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We study rare events in the extreme value statistics of stochastic symmetric jump processes
with power tails in the distributions of the jumps, using the big-jump principle. The principle
states that in the presence of stochastic processes with power tails statistics, if at a certain time
a physical quantity takes on a value much larger than its typical value, this large fluctuation is
realised through a single macroscopic jump that exceeds the typical scale of the process by several
orders of magnitude. In particular, our estimation focuses on the asymptotic behaviour of the tail of
the probability distribution of maxima, a fundamental quantity in a wide class of stochastic models
used in chemistry to estimate reaction thresholds, in climatology for earthquake risk assessment,
in finance for portfolio management, and in ecology for the collective behaviour of species. We
determine the analytical form of the probability distribution of rare events in the extreme value
statistics of three jump processes with power tails; Lévy flights, Lévy walks and the Lévy-Lorentz
gas. For the Lévy flights, we re-obtain through the big-jump approach recent analytical results,
extending their validity. For the Lévy-Lorentz gas we show that the topology of the disordered
lattice along which the walker moves induces memory effects in its dynamics, which influences the
extreme value statistics. Our results are confirmed by extensive numerical simulations.

Extreme value statistics plays a cru-

cial role in environmental science, fi-

nance, engineering and risk assessment.

By studying the behaviour of extreme

events, such as unusually large or small

values in a set of random variables, one

can gain insight into rare but poten-

tially relevant events. If the random

variables follow a fat-tailed probabil-

ity distribution, rare events in extreme

value statistics can become more likely.

We study these rare events in the ex-

treme values of three well-known one-

dimensional jump processes that in-

volve a power-tailed probability distri-

bution, where the main contribution to

the rare fluctuations is due to a single

large event. We determine the analyti-

cal form of the probability distribution

of the rare events and show that when

the distributions are power-tailed, even

if the typical scales are Gaussian, rare

events induced by a single large jump

give a major contribution to the statis-

tics.
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I. INTRODUCTION

Extreme Value Statistics (EVS) studies the probability
distribution of the maximum value in a set of random
variables, a topic of great interest and fundamental to
understanding the impact of rare events on many sys-
tems. Examples of cases where EVS is key include chem-
ical reactions [1], earthquake risk assessment [2], financial
processes [3], and natural and social phenomena [4, 5].
EVS becomes particularly interesting when dealing with
variables drawn from a fat-tailed probability distribu-
tion. Extensive studies have been carried out on the
EVS of finite or countable sets of independent and iden-
tically distributed (IID) random variables [6, 7], as well
as for stochastic and correlated transport processes with
discrete sampling [8, 9], for biased random walks [10]
and, interestingly, also for the limit laws of max-min
and min-max functions of random matrices [11]. Recent
research has investigated the EVS of discrete-time and
continuous-space one-dimensional jump processes with
steps drawn from a continuous and symmetric proba-
bility distribution [12]. The behaviour of the running
maximum in these jump processes has been found to be
characterised by its expected value, which in its leading
asymptotic depends on the tails of the probability distri-
bution of each individual step [13, 14].
The big-jump principle is central to the study of rare
events in this class of fat-tailed stochastic processes. The
principle states that rare events are not the result of
the cumulative effect of many small rare subevents, but
are caused by the macroscopic contribution of a single
rare event, called the big jump. This principle has been
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rigorously demonstrated for finite sets of IID variables
[15, 16] and has been proven for various fat-tailed pro-
cesses, including those with Lévy statistics [17], such as
Lévy flights, Lévy walks [18], generalised Lévy processes
with memory effects [19], Weibull subexponential pro-
cesses [20, 21], and disordered lattice processes such as
the Lévy-Lorentz gas [22–24].
The aim of this paper is to study the rare events in EVS of
three well-known one-dimensional symmetric jump pro-
cesses with power-tailed probability distributions (for
some results on rare events of asymmetric processes see
[25, 26]): Lévy flights in section II, Lévy walks in section
III, and Lévy-Lorentz gases in section IV, using the big-
jump principle. The aim is to calculate for each of them
the probability that the running maximum will reach a
threshold X that is significantly larger than the typical
scaling length of the process. According to the princi-
ple, the probability that the maximum is greater than X
can be expressed as the product of the probability that
a single jump is greater than X and the number of jump
attempts made during a process of duration T . Therefore
this probability can be more easily estimated by calculat-
ing these two terms separately, using explicit knowledge
of the process contributing to the tail. Our results show
that for the Lévy-Lorentz gas, the topology of the disor-
dered lattice induces memory effects in the dynamics of
rare events. For Lévy flights and Lévy walks the motion
of the walker after the big jump can indeed be neglected
and one can show that the contribution of the big jump
to the simple probability density of the position is equal
to that of the extreme, and the two tails coincide. On
the other hand, for the Lévy-Lorentz gas during the big
jump, the walker is reflected in a big quenched gap. This
motion cannot be neglected and gives different tails for
the position and for the maximum.
For the Lévy flight, when the mean square length of a
single step is infinite, our analysis reproduces the recent
results obtained in [12, 27] in the continuum limit with
fractional diffusion (see Appendix A for details). Inter-
estingly, our approach also applies to scenarios where
the jump length distributions are power-tailed but the
mean square length of each jump is finite and a Gaus-
sian diffusion emerges, highlighting the relevance of rare
events induced by a single large jump even in these appar-
ently regular systems. All predictions in the three cases
are compared with numerical simulations, with excellent
agreement. Our results underline the role of the single
big-jump principle for the estimation of rare events in
EVS and record statistics, extending its application be-
yond the calculation of the probability densities for the
position at a given time of a random walker and, accord-
ing to recent studies, also for its exit times [28].

II. EXTREME VALUE STATISTICS OF LÉVY
FLIGHTS

One-dimensional Lévy flights are discrete-time random
walks where at each step the walker has a probability
1/2 of moving left or right, and the length r of the step
is drawn from a power-tailed probability density func-
tion (PDF) p(r). We consider a PDF p(r) which has the
following power law with a lower bound r0:

p(r) =

{

αrα0
r1+α r > r0
0 r < r0

(1)

For α > 2 the second moment of the distribution p(r)
is finite, implying standard diffusion, while for α < 2
the second moment of the distribution diverges, implying
superdiffusive behaviour. This result for Lévy flights can
be generalised to any probability distribution that has
the same asymptotic behaviour for large r. Now consider
a one-dimensional Lévy flight and denote the position of
the walker after n steps as x(n), assuming that it starts
from the origin x(0) = 0. This jump process is governed
by the Markov rule:

x(n+ 1) = x(n)± r(n) (2)

where the sign is drawn with probability 1/2 and the
increment r(n) follows the probability distribution (1).
The object of interest is P (X,n), which is the probabil-
ity density that the jump process reaches a maximum X
within n steps. From the Lévy-Gauss Central Limit The-
orem, the bulk of the running maximum PDF converges
in probability in the large n limit to a scaling function
ℓ−1(n)f(X/ℓ(n)) where ℓ(n) is the typical length scale of
the process. In particular, P (X,n) ∼ ℓ−1(n)f(X/ℓ(n))
if X < ℓ(n)κ(n), where κ(n) is a slowly growing function
in n (e. g. a logarithmic function). For a subexponential
distribution p(r) (as defined in [16]), if X is much larger
than the typical length scale ℓ(n), i.e. X > ℓ(n)κ(n),
the probability distribution of the running maximum
P (X,n) follows a different behaviour, and it can be es-
timated using the single big-jump principle [15]. In par-
ticular, ℓ(n) ∼ n1/α for α < 2, i.e. Lévy flights in the
strict sense, and ℓ(n) ∼ n1/2 for α > 2, i.e. diffusive
processes. The principle states that in a time n a dis-
tance X > ℓ(n)κ(n) is reached by a single big jump of
order X , and the other steps can be neglected. On the
other hand, smaller distances of order ℓ(n) are typically
reached in several steps. In this framework, it can be
assumed that the only significant contribution that leads
the running maximum of the jump process beyond the
X in n steps is made by a single macroscopic jump of
size larger than X . In this interpretation, the random
walker has exactly n trials to make this single big jump
that takes the process beyond X . Thus the probability
that the running maximum is greater than X in the limit
X ≫ ℓ(n) is given by:
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Figure 1. Probability density function of running maximum
P (X,n) in logarithmic scale for Lévy flights at several steps n.
(a) plots an example of a superdiffusive walker with ℓ(n) ∼

n1/α for α = 1.5, while (b) plots an example of a diffusive

walker with ℓ(n) ∼ n1/2 for α = 2.2. In both simulations,
r0 = 1 was fixed and the probabilities were multiplied by a
normalization factor n−1. The continuous pink line represents
the asymptotic analytic prediction found in Eq. (4);

Prob

(

max
i=1,...,n

x(i) > X

)

∼ 1

2
n

∫ ∞

X

dr p(r) (3)

where the factor 1/2 accounts for the fact that every sin-
gle increment of the jump process can be made in the
positive or negative direction with probability 1/2 and
we exploit the fact that

∫∞

X dr p(r) is small for large X .
Now, taking the derivative in X of equation (3), we get
the PDF P (X,n) of the running maximum:

P (X,n) ∼ 1

2
n

αrα0
Xα+1

(4)

The analytical prediction of Eq. (4) has been compared

with the numerical simulations in Figure 1 and shows ex-
cellent agreement in the regime of large X , both in the
case of superdiffusive walkers for α < 2 and for standard
diffusive walkers for α > 2. For α < 2 Eq. (4) con-
firms the results on EVS in the tail limit of Lévy jump
processes obtained in [12] with an approach based on sur-
vival probabilities analysis in the continuous limit. This
result is extended also to the Gaussian case for α > 2,
where the rare events at large distances are sub-leading
with respect to the typical behaviour and cannot be cal-
culated by using the continuous limit. In particular, the
power law decay (4) is still visible at any finite time n and
captures the behaviour of the extreme value distribution
in the region X > ℓ(n)κ(n). The tail becomes relevant
for all momenta 〈Xq(n)〉 with q > α, causing divergences
(for more details see [20]).

III. EXTREME VALUE STATISTICS OF LÉVY
WALKS

One-dimensional Lévy walks are a special class of
continuous-time random walks in which each step of the
random walker has a time t drawn from a probability dis-
tribution p(t) with a power tail, and each step has a finite
velocity vi. Each individual step ri = vit is walked with
probability 1/2 at velocity vi = v and with probability
1/2 at velocity vi = −v (v > 0). The PDF of the time
duration of the steps is defined as before by introducing
a lower cut-off t0:

p(t) =

{

αtα0
t1+α t > t0
0 t < t0

(5)

Analogous to the case of Lévy flight, also for Lévy walks
and for the Lévy-Lorentz gas one can define a charac-
teristic length scale ℓ(T ), which grows with time T , by
considering the asymptotic scaling form of a PDF which
depends on time T and on the distance from the starting
point X . In particular, for the Lévy walk ℓ(T ) ∼ T γ ,
with γ = 1 for α < 1 i.e. ballistic walkers, γ = 1/α for
1 < α < 2 i.e. superdiffusive walkers, and γ = 1/2 for
α > 2 i.e. standard diffusive walkers. The case of α < 1
is not considered in our analysis because in this case the
single big-jump principle does not apply, since it is not
possible for a single jump to reach a distance much larger
than the typical scale, due to the fact that both the typi-
cal scale and the single jump follows a ballistic dynamics.
The single big-jump principle is only valid for α > 1, and
these are the cases we are interested in. Consider a one-
dimensional Lévy walk whose position after a time t is
denoted by x(t), assuming that it starts from the origin
x(0) = 0. The process at each time can be divided into
a discrete set of time intervals [t1, ..., tn, ...] representing
the times at which individual jumps occur, and the du-
ration of each n-th jump tn+1− tn = δt is extracted from
the PDF (5). For tn ≤ t ≤ tn+1, the position x(T ) of the
random walker at time t is:
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Figure 2. Probability density function of running maximum
P (X,T ) for Lévy walks at different times T . (a) plots an

example of a superdiffusive walker with ℓ(T ) ∼ T 1/α for
α = 1.5, while Figure (b) plots an example of a standard

diffusive walker with ℓ(T ) ∼ T 1/2 for α = 2.2. In both sim-
ulations, t0 = 1, v = 1 were fixed and the probabilities were
multiplied by a normalization factor Tα. The continuous pink
line represents the asymptotic analytic prediction in terms of
infinite density function found in Eq. (9);

x(t) = x(tn) + sign(vn+1)× v(T − tn) (6)

where sign(vn+1) is positive or negative with probability
1/2. We define P (X,T ) as the probability density that,
in a time interval T , the maximum value reached by the
Lévy walk is X . If X is much larger than the typical
length of the system (ℓ(T ) ∼ T 1/α for 1 < α < 2 and
ℓ(T ) ∼ T 1/2 for α > 2) the single big-jump principle
can be applied. Thus, the only significant contribution
that leads the Lévy walk maximum beyond X is given
by a single macroscopic jump of duration X/v. In the
remaining time T−X/v of the process small contributions
occur that bring the process to values on the order of the

typical length, so they can be neglected. Similarly to
the previous case we consider the probability that the
maximum value of x(t) is larger than X . According to
the big-jump principle we obtain:

Prob

(

max
t∈[0,T ]

x(t) > X

)

∼ 1

2
Neff × Prob(t > X/v) (7)

∼ T −X/v

2〈t〉

∫ ∞

X/v

dt p(t)

Again the 1/2 factor accounts for the fact that individual
steps are equally likely to be drawn in the positive or
negative direction. Prob(t > X/v) is the probability that
a step is larger than X , while Neff represents the number
of steps (attempts to make the big jump) in a process
where there is a single big jump of length X ∼ vT . We
have Neff = (T − X/v)/〈t〉 where 〈t〉 =

∫

dt′ t′p(t′) is
the average duration of a single step and T −X/v is the
time available. Deriving with respect to X Eq. (7), the
PDF of the running maximum for the Lévy walks, when
α > 1, is:

P (X,T ) ∼ 1

2

1

v〈t〉

∫ ∞

X/v

dt p(t) +
1

2

T −X/v

v〈t〉 p(X/v) (8)

∼ 1

2v〈t〉 (vt0)
αX−α +

T −X/v

2v〈t〉 α(vt0)
αX−α−1

∼ B0(X,T ) +B1(X,T )

where we can recognize the exact asymptotic expres-
sion of the tail PDF for position X at time T of a
Lévy walk obtained from the single big-jump approach
in [17]. In particular, we find the same pair of con-
tributions B0(X,T ) and B1(X,T ), which in the single
big-jump interpretation represent, respectively, the prob-
ability distribution that the single big jump starts at
time T − X/v and is partially completed in the inter-
val T and conversely the probability distribution that
it starts at a smaller time than T − X/v and it com-
pletes its step entirely in the time interval T . By rescal-
ing the process with respect to the normalized vari-
able r = X/(vT ) it is possible to rewrite the probabil-
ity distribution P (X,T ) in terms of an infinite density
function Iα(r), i.e., P (X,T ) ∼ B0(X,T ) + B1(X,T ) ∼
T−αIα(X/(vT )), with:

Iα(r) =
(vt0)

α

2v〈t〉
[

αr−α−1 − (α− 1)r−α
]

(9)

Eq. (9) shows that, analogously to the case of the PDF of
the position [17], also for the EVS, the constant velocity
of the steps naturally introduce a linearly growing scaling
length in the shape of the tail which describes the rare
events. We will show that the same behavior is present
also in the Lévy-Lorentz gas where the velocity in the
steps is also constant. On the other hand Eq. (4) shows
that for Lévy flights the tail of the distribution is scale
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free, since in this case steps are instantaneous and they
do not introduce any characteristic length growing with
time. In Figure 2 it is shown that the probability distri-
bution of the running maximum P (X,T ) plotted against
X/(vT ) converges excellently for large times to the result
of Eq. (9).

IV. EXTREME VALUE STATISTICS OF
LÉVY-LORENTZ GASES

Lévy-Lorentz gases are one-dimensional arrays of scatter-
ers distributed over a disordered lattice where each dis-
tance between two successive scatterers follows a prob-
ability distribution with a power tail. The distance l
between a pair of neighbours determines the structure of
the random lattice. In particular we drawn the distances
from a PDF with a lower cut-off l0:

p(l) =

{

αlα0
l1+α l > l0
0 l < l0

(10)

It is natural to define a random walk on the Lévy-Lorentz
gas, just take a walker moving with constant velocity
v > 0 between two scatterers and choose a starting point
on the lattice. Each time the walker hits a scatterer, it
has a probability ǫ of being reflected reversing its motion
and a probability 1− ǫ of being transmitted and continu-
ing the motion in the same direction to the next scatterer.
For convenience, at time t = 0 the walker starts at the
scattering site in x = 0 and the process is symmetric,
i.e. ε = 1/2. The PDF for the position of a walker at a
generic time in a Lévy-Lorentz gas has been studied in
[29, 30], and also its asymptotic behaviour in the tail limit
has been obtained through the single big-jump principle
[17, 23]. The PDF is characterised by a scaling length
ℓ(T ), i.e. the typical distance covered by the walker in
a time T . As reported in [22, 24, 29], for α < 1 the

walker has a superdiffusive dynamics with ℓ(T ) ∼ T
1

1+α ,

while for α > 1 the motion is diffusive and ℓ(T ) ∼ T
1
2 .

Now consider a one-dimensional Lévy-Lorentz gas, and
denote its position at time t by x(t). The random envi-
ronment in which the stochastic process takes place can
be described by a discrete set of positions [l1, ..., ln, ...],
representing the positions of the scatterers visited by the
random walker. The distances between two consecutive
scatterers ln+1− ln = δl are drawn according to the PDF
(10). Moreover, in this model the index of the lattice
points over which the walker moves, i.e., n(k), is also
defined by a stochastic process. In particular, it is a
stochastic process on the integers defined by the follow-
ing jump rule:

n(k + 1) = n(k)± 1 (11)

where the index increases by one with a probability 1/2
and decreases with probability 1/2. This stochastic pro-
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Figure 3. Probability density function of running maximum
P (X,T ) for Lévy-Lorentz gases at different times T . (a) plots

an example of a superdiffusive walker with ℓ(T ) ∼ T
α

1+α for
α = 0.5, while (b) plots an example of a standard diffusive

walker with ℓ(T ) ∼ T 1/2 for α = 1.2. In both simulations,
l0 = 1, v = 1 were fixed and the probabilities were multiplied

by a normalization factor T
α
2+α+1
1+α for (a) and by T

1
2
+α for

(b). The continuous pink line represents the asymptotic ana-
lytic prediction in terms of the rescaled function found in Eq.
(16). In this case a multiplicative constant has been optimized
for the estimate of the prefactor τ0 in order to reproduce nu-
merical data.

cess on the integers takes into account the random re-
flection and transmission events on each individual scat-
terer, keeping track of the path previously taken by the
walker. The process can now be divided into a discrete
set of times [t1, ..., tk, ...], where the individual time steps

are defined as tk+1 = tk +
∣

∣

ln(k+1)−ln(k)

v

∣

∣, where ln(k) is
the position of the walker at the k-th step at time tk.
Considering the combination of the stochastic process
for extracting the random lattice distances (10) and the
stochastic process for the current position of the lattice
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indices (11), it is possible to write the equation for the
position x(t) of a random walker in a Lévy-Lorentz gas,
assuming that tk ≤ t ≤ tk+1 (for a more rigorous descrip-
tion see [31]):

x(t) = ln(k) + [n(k + 1)− n(k)]× v(t− tk) (12)

where ln(k) is the position of the walker on the lattice
at time tk and the difference n(k + 1)− n(k) defines the
sign of the spatial increment r(t) = v(t− tk), which has
probability 1/2 to be negative and probability 1/2 to be
positive. The object of interest is the probability distri-
bution P (X,T ) that the extreme value of the position of
the walker on the Lévy-Lorentz gas reaches a maximum
X within a time interval T . Assuming that X is much
larger than the typical length of the system X ≫ ℓ(T ) for
both α < 1 and α > 1, the single big-jump principle can
again be applied. So, the only significant contribution
that takes the maximum value of the position beyond X
occurs when the walker crosses a scattering point that
is separated from its next by a distance greater than X .
After crossing this long gap, the motion can be treated as
deterministic, since the borders of the gap act as perfectly
reflecting walls on time scales of order T . The motion of

the walker before the big jump can be neglected since
it is of order of the typical length scale ℓ(T ). During
the time interval T the walker visits, in the remaining
time T −X/v, an effective number of crossing sites Neff .
This number has already been estimated in [24, 29, 30],
and it has been shown that for sufficiently long times

Neff ∼ ((T − X/v)/τ0)
α̃

1+α̃ with α̃ = α for α < 1 and
α̃ = 1 for α > 1, while τ0 is a suitable time constant.
At this point, applying the single big-jump principle, the
random walker has Neff attempts before it performs a
single big jump that carries it to a scatterer located at a
distance greater than X from the previous one in a time
interval X/v, and therefore the probability that the run-
ning maximum is greater than X in the limit X ≫ ℓ(T )
is:

Prob

(

max
t∈[0,T ]

x(t) > X

)

∼ 1

2
Neff × Prob(l > X) (13)

∼ 1

2

(

T −X/v

τ0

)
α̃

1+α̃
∫ ∞

X

dl p(l)

The factor 1/2 takes into account the probability to be
transmitted. Finally, deriving with respect to X the
probability (13), the PDF of the running maximum for
the Lévy-Lorentz gas is:

P (X,T ) ∼ 1

2





1

vτ
α̃

1+α̃

0

α̃

1 + α̃
(T −X/v)

α̃

1+α̃
−1

∫ ∞

X

dlp(l) +

(

T −X/v

τ0

)
α̃

1+α̃

p(X)



 (14)

∼ lα0

2τ
α̃

1+α̃

0

(T −X/v)
α̃

1+α̃X−α

[

1

v

α̃

1 + α̃

1

(T −X/v)
+

α

X

]

∼ B0(X,T ) +B1(X,T )

Interestingly, the PDF of the running maximum of a
walker in a Lévy-Lorentz gas has two contributions,
B0(X,T ) and B1(X,T ). B0(X,T ) comes from the pro-
cesses where the walker makes the big jump at time
T −X/v and still travels the long gap at time T without
hitting the last scatterer. In B1(X,T ) the walker hits the
last scatterer of the long gap before time T and continues
to be reflected in the gap for the remaining time. There-
fore, in the Lévy-Lorentz gas, the PDF of the EVS differs
significantly from the PDF of the position [17], where it
is necessary to keep track of all the reflections that oc-
cur once the random walker enters the long gap, and this
gives rise to an infinite sum of contributions, one for each

reflection. On the other hand, in the case of the running
maximum, once the extreme is reached, the value of the
maximum is simply the length of the long gap, indepen-
dent of the reflection dynamics that determine the final
position of the walker. In other words, unlike the Lévy
flight and the Lévy walk, the quenched topology along
which this walker moves induces memory effects in its
dynamics, moving it away from the maximum once it has
been reached for the first time. Now, rescaling the pro-
cess with respect to the normalized variable r = X/(vT ),
the PDF of the maximum can be rewritten in terms of a
function Iα(r):

P (X,T ) =

{

T−α
2+α+1
1+α Iα

(

X
vT

)

α < 1

T− 1
2−αIα

(

X
vT

)

α > 1
(15)
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where the asymptotic expression for the rescaled function Iα(r) of the running maximum in the Lévy-Lorentz gas is:

Iα(r) =











lα0

2vα+1τ
α

1+α

0

α(1 − r)
α

1+α r−α
[

1
1+α

1
1−r + 1

r

]

α < 1

lα0

2vα+1τ
1
2
0

(1 − r)
1
2 r−α

[

1
2

1
1−r + α

r

]

α > 1
(16)

In Figure 3 we show that the probability distribution of
the running maximum P (X,T ) plotted against X/(vT )
converges successfully for large times to the result of Eq.
(16), confirming the validity of the single big-jump ap-
proach;

V. CONCLUSIONS

The rare events in the EVS of one-dimensional Lévy
flights, Lévy walks, and Lévy-Lorentz gases, all of which
involve steps drawn from power-tailed probability distri-
butions, have been studied through an analysis based on
the single big-jump principle, a powerful tool in the study
of rare events in subexponential tailed probability distri-
butions. For these three stochastic jump processes we
derive the tail of the probability density function of the
running maximum of the position.
Our results extend very recent previous results on Lévy
flights [12] and present the more complex cases of Lévy
walks and Lévy-Lorentz gases. In particular, the Lévy-
Lorentz gases are much more difficult to study due to the
disordered topology of the lattice on which the process
takes place. For Lévy flights and Lévy walks, the big-
jump principle approach implies that after the big jump
the walker remain fixed at its maximum so that the rare
event statistics of the extreme values and of the position
coincide. For the Lévy-Lorentz gas, the topology of the
disordered lattice affects the walker dynamics and influ-
ences the statistics of rare events. In particular the value
of the maximum is determined by the length of the big
jump but the position is determined by the reflection dy-
namics that occur once the random walker enters the long
gap [17], so that the rare event statistics of the extreme
values and of the position are different. All the analytical
predictions obtained by this heuristic argument are val-
idated by extensive numerical simulations, showing ex-
cellent agreement for both superdiffusive and standard
diffusive cases. This suggests that the estimate is essen-
tially correct, and this can open a path to a rigorous
derivation. Throughout the analysis, the single big-jump
principle proves to be a robust approach for estimating
the probability distribution of extreme values in various
Lévy processes. The results highlight the applicability
of the principle for understanding rare events in different
scenarios, but we expect such estimates to hold for the
EVS of a larger class of sub-exponential jump processes,
providing a new useful approach in the field of EVS and
record statistics;
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Appendix A: Running Maximum PDF and Survival
Probability

In this section we show that the formula (4) in section
II can be easily derived from the survival probability ap-
proach used in [12, 27], exploiting the equivalence with
the result obtained through the single big-jump princi-
ple. Consider a jump process having n-th steps x(n)
subject to Markov’s rule (2), with r(n) IID random vari-
ables drawn from a symmetric and continuous probability
distribution p(r). Define the maximum value of the jump
process M(n) = max(x(0), x(1), ..., x(n)) and assume it
starts from the origin, i.e., x(0) = 0. The object of in-
terest is the probability that the maximum M(n) is less
than a threshold value X , i.e.:

Prob(M(n) ≤ X) = Prob({x(i) ≤ X ∀i = 1, ..., n})
(A1)

Now, defining a new random variable z(n) = X − x(n),
the shift by X of the equation (2) yields the jump rule for
the process z(n), which starts at z(0) = X and evolves
in n steps between X and M(n) − X , and for this new
process the probability that M(n) does not exceed X
becomes the survival probability q(X,n) that z(n), that
starts at X and walks along n steps, does not cross zero,
i.e. Prob(M(n) ≤ X) = q(X,n). As reported in [27], the
survival probability on zero of a jump process with in-
dividual steps extracted from a power-tailed distribution
p(r) ∼ r−1−α with 0 < α < 2 that starts from an initial
position X after n steps in the limit of X,n → ∞ with
X/n1/α fixed is:

q(X,n) = 1− n

π
Γ(α) sin

(πα

2

)

(

bα
X

)α

(A2)

Where bα represents the typical length scale of the jump
process with respect to the tail of p(r), i.e., is the coeffi-
cient of the second order term in the small k expansion
of the PDF p̃(k):
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p̃(k) =
k→0

1− (bα|k|)α + o(|k|α) (A3)

Now, we focus in determining the typical length scale bα.
In the case of α ≥ 2 the typical length associated with the
jump is related to the analytic expression of the second
moment of the distribution 〈r2〉 which has finite value,

and in the case of α = 2 it is b2 = 〈r2〉/
√
2. In the case of

α < 2 the second moment of the distribution p(r) is not
finite, and thus the expansion in small k is not trivial. In
the case of α < 2, especially in case of 1 < α < 2 (the
same calculation can be repeated for α < 1) the first
moment of the distribution 〈r〉 is finite, while the second
moment 〈r2〉 diverges. This means that the divergence
in the expansion is contained in the second derivative of
p̃(k) in k, and it holds:

∂2

∂k2
p̃(k) =

∂2

∂k2

∫ +∞

−∞

dreikrp(r) (A4)

= −
∫ +∞

−∞

dr(cos(kr) + i sin(kr))p(r)r2

= −
∫ +∞

0

dr cos(kr)p(r)r2

In the last line we use that p(r) is symmetric and de-
fined only for positive values of r. Now inserting the
probability distribution (1), and by making the change
of variables r′ = kr, the divergent term in k can be taken
out of the integral, and in the limit of k → 0 the integral
converges to a finite value:

∂2

∂k2
p̃(k) = −αrα0 |k|α−2

∫ ∞

kr0

dr′r′2
cos(r′)

r′1+α
(A5)

=
k→0

αrα0 |k|α−2 cos
(απ

2

)

Γ(2− α)

Now we can return to the small k expansion (A3) just
integrating this result twice, imposing normalization on
the zero-order term in k and 〈r〉 = 0 by symmetry:

p̃(k) = 1− rα0 cos
(απ

2

)

Γ(1− α)|k|α + o(|k|α) (A6)

= 1− (bα|k|)α + o(|k|α)

One can obtain the same result for bα even in the case of
α < 1 just studying the divergence of the first derivative
of p̃(k) and repeating the same calculations. Now, the
PDF that the maximum is greater than X after n steps
P (X,n) becomes, substituting the expression derived for
bα in (A2):

P (X,n) =
d

dX
(1− q(X,n)) (A7)

=
αn

π
Γ(α) sin

(απ

2

)

rα0 cos
(απ

2

) Γ(1− α)

Xα+1

=
1

2
n

(

αrα0
Xα+1

)

=
1

2
np(X)

Where we use between the second and the third lines the
sine duplication formula sin(2x) = 2 cos(x) sin(x) and the
property of Gamma functions Γ(1 − x)Γ(x) = π

sin(πx) to

simplify some factors. Finally, we show that the survival
probability approach in the limit of large X coincides
with the single big-jump approach for the case of Lévy
flights. This means that the linear dependence of P (X,n)
on n and p(X) can be interpreted in the sense of single
big jump: the walker has exactly n attempts to make a
macroscopic jump that brings it close to X . The same
kind of heuristic argument can be repeated for Lévy walks
and for Lévy-Lorentz gases discussed in sections III and
IV just replacing n with Neff ;
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