RPA modes Eqs. (31) and (32). Whether
the coupling term is negligible or not depends on the overall

adimensional factor
ω2

xy−ω2
z

c̃2|k|2 that can be recast in the form
k2

c
|k|2 , where kc is the crossover value of the momentum in-
troduce in Eq. (38) above. When k � kc one can neglect
the longitudinal-transverse coupling and one obtains the stan-
dard RPA result. On the other hand, if |k| ∼ kc, relativistic
effects come in, one must take into account the longitudinal-
transverse coupling and standard RPA result breaks down.

Such a crossover is also evident in the polarization depen-
dence of the ω± solutions that can be equivalently written
in both basis. Let us first analyze the low-momentum limit
k → 0. In this regime, the eigenvectors corresponding to the
two solutions ω± read

ψ−(k) =
ẑ + c̃2kxkz

ω2
xy−ω2

z
x̂√

1 + c̃4k2
x k2

z

(ω2
xy−ω2

z )2

ψ+(k) =
−x̂ + c̃2kxkz

ω2
xy−ω2

z
ẑ√

1 + c̃4k2
x k2

z

(ω2
xy−ω2

z )2

. (43)

As one clearly sees, in the k → 0 limit the ψ− solution is
always polarized along z, while ψ+ is polarized along x, see
Fig. 5(a), explaining why the plasma modes always reduce
to the ωz/xy values, without the continuum of k → 0 values
predicted by the standard RPA, see Fig. 2. On the other hand,
this also implies that at small momenta the eigenmodes have
a mixture of longitudinal and transverse character. This can
be better seen by rewriting the two solutions at arbitrary value
of the momentum by using explicitly the longitudinal ψL and
transverse ψT components of the g.i. phase:

ψ−(k) =
kxkz

|k|2
(
ω2

xy − ω2
z

)
ψL − (ω2

−(k) − ω2
L(k)

)
ψxz

T√
k2

x k2
z

|k|4
(
ω2

xy − ω2
z

)2 + (ω2−(k) − ω2
L(k)

)2
ψ+(k) =

kxkz

|k|2
(
ω2

xy − ω2
z

)
ψxz

T − (ω+(k)2 − ωT (k)2)ψL√
k2

x k2
z

|k|4
(
ω2

xy − ω2
z

)2 + (ω2+(k) − ω2
T (k)

)2 .

(44)

As seen in Eq. (33), the pure transverse mode ψ
y
T is not

involved in the mixing. The orthogonality between ψ− and ψ+
is ensured by the fact that ω2

+(k) + ω2
−(k) = ω2

L(k) + ω2
T (k).

Equation (44) highlights how, at generic values of the
momentum, ω+ and ω− describe two modes with no pure (lon-
gitudinal or transverse) character. On the other hand, as soon
as k � kc and the modes reach the standard RPA value, see
Eq. (37), ψ− becomes a purely longitudinal mode while ψ+
is a purely transverse one, see Fig. 5(b), consistently with the
expectation that the standard RPA approximation leads to pure
longitudinal or transverse modes. A remarkable exception to
the mixing is provided by the case of propagation completely
in plane (kz = 0) or completely out of plane (kx = 0), since
in this case the ψxψz coupling of Eq. (33) vanishes and one
obtains purely longitudinal or transverse modes. For instance,
when kz = 0 the momentum is along x, so ψ+, which is also
aligned along x [see Eq. (43)], describes a purely longitudinal
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mode approaching ωxy as kx → 0. Conversely, when kx = 0
the momentum is along z, so in this case the longitudinal
mode is represented by ψ−, and its dispersion approaches ωz

as kz → 0.

C. Comparison with the sine-Gordon equations of motion

As mentioned in the Introduction, the approximated ex-
pression Eq. (39) for the small k limit of ω− has been widely
used in the recent literature [14,15,28] to study the dynamics
of the Josephson plasmon in the presence of nonlinear effects
due to intense THz fields. Within this context, the equation of
motion has been derived for the g.i. variable ψz of Eq. (7). The
basic equation reads(

1 − λ2
xy

∂2

∂z2

)(
1

ω2
z

∂2ψz

∂t2
+ sin ψz

)
− λ2

z

∂2ψz

∂x2
= 0, (45)

where absence of dissipation is assumed for the sake of sim-
plicity. The explicit appearance of the sin ψz term makes the
equation nonlinear. As mentioned above, this result shows
how the use of the g.i. phase variable represents a powerful
and elegant way to obtain a straightforward extension of the
Gaussian model to the nonlinear Josephson model that repre-
sents a crucial step to describe nonlinear optical effects. On
the other hand, the linearized version of Eq. (45), obtained
when sin ψz 
 ψz, admits a wavelike solution ψz ∝ ei(ωt−k·r)

such that the frequency ω and the momentum k satisfy the
dispersion relation Eq. (39). As a consequence, in the linear
regime, Eq. (45) provides again an approximation for the ω−
solution at low energy and momenta. It is then interesting to
understand how such a nonlinear extension to the Josephson
model can be obtained starting from the more general formal-
ism developed so far.

A simple way to see the analogy is to rewrite the general
result Eq. (33) in real space. Consistently with the derivation
of Eq. (35), we shall consider here the α = 0 limit. In addition,
since Eq. (45) is written in real time we will convert Matsub-
ara frequencies to real frequencies via analytical continuation
and we will replace

∫
dτ = ∫ idt . The resulting real-time

action S̃ani then reads

S̃ani[ψ] = ε

32πe2

∫
dtdx

{(
∂ψx

∂t

)2

+
(

∂ψz

∂t

)2

−ω2
xyψ

2
x − c̃2

(
∂ψx

∂z

)2

+ 2ω2
z cos(ψz ) − c̃2

(
∂ψz

∂x

)2

−c̃2

[
ψx

∂2ψz

∂x∂z
+ ψz

∂2ψx

∂x∂z

]}
. (46)

Notice that we promoted the ω2
z ψ

2
z term of Eq. (33) to a

cosine-like term −2ω2
z cos ψz, so interacting terms for the

phase are included beyond the Gaussian order. As usual, this
is physically motivated by the idea that a Josephson-like cou-
pling set by the out-of-plane phase stiffness Dz exists for the
phase in neighboring layers, leading to an effective XY model
for the phase degrees of freedom. The main consequence of

the presence of a cosine term is that the resulting phase-only
model admits naturally a nonlinear current along the z direc-
tion, Iz ∝ ωz sin ψz, that is crucial to account for the nonlinear
optical response measured at strong THz fields aligned along
the z direction in cuprates [35,36]. As discussed in Ref. [12],
the interacting terms for the phase derived microscopically
can differ from the one obtained within the simple XY model.
Nonetheless, the XY model provides a reasonable starting
point to account for nonlinear effects in the z direction, as
discussed recently in Ref. [40]. Finally, to account for the
layered structure the g.i. phase variable ψ should be promoted
to a layer-dependent variable ψ(r, z = nd ) → ψn(r, t ), with
r = (x, y), n layer index and d spacing between layers. The
final result is completely analogous to Eq. (46), provided that
one discretizes the integration along z as

∫
dx → d

∑
n

∫
dr

and defines a discrete version of the derivative along the z
direction, so ∂z f ≡ 1

d ∂n f = fn+1− fn

d . We will then retain for
simplicity the continuous notation in what follows.

Once rewritten in the action in real space, we can obtain the
Euler-Lagrange equations of motion by functional derivatives
with respect to ψx and ψz. By simple algebra, we then obtain
two coupled equations which describe the dynamics of the
mixed longitudinal-transverse modes:

∂2ψx

∂t2
+ ω2

xyψx − c̃2 ∂2ψx

∂z2
+ c̃2 ∂2ψz

∂x∂z
= 0, (47)

∂2ψz

∂t2
+ ω2

z sin ψz − c̃2 ∂2ψz

∂x2
+ c̃2 ∂2ψx

∂x∂z
= 0. (48)

As one can easily check, when sin ψz 
 ψz one recovers two
coupled linear equations which can be solved with wave-
like solutions propagating with frequency ω and momenta
k satisfying the same Eq. (34) derived above. Thus, in the
linear regime, as expected, one recovers the same expression
Eq. (35) for the ω± collective modes derived by the Gaussian
action Eq. (33). On the other hand, if one is interested in
studying the collective dynamics of ψz for frequencies around
ωz, one can get an approximate equation of motion by notic-
ing that for ω 
 ωz � ωxy the first time-derivative term of
Eq. (47) is of order (ωz/ωxy)2 as compared to the second one,
and can then be neglected. Thus one simply deduces from
Eq. (47) that (

1 − λ2
xy∂

2
z

)
ψx = −λ2

xy(∂x∂z )ψz, (49)

where we introduced the penetration depths Eq. (40). By ap-
plying the (1 − λ2

xy∂
2
z ) operator to Eq. (48) and using Eq. (49),

one obtains exactly Eq. (45). In this way, we reconciled all the
expressions discussed in previous literature by also clarifying
the limit of validity of the various approximations.

A last comment is in order about the role of the α|k|2 terms,
neglected while deriving the ω± expressions in Eq. (35). In
the isotropic case, these terms are crucial to get the plasmon
dispersion, see Eq. (22). Since α = λ2

D coincides with the
Debye length squared, see Eq. (20), its effect is negligible
as compared to the much larger variations in k between ωz

and ωxy already described by Eq. (35). On the other hand,
including these corrections into the general solutions ω± is
a matter of simple algebra and, in the standard RPA regime,
one would just recover an additional α|k|2 dispersion into
Eq. (31).
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IV. GAUGE-INVARIANT DENSITY-DENSITY RESPONSE
INCLUDING RELATIVISTIC CORRECTIONS

So far, we have investigated the nature of the mixed
longitudinal-transverse mode by looking at the dynamics of
the g.i. phase variable, and we showed a failure of the stan-
dard RPA approach to capture the k → 0 limit of the plasma
dispersion. It is then worth investigating how such generalized
plasma modes appear in the physical g.i. density-density re-
sponse function, which carries information on the longitudinal
degrees of freedom of the system.

To clarify the procedure, we first outline the derivation
of the density-density response function for an isotropic SC
system. The simplest way is to add an auxiliary scalar field δφ

coupled to the density operator into the microscopic Hamil-
tonian, so the density-density response can be obtained by
functional derivative of the total action with respect to δφ. In
practice, the idea is to derive an action quadratic in |δφ|2 after
integration out of all other variables so the density-density
response function K will be the coefficient of the |δφ|2 term
in the final action, i.e.,

K (q) = − ∂2S[δφ]

∂δφ(q)∂δφ(−q)
, (50)

where S[δφ] has been obtained by integrating out all other
degrees of freedom except the auxiliary field. In the isotropic
case, the result is straightforward. Indeed, once known, the
phase-only action Eq. (10), the scalar perturbation δφ, enters
the Gaussian phase-only action via the usual minimal cou-
pling substitution Eq. (12). One is then left with an effective
Gaussian model for the variables θ , δφ, and φ, where the
action Sδφ adds to the contribution Eq. (24) computed before.
The action Sδφ contains a bare quadratic term, which accounts
for the bare compressibility, and the coupling of the phase
with the scalar perturbation. These read

Sδφ[δφ, θ ] =
∑

q

[
−κ0

2
|δφ(q)|2

+ κ0

4
�mδφ(q)θ (−q) + H.c.

]
. (51)

As before, we can introduce the g.i. phase variable ψ and
integrate out explicitly θ . This leads to a dressing of the bare
compressibility term which multiplies |δφ(q)|2 in Eq. (51) and
generates a coupling among δφ and ψ:

S[ψ, δφ] =
∑

q

{
− κ0

2k2
TF

|k|2
1 + α|k|2 |δφ(q)|2

+ ε

32πe2

(
�2

m

1 + α|k|2 + ω2
p

)
|ψL(q)|2

+ κ0

4k2
TF

i�m|k|
1 + α|k|2 δφ(q)|ψL(−q)| − H.c.

}
.

(52)

As expected, the scalar perturbation couples only to the longi-
tudinal component ψL of the g.i. phase difference, carrying the
information on the longitudinal modes. Once ψL is integrated
out, we get the fully dressed density-density response function
from Eq. (50). Neglecting the plasmon dispersion (i.e., α 
 0)

and performing the analytic continuation i�m → ω + iδ, it
reads

K (q) = κ0

k2
TF

|k|2ω2
p

ω2
p − (ω + iδ)2

. (53)

Equation (53) displays a singularity at the plasma frequency
ωp. One can easily check that Eq. (53) is perfectly equivalent
to the standard RPA result KRPA(q) = χ0(q)

1+VC (k)χ0(q) obtained in
the normal state [3,6], where χ0(q) is the Lindhard function
for the metal. Indeed, in the limit ω/k � 1 the Lindhard
function can be approximated as χ0(q) 
 − n

m
|k|2
ω2 , which re-

placed into the standard RPA formula gives exactly Eq. (53).
Since in this frequency and momentum regime, one would
expect that the SC susceptibility has the same behavior of the
normal-state one, one can conclude that Eq. (53) is equivalent
to the standard RPA result for the isotropic superconductor.
By retaining terms in α|k|2 in Eq. (52), one could get also the
plasmon dispersion. However, the extension of Eq. (53) will
not give the correct damping of the plasmon, since it has been
derived taking directly the static limit of the density response,
i.e., κ0 = χ0(ω = 0, k → 0). To get the full plasmon spectral
function, one should retain the full frequency and momentum
dependence of the bare density-density response χ0 to recover
a plasmon damping when ωp(k) overlaps the particle-hole
continuum [3,6].

To generalize the previous derivation to the anisotropic
case, we should introduce, in full analogy with Sec. III, the
in-plane and out-of-plane superfluid stiffness Dxy and Dz.
This leaves unchanged the coupling between δφ and ψL in
Eq. (52), but it modifies the term in |ψL|2. Once again, the
standard RPA result does not account for this effect and only
introduces the anisotropy of the bare Lindhard function. For
an anisotropic metal, this would be equivalent to approximate

χ0(q) 
 − n
ω2 ( k2

x
mxy

+ k2
z

mz
), where the anisotropic in-plane mxy

and out-of-plane mz masses identify the anisotropic plasma
frequencies ω2

xy/z = 4πe2n/mxy/z. As a consequence, the stan-
dard RPA result for the anisotropic case is fully equivalent to
Eq. (53), provided that ω2

p is replaced by its layered version
ω2

L defined in Eq. (31), i.e.,

Kani
RPA = κ0

k2
TF

|k|2ωL(k)2

ω2
L(k) − (ω + iδ)2

. (54)

As discussed before, we expect that such an approximation
fails in the k � kc regime. Indeed, by extending the procedure
outlined above for the isotropic case and by integrating out
the longitudinal g.i. component ψL at arbitrary momentum we
obtain the following generalization of Eq. (53) in the k � kTF

limit:

K (ani)(q)

= κ0k|2
k2

TF

(
1 − ω2

(
ω2 − ω2

T (k)
)

[(ω+iδ)2 − ω2−(k)][(ω + iδ)2 − ω2+(k)]

)
.

(55)

From Eq. (55), one sees that the poles of K (ani) are the general-
ized plasma modes ω+ and ω− at generic k. This is consistent
with the fact that both have a finite longitudinal projection.
Also, in this case, the full computation of the density spectral
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FIG. 6. Momentum dependence of the spectral weights of the ω±
poles in the density-density response. Here we show I± from Eq. (56)
as a function of |k| for two fixed values of the angle η between
k and the z axis. To compare the results at different angles η, the
intensities I± have been normalized to the intensity of the standard
RPA longitudinal mode, i.e., IRPA = ωL (k)/2.

function requires a careful evaluation of its imaginary part
that is beyond the scope of the present paper. Nonetheless,
the result Eq. (55) already provides us with the direct access
to the total spectral weight I±(k) allocated in each ω±(k) pole
as a function of momentum k, as given by the imaginary part
of Eq. (55). These can be readily obtained as

I±(k) = ±ω2
±(k)

(
ω2

±(k) − ω2
T (k)

)
2ω±(ω2+ − ω2−)

. (56)

The momentum dependence of I±(k) is shown in Fig. 6 for
two values of angle η between k and the z axis, correspond-
ing to Figs. 4(a) and 4(c). Note that to compare the relative
spectral weights at a fixed k, we did not include in Eq. (56)
the overall |k|2 factor present in the density-density response
Eq. (55). As a consequence, in the k � kc regime where the
ω± solutions are different from the standard RPA ones ωT/L,
the upper pole at ω+ always has a larger spectral weight than
the lower one, ω−, due to the overall ω2 factor in Eq. (55).
Conversely, in the k � kc limit, where ω− reduces to the pure
RPA longitudinal mode and ω+ to the pure RPA transverse
mode [see Eq. (37)] only the lower pole at ω− survives.
Indeed, in this regime one sees from Eq. (56) that the factor
ω2

+ − ω2
T in the numerator of I+ vanishes, while the factor

ω2
− − ω2

+ 
 ω2
− − ω2

T at the denominator of I− cancels out
exactly the weighting factor ω2

− − ω2
T in the numerator, so I−

approaches the spectral weight of the standard RPA longitudi-
nal mode, which is defined from Eq. (54) as IRPA = ωL(k)/2.
In other words, in this regime the density-density response
approaches Kani

RPA in Eq. (54), obtained in the standard RPA
approach. Conversely, at k � kc, Eq. (55) represents a rather
unexpected result, i.e., the simultaneous signature in the den-
sity response of two generalized plasma modes, located at two
well-separated energy scales, with the initial predominance of
the higher-energy solution ω+.

V. CONCLUSIONS

In the present paper, we provided the full description of
the generalized plasma modes in bulk layered superconduc-
tors, filling the knowledge gap among previous results that
focused on specific regions of the energy and momentum
spectrum of the plasmons. The main physical mechanism be-
hind our findings is the anisotropy of the superfluid response
in layered superconductors that leads to an induced superfluid
current which is no more parallel to the electric field. As
already evident at the level of classical Maxwell’s equations
(Appendix B), this induces a mixing between transverse and
longitudinal components of the e.m. fields, usually absent in
isotropic systems. To rephrase the same effect in another way,
in the anisotropic system density fluctuations are not only
generated by a scalar potential but also by a vector potential,
and within the context of the superconductor it appears as a
finite coupling of the SC phase to the transverse vector poten-
tial. Such effects become typically relevant for wave vectors
that, in strongly anisotropic systems (where i.e., ωxy � ωz),
are smaller than kc ∼ ωxy/c. Since this scales vanishes as
c → ∞, these effects appear as relativistic corrections. At
momenta well above the crossover scale, the modes acquire
an almost pure longitudinal or transverse character and the
anisotropy only manifests in the emergence of acousticlike
plasmon branches reminiscent of the plasma modes in purely
2D systems. A remarkable exception to the mixing occurs
when light propagates purely in plane or out of plane, since
in this case one can gauge away the coupling to the vector
potential and the standard RPA approach gives back the exact
solution.

The above results have been derived by taking advantage
of the fact that in a superconductor the plasma modes can
be conveniently studied by means of the dynamics of the SC
phase of the order parameter. However, previous approaches
focused on apparently different models, making it difficult
to establish a link between the different expressions for the
plasma dispersion discussed in the literature. In contrast, our
approach incorporates in an elegant and general way the mix-
ing among transverse and longitudinal response, previously
discussed for the low-momenta regime [25–27,29,39,41], and
allows one to understand why it becomes irrelevant in the
nonrelativistic regime at large momentum, where a standard
RPA result [10–13,20,30] is recovered. Taking advantage
of this description, we derive an analytical expression for
two hybrid light-matter modes valid at all momenta, provid-
ing a viable tool for a direct comparison with experiments
that goes beyond numerical solutions of coupled light-matter
equations [39,41]. In addition, we explain how to extend
the description to incorporate nonlinear effects relevant for
THz spectroscopy at strong field [15,35–38] and we explic-
itly compute the density-density response, showing how the
generalized hybrid modes are projected out in the physical
response in the various energy and momentum regimes.

Our results, including the methodological aspects, are par-
ticularly relevant for future work aimed at investigating, e.g.,
the plasma modes in confined geometries, as is the case for
surface plasmon polaritions [4,5,42]. The recent detection
of surface Josephson plasma waves in an ultrathin film of
the high-temperature superconductor La1.85Sr0.15CuO4 shows

023112-14



GENERALIZED PLASMA WAVES IN LAYERED … PHYSICAL REVIEW RESEARCH 4, 023112 (2022)

that the field is now mature to apply near-field optics, ef-
ficiently used so far to investigate van der Waals layered
metals [5], to layered superconductors. At the same time, even
if standard EELS or RIXS experiments have a rather low-
momentum resolution, with the lowest accessible momenta of
about ∼0.1 of the reciprocal lattice unit, EELS incorporated in
a scanning transmission electron microscope (STEM-EELS)
and equipped with a monochromator and aberration correc-
tors has a high potential to combine high spatial and energy
resolution [56,57]. As a consequence, one can hope in the
near future to be able to probe plasma excitations around the
crossover scale kc ∼ 50 μm−1, where approximate solutions
fail, and where both generalized plasma modes give a com-
parable contribution to the density response, as we showed
in Sec. IV. In addition, at these wave vectors and energies
one could explore the possible coupling with other collective
modes like phonon, giving rise to hybrid phonon-polaritons
modes [4], involving simultaneously transverse and longitudi-
nal fields. As a final remark, it could be interesting to explore
how the transverse-longitudinal mixing affects the plasmon
dispersion in the normal state, even though in this case the soft
Josephson plasmon is expected to be strongly overdamped by
the quasiparticle continuum, especially in correlated systems
like cuprates. Indeed, it is worth noting that even though
our results have been derived in the SC state, we expect a
similar physics to be at play also in the normal state at scales
sufficiently larger than twice the SC gap, where the effects of
the gap opening are no more visible, making it irrelevant pos-
sible heating effects due to a probing frequency of the order
of ωxy. A detailed analysis of the generalized plasma wave
in the layered metal and in correlated systems like cuprates
will be deserved for future work. Such analysis can also help
understanding how to model the Coulomb interaction among
the scattered electrons and the local density of the layered
metal in EELS experiments in cuprates, whose interpretation
is still debated [48–51]. Indeed, a robust modeling of the
plasma modes in conventional layered superconductors and
metals is certainly a prerequisite in order to understand how
charge fluctuations manifest instead in a correlated system like
cuprates.
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APPENDIX A: PHASE-ONLY EFFECTIVE ACTION
IN THE PATH-INTEGRAL FORMALISM

We model a generic single-band superconductor via the
following grand-canonical Hamiltonian:

Ĥ − μN̂ =
∑
k,σ

ξkĉ+
kσ ĉkσ + ĤI , (A1)

where ξk is the band dispersion with respect to the chemical
potential μ, and the interacting Hamiltonian ĤI reads

ĤI = −U

N

∑
q

�̂+
�(q)�̂�(q); (A2)

�̂�(q) ≡∑kσ ĉ+
k−q/2σ

ĉk+q/2,σ being the pairing operator,
U > 0 being the SC coupling constant, and N denotes the
number of lattice sites. To compute thermal averages over
the Hamiltonian Eq. (A1), we use the path integral formu-
lation. Within such framework, the the partition function of
the system is given by Z = ∫ D[c, c]e−S[c,c], where S is the
imaginary-time action for fermions [6]:

S[c, c] = S0 + SI

=
∫ β

0
dτ

[∑
kσ

ckσ (∂τ + ξk ) + HI (τ )

]
. (A3)

τ = it is the imaginary time, β = 1
T and c, c are the Grass-

mann variables associated to the annihilation and creation
operators, respectively. To obtain the effective action in terms
of the order-parameter collective degrees of freedom, the in-
teracting action is decoupled in the particle-particle channel
by means of the HS transformation by introducing the auxil-
iary complex field �:

�(r) = (�0 + δ�(r))eθ (r), (A4)

where �0 is the mean-field expectation value of the amplitude
associated to the SC energy gap, δ� and θ are amplitude and
phase fluctuations. By making an appropriate gauge transfor-
mation on the Grassmann fields c and c, it is possible to make
the dependence on phase θ explicit in the action. One then
finds that the HS transform of SI is phase independent, while
the free contribution S0 becomes

S̃0 = SBCS +
∫

dxdτ�(x, τ )�̂(x, τ )�(x, τ ), (A5)

where � is the Nambu spinor, defined as the column vec-
tor (c↑, c↓), and SBCS is the BCS saddle-point action, where
only the mean-field value �0 is the complex field has been
included, while fluctuations are contained in �̂. The BCS
Green’s functions are defined from SBCS as

G0(k, iωm) ≡ −
∫ β

0
dτ
〈
T
(
�̂k(τ )�̂k(0)

)〉
eiωmτ ;

= iωmτ̂0 + ξkτ̂3 − �0τ̂1

(iωm)2 − E2
k

; (A6)

iωm = (2n + 1)πT being Matsubara fermionic frequencies,
Ek =

√
ξ 2

k + �2
0 being the quasiparticle energy, τ̂i being the

Pauli matrices. �̂ is the self-energy, which depends, in princi-
ple, on both amplitude and phase fluctuations. Nonetheless, as
long as one is interested in the low-temperature dynamics of
phase fluctuations in layered cuprates, amplitude fluctuations
can be neglected [12]. The self-energy then reads

�̂ =
{ i

2
∂τ θ + 1

8m
(∇θ )2

}
τ̂3 +

{ i

4m
∇θ · ←→∇

}
τ̂0, (A7)

where
←→∇ ≡ −→∇ − ←−∇ . Note that, according to Goldstone

theorem, phase θ appears only trough its time and spatial
derivatives in Eq. (A7), i.e., no mass term for θ is allowed.
Now, since the fermionic variables appear quadratically into
S̃0, one can integrate them out. Such procedure leads to the
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following effective action for phase fluctuations:

Seff[θ ] = 1

n

+∞∑
n=1

Tr{(Ĝ0�̂)n}, (A8)

where the trace is computed over both spin and momentum
degrees of freedom. To study the phase dynamics, we compute
the effective action at a Gaussian level, i.e., by including terms
up to n = 2. It reads, in Fourier space,

SG[θ ] = 1

8

∑
q

[
�2

m�ρρ (q) − qaqb�
(ab)
JJ

+ 2i�mqa�
(a)
ρJ

]|θ (q)|2, (A9)

where q ≡ (i�m, q), �m = 2πmT being a bosonic Matsubara
frequency, and

�ρρ (q) ≡ T

N

∑
k

tr{Ĝ0(k + q)τ̂3Ĝ0(k)τ̂3}, (A10)

�a
ρJ (q) ≡ T

N

∑
k

ka + qa

2

m
tr{Ĝ0(k + q)τ̂0Ĝ0(k)τ̂3}, (A11)

�ab
JJ (q) ≡ − n

m
δab

+ T

N

∑
k

ka + qa

2

m

kb + qb

2

m
tr{Ĝ0(k + q)τ̂0Ĝ0(k)τ̂0}

(A12)

are the BCS response functions, which contain all the in-
formation on the microscopic fermionic degrees of freedom.
Again, if one is interested in the low-temperature phase
dynamics, the hydrodynamic limit of the Gaussian action
Eq. (A9) is the relevant one. Within such approximation, the
BCS bubbles are computed in the static limit i�m = 0, q → 0,
and one finds Eq. (10) of the main text.

The formalism developed so far is appropriate for describ-
ing neutral superfluids. For the case of superconductors, the
e.m. interaction between electrons must be taken into account.
This can be achieved via the scalar and vector potentials φ and
A, which account for internal e.m. degrees of freedom. They
can be included into the self-energy Eq. (A7) by means of
the minimal-coupling substitution, which reads in imaginary
time as ∂τ → ∂τ − eφ, −i∇ → −i∇ + e

c A for the fermionic
degrees of freedom. After such a procedure, the self-energy
Eq. (A7) undergoes the following modification:

�̂ =
{

1

2
(i∂τ θ + 2eφ) + 1

8m

(
∇θ − 2e

c
A
)2}

τ̂3

+
{

i

4m

(
∇θ − 2e

c
A
)

· ←→∇
}
τ̂0. (A13)

One immediately sees that Eq. (A13) can be obtained as well
by making the substitution Eq. (7) on the phase degrees of
freedom. At this point, it is possible to expand the effective
action at Gaussian level in both the phase and the e.m. poten-
tials: By doing such a procedure and by adding the free-e.m.
contribution Eq. (11), one obtains the total action Eq. (13).

External perturbations can be also introduced to compute
the response function of the system. For example, to compute
the density-density response function, one can introduce a

scalar perturbation δφ, which couples with the density op-
erator ρ̂q =∑kσ ĉ+

k+qσ
ĉkσ into the microscopic Hamiltonian

trough the following contribution:

Ĥδφ =
∑
q,kσ

δφ(q)ĉ+
k+qσ ĉkσ . (A14)

Equation (A14) will give rise to the density insertion eδφτ̂3

into the self-energy Eq. (A13). At this point, one can compute,
through the usual expansion Eq. (A8), the effective action
at Gaussian level in the phase, the internal e.m. degrees of
freedom and the scalar perturbation. Then, once the g.i. vari-
able ψ has been introduced and the phase has been integrated
out, one is left with Eq. (52), which describes the coupling
of the scalar perturbation δφ with the longitudinal degrees of
freedom (described by ψL) of the system.

APPENDIX B: CLASSICAL ELECTRODYNAMICS
OF A LAYERED SUPERCONDUCTOR

In this Appendix, we rephrase the main result of this paper,
i.e., the existence of mixed longitudinal-transverse e.m. modes
in layered superconductors, within the classical framework of
Maxwell’s equations. A similar approach has been discussed
within the context of the soft Josephson plasmon, see, e.g.,
Refs. [27,29,39]. Here we show how the set of coupled equa-
tions can be solved explicitly at generic frequency and wave
vector to obtain the two coupled plasma modes provided by
Eq. (35).

We consider a SC system in the absence of external
sources, i.e., ρext = 0 and Jext = 0. The superfluid behavior
of the system can be described by means of the first London
equation [58], which relates the internal current Jint to the
internal electric field E in a superconductor:

∂Jint

∂t
= e2nsm̂

−1E, (B1)

where m̂ is the effective mass tensor. In isotropic systems,
it trivially reduces to the scalar effective mass m along an
arbitrary direction; on the other hand, in anisotropic systems
it reads

m̂ =
⎛
⎝mxy 0 0

0 mxy 0
0 0 mz

⎞
⎠,

where mxy and mz are the in-plane and the out-of-plane effec-
tive masses, respectively.

As is usually done within the mathematical description
of e.m. waves, we take the time derivative of both sides of
the Biot-Savart law and then substitute Faraday’s law, which
yields the following equation for the electric field [59]:

∇2E − ∇(∇ · E) = ε

c2

∂2E
∂t2

− 4π

c2

∂Jint

∂t
. (B2)

We can now get rid of Jint by using Eq. (B1) to obtain an equa-
tion for the electric field only. Let us introduce the longitudinal
EL = (k̂ · E)k̂ and the transverse ET = E − EL = (k̂ × E) ×
k̂ components of the electric field. In the isotropic case, the
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longitudinal-transverse decomposition E = EL + ET of the
total electric field leads to two decoupled equations:

∂2EL

∂t2
− ω2

pEL = 0, (B3)

∂2ET

∂t2
− c̃2∇2ET − ω2

pET = 0, (B4)

where the renormalized light velocity is defined as c̃ = c/
√

ε

as in the main text. In full analogy with Eq. (25), they describe
a longitudinal mode oscillating at ω = ωp and two degen-
erate transverse modes propagating at ω2 = ω2

p + c̃2|k|2, ωp

being the isotropic plasma frequency defined in Eq. (16). In
the anisotropic case, such a decomposition for the electric
field does not decouple the two equations. The main physi-
cal reason is that, due to the tensorial nature of the inverse
mass tensor, the induced current Jint in Eq. (B1) is no more
parallel to the electric field. Let x̂ be, as in the main text, the
versor parallel to the direction of the in-plane component of
the momentum k. For an anisotropic system, Eq. (B2) splits
into three equations. One of them describes the in-plane pure
transverse component Ey

T = (ŷ · E)ŷ, which reads(
ω2 − ω2

xy − c̃2|k|2)Ey
T = 0. (B5)

In full analogy with the behavior of the ψy component of the
g.i. phase in Eq. (33), such a transverse mode, which is polar-
ized along the xy plane, is not affected by the anisotropy along
the out-of-plane direction, so it propagates without coupling
with the longitudinal degrees of freedom. On the other hand,
the two equations describing the longitudinal mode EL and
the transverse component Exz

T = (ŷ × E) × ŷ = Exz
T (k̂ × ŷ)

polarized along the xz plane are coupled. Such equations read,
in Fourier space:(

ω2 − ω2
xy

k2
x

|k|2 − ω2
z

k2
z

|k|2
)

EL

+ kxkz

|k|2
(
ω2

xy − ω2
z

)
Exz

T = 0,

(
ω2 − ω2

z

k2
x

|k|2 − ω2
xy

k2
z

|k|2 − c̃2|k|2
)

Exz
T

+ kxkz

|k|2
(
ω2

xy − ω2
z

)
EL = 0. (B6)

The nontrivial propagating solutions of the previous equa-
tions are provided by same the solution of the characteristic
polynomial Eq. (34) obtained from the effective action
Eq. (33), leading to the frequencies ω± introduced above. The
electric fields E± associated with such modes can be then
computed: One finds that, at leading order in k, they are given
exactly by Eq. (43) of the main text, while at generic momen-
tum they are provided by the general decomposition Eq. (44)
in longitudinal and transverse components. Note that if the
coupling terms kxkz

|k|2 (ω2
xy − ω2

z )Exz
T and kxkz

|k|2 (ω2
xy − ω2

z )EL are
neglected in both equations [this is a suitable approximation
in the non-relativistic regime Eq. (38)], the pure longitudinal
and transverse standard RPA modes ωL and ωT are recovered.

Lastly, we remark that Eqs. (B6) can be recast in a form
more similar to the one suggested by the action Eq. (33) of
the main text, which is D̂(q)E(q) = 0, where the dynamical
matrix D̂ is defined as follows:

D̂(q) ≡

⎛
⎜⎝

ω2 − ω2
xy − c̃2k2

z 0 c̃2kxkz

0 ω2 − ω2
xy − c̃2|k|2 0

c̃2kxkz 0 ω2 − ω2
z − c̃2k2

x

⎞
⎟⎠. (B7)

By using the latter form, the propagating solutions come
from the nontriviality condition for the dynamical matrix
Det(D̂(q)) = 0. Note that the matrix D̂(q) and the one asso-
ciated with Eqs. (B5) and (B6) carry the same information
but in two different basis, respectively, the standard carte-

sian basis and the one spanned by the vectors k̂, ŷ and
k̂ × ŷ. The rotation matrix among the two basis reads Û (q) =
1
|k| (

kx 0 kz

0 1 0
−kz 0 kx

). As a consequence, the 3 × 3 matrix associ-

ated with Eqs. (B5) and (B6) can be trivially computed as
Û D̂Û T .
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