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What Is the Role of the Receptor for Advanced
Glycation End Products–Ligand Axis
in Liver Injury?
Giuseppina Basta,1 Teresa Navarra,1 Paolo De Simone,2 Serena Del Turco,1 Amalia Gastaldelli,1

and Franco Filipponi2
1Institute of Clinical Physiology, National Research Council, Pisa, Italy; and 2General Surgery and Liver
Transplantation, University of Pisa Medical School Hospital, Pisa, Italy

Multiligand receptor for advanced glycation end products (RAGE) is expressed in a wide variety of tissues, including the
liver. Interactions with its ligands lead to cellular activation and thus prolonged inflammation and apoptosis. RAGE also
exists in a soluble, truncated isoform called soluble RAGE, which has the same ligand-binding specificity as membrane-
RAGE; acting as decoy, it can contribute to the removal/neutralization of circulating ligands and the resultant reduction of
signaling pathway activation. Experimental and clinical studies have highlighted the idea that the RAGE-ligand axis is
involved in the development of liver fibrosis, inflammation, and regeneration after a massive injury and in the setting of liver
transplantation. The involvement of the RAGE-ligand axis in vascular disease, diabetes, cancer, and neurodegeneration is
well established, but it still needs to be clarified in the setting of liver diseases. We present a review of the recent literature
on this receptor in surgical and clinical settings involving the liver, and we highlight the open issues and possible directions
of future research. Liver Transpl 17:633-640, 2011. VC 2011 AASLD.
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Receptor for advanced glycation end products (RAGE) is
a multiligand-binding member of the immunoglobulin
superfamily of cell surface molecules.1 The full-length
receptor consists of an extracellular region formed from
1 V-type immunoglobulin domain needed for ligand
binding and 2 C-type immunoglobulin domains; these
domains are followed by a single, short transmembrane
domain and a short cytoplasmic domain that is essen-
tial for RAGE-mediated signal transduction.1,2

Its name is derived from the first known ligands,
the advanced glycation end products (AGEs), which
are a complex and heterogeneous group of tissue-
bound and circulating glycoxidated proteins; among

them, the carboxymethyl lysine (CML) adducts are the
most abundant.3 Beyond AGEs, which are occasional
ligands, RAGE binds certain members of the S100/
calgranulin proinflammatory cytokine family, the non-
histone nuclear factor high-mobility group box 1
(HMGB1) protein, b-amyloid peptide, b-sheet fibrils,
and other ligands.4-7 Among these ligands, the
HMGB1 protein, which is present in the nuclei of
almost all eukaryotic cells and can be released during
necrosis or in response to hypoxia, plays a critical
role in the mechanisms leading to liver injury. Thus,
the HMGB1-RAGE interaction may be crucial in liver
inflammatory/injury processes.

Abbreviations: AGE, advanced glycation end product; CML, carboxymethyl lysine; esRAGE, endogenous secretory receptor for
advanced glycation end products; HBV, hepatitis B virus; HCC, hepatocellular carcinoma; HMGB1, high-mobility group box 1;
HSC, hepatic stellate cell; I/R, ischemia/reperfusion; LEC, liver sinusoidal endothelial cell; LT, liver transplantation; MMP, matrix
metalloproteinase; MSR-A, macrophage scavenger receptor class A; NAFLD, nonalcoholic fatty liver disease; NASH, nonalcoholic
steatohepatitis; RAGE, receptor for advanced glycation end products; sRAGE, soluble receptor for advanced glycation end
products; TNF-a, tumor necrosis factor a.
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RAGE is typically expressed at low levels under nor-
mal physiological conditions in most tissues and organs
except for the lungs, in which it exhibits high basal lev-
els of expression. High levels of RAGE expression occur
in other tissues only under pathological conditions.8-11

RAGE-ligand interactions lead to intracellular oxidative
stress signals and subsequently up-regulate the expres-
sion of proinflammatory genes, including its own recep-
tor.12-15 A typical feature of RAGE is tissue colocaliza-
tion with its ligands.6 Because of its expression in
various cell types and its multiligand nature, RAGE has
been implicated in many conditions, such as atheroscle-
rosis, diabetes, aging, inflammation, neurodegenera-
tion, amyloidosis, and tumors,16 but its role in liver
injury remains controversial.11,12,17,18

In addition to the full-length receptor, several trun-
cated isoforms of RAGE have been described; some
are circulating soluble isoforms containing only the
extracellular portion of the full-length receptor.19

Soluble receptor for advanced glycation end products
(sRAGE) comprises a heterogeneous population that
includes an endogenous secretory isoform generated
via alternative splicing [endogenous secretory receptor
for advanced glycation end products (esRAGE)] and a
form generated through proteolytic cleavage of the
full-length cell surface receptor by the action of mem-
brane-associated matrix metalloproteinases (MMPs)
such as a disintegrin and metallopeptidase 10 and
MMP9.20,21 Circulating sRAGE is detectable in human
serum and is able to bind ligands, and by competing
with membrane-bound RAGE for ligand binding, it
can have cytoprotective effects.22,23 Higher circulating
levels of sRAGE are associated with reduced risks of
coronary artery disease, hypertension, metabolic syn-
drome, and other chronic diseases.24-27

Many observations have been made about the poten-
tial role of the RAGE pathway in liver diseases and about
the protective role of sRAGE in hepatocellular injury,
although they have not been unequivocal.17,28-35 In vitro
and experimental studies have shown that through the
activation of intracellular signals and the resulting pro-
duction of cytokines, the RAGE-ligand axis may be
involved in the processes of liver inflammation and
regeneration and, consequently, in those mechanisms
involved in liver resection and transplantation.28-31,36

In this review, we provide an overview of the current
literature on the role of the RAGE-ligand axis, focus
on the available evidence, and outline potential direc-
tions for further research.

HEPATIC CELLS, RAGE EXPRESSION,
AND AGE CATABOLISM

RAGE Expression in Hepatic Cells

The liver has a pivotal role in several metabolic proc-
esses, including carbohydrate and lipid metabolism,
bile production, red blood cell degradation, plasma
protein synthesis, hormone production, and detoxifi-
cation of harmful substances (eg, alcohol, drugs, and

also AGEs).37,38 The liver is unique in its ability to
undergo compensatory hyperplasia after cell loss: key
tissues that have been lost are restored within a few
weeks through a complex network of cells and media-
tors.39 In Fig. 1, we illustrate the types and sites of the
different cells that constitute the liver. The parenchy-
mal cells (ie, the hepatocytes) perform the majority of
the functions, including bile production, whereas the
nonparenchymal cells, which are represented by 3 cell
types—liver sinusoidal endothelial cells (LECs), Kupffer
cells, and hepatic stellate cells (HSCs)—play different
roles. LECs form the walls of sinusoids and perform fil-
tration via small fenestrations; they thus regulate the
diffusion of different substances between blood and the
surfaces of hepatocytes.40 Kupffer cells are intrasinu-
soidally located tissue macrophages that modulate the
liver immune function and secrete potent mediators of
the early inflammatory response, such as reactive oxy-
gen species, tumor necrosis factor a (TNF-a), and other
cytokines40 (Fig. 1). HSCs, located in the perisinusoidal
space, store vitamin A, control the turnover of the
extracellular matrix, and regulate the contractility of si-
nusoids modulating sinusoidal blood flow40 (Fig. 1).

There is conflicting evidence regarding the expres-
sion and localization of RAGE in the different cell
types of the liver within and across different species
(Table 1). The first evidence of this receptor in liver
tissue was reported in 1993 when RAGE was found in
bovine hepatocytes but was not detectable in Kupffer
cells or LECs.8 More recently, Butscheid et al.17

reported marked levels of RAGE in the hepatocytes
and bile ducts of healthy human livers and weak
staining for RAGE in Kupffer cells.

Conversely, a 2001 study found that RAGE was
exclusively expressed by HSCs isolated from rat liv-
ers,12 whereas no transcripts were observed in hepato-
cytes, Kupffer cells, or LECs isolated from rat and
mouse livers.12,38 Another study using human HSC
lines showed the expression of RAGE at both transcript
and protein levels.14 These results were confirmed in
rat and human HSC lines expressing significant levels
of RAGE, whereas no RAGE expression was found in
rat hepatocytes.18 The discrepancies described by dif-
ferent research groups may be due to different experi-
mental settings and methodologies, including the use
of antibodies with different specificities. However,
according to current data, there seems to be a cell-spe-
cific pattern for RAGE expression, with poor or no
expression in Kupffer cells and LECs in nearly all spe-
cies analyzed so far and with marked expression in
HSCs and hepatocytes (Table 1 and Fig. 1).

Is RAGE Involved in the Clearance of AGEs?

RAGE is associated with many inflammation-related
pathological states,16,41 but there is no evidence that
it plays a catabolic function. On the other hand, in
the liver, this function is carried out by other AGE
receptors that act mainly as scavenger receptors for
AGE detoxification and catabolism.17,38,42 This was
shown in an in vivo study of rats, which demonstrated
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that the liver removed from circulation more than
90% of intravenously injected AGEs via endocytosis
mediated by scavenger receptors in LECs (60%) and
in Kupffer cells (25%), whereas the contribution of he-

patocytes was low (10%-15%).43 These results were
later confirmed in cultured LECs incubated with
AGEs whose intracellular uptake was mediated by
scavenger receptors.43 Furthermore, experiments

TABLE 1. Patterns of Liver RAGE Expression Across Different Species

Cell Type Species Expression (Authors)

Hepatocytes Bovine Yes (Brett et al.,8 1993)
Mouse No (Matsumoto et al.,38 2000)

Rat No (Fehrenbach et al.,12 2001, and Lohwasser et al.,18 2009)
Human Yes (Butscheid et al.,17 2007)

HSCs Rat Yes (Fehrenbach et al.,12 2001, and Lohwasser et al.,18 2009)
Human Yes (Iwamoto et al.,14 2008, and Lohwasser et al.,18 2009)

Kupffer cells Bovine No (Brett et al.,8 1993)
Mouse No (Matsumoto et al.,38 2000)

Rat No (Brett et al.,8 1993, and Fehrenbach et al.,12 2001)
Human No (Butscheid et al.,17 2007)

LECs Bovine No (Brett et al.,8 1993)
Mouse No (Matsumoto et al.,38 2000)

Rat No (Brett et al.,8 1993, and Fehrenbach et al.,12 2001)
Epithelial cells of bile ducts Human Yes (Butscheid et al.,17 2007)

Rat Yes (Lohwasser et al.,18 2009)

Figure 1. Localization of the AGE scavenger receptor and RAGE in the liver. The liver is composed of different cell types, such as
hepatocytes and nonparenchymal cells. The latter are represented by 3 cell types: LECs, Kupffer cells, and HSCs. LECs form the walls
of sinusoids in which Kupffer cells are also located. HSCs are in the space of Disse. Bile canaliculi originate from grooves on the
lateral aspects of hepatocytes. AGE scavenger receptors are present in LECs and Kupffer cells, whereas RAGE is located in
hepatocytes and HSCs.
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using peritoneal macrophages and LECs derived from
macrophage scavenger receptor class A (MSR-A)–
knockout mice showed that in peritoneal macrophages,
AGEs were endocytosed almost exclusively through
MSR-A, whereas in LECs, the uptake of AGEs took
place through a pathway distinct from MSR-A.38,44

Another study using biopsy specimens from patients
with various degrees of hepatic dysfunction revealed
that, regardless of the diagnosis, CML and galectin 3
(another AGE scavenger receptor) were highly
expressed in Kupffer cells, but RAGE was not.17

Therefore, AGE catabolism does not seem to be
mediated by RAGE for 3 reasons: first, the expression
of RAGE in hepatic cells involved in AGE endocytosis
(mainly LECs and Kupffer cells) is null or weak; sec-
ond, RAGE is functionally similar to a cell signaling
receptor rather than a scavenger receptor; and third,
scavenger receptors (ie, galectin 3 and MSR-A) for
AGEs also exist in the liver17,38 (Fig. 1).

Because the liver is the major site of AGE catabo-
lism, whatever scavenger receptors may be involved in
the endocytosis of AGEs, a result of impaired hepatic
function is an increase in the levels of circulating
AGEs, which can exert their detrimental effects on the
whole organism.

RAGE AND LIVER INJURY: A LESSON
FROM PRECLINICAL STUDIES

The first study on the role of RAGE in hepatic injury
was carried out with a mouse model of total hepatic
ischemia/reperfusion (I/R); the blockade of RAGE
through the administration of sRAGE, which func-
tioned as a ligand competitor, provided protection
against hepatocellular necrosis, attenuated liver I/R
injury, and enhanced the expression of the prorege-
nerative cytokine TNF-a.29 Recently, using the same
model, researchers showed that early growth response
1, an inducible transcription factor activated by stress
stimuli, was up-regulated in liver remnants after he-
patic I/R injury, and it was suppressed by the admin-
istration of sRAGE and in RAGE-knockout mice.45

Moreover, the RAGE ligand HMGB1, which was prob-
ably released either from necrotic cells or after
induced hypoxia, was up-regulated after I/R in the
liver remnants.45,46

The activation of RAGE may contribute to proin-
flammatory and tissue-destructive processes in he-
patic I/R, and the blockade of RAGE may limit harm-
ful inflammatory mechanisms and thereby facilitate
repair in the injured liver; thus, it is a potential target
in clinical transplantation.

Using uncoupling protein-2–knockout mice and a
galactosamine/lipopolysaccharide-induced liver injury
model, Kuhla et al.47 recently showed that oxidative
stress associated with mitochondrial dysfunction led
to increased hepatic levels of AGEs and RAGE and
pronounced tissue injury, which could be reduced by
a functional RAGE blockade.

In a mouse model of liver resection, RAGE was up-
regulated in liver remnants after massive hepatectomy

versus partial hepatectomy, especially in monocyte-
derived dendritic cells. Blocking RAGE with pharma-
cological antagonists or using transgenic mice with a
signaling-deficient RAGE mutation expressed in cells
of a monocyte lineage significantly increased survival
after massive liver resection and, in liver remnants,
increased the proliferation of hepatocytes and reduced
their apoptosis. Liver remnants retrieved from RAGE-
blocked mice displayed enhanced expression of TNF-a
and interleukin-6 (both cytokines promote inflamma-
tion and regeneration) and the anti-inflammatory
interleukin-10; this suggests that RAGE mediates
stress responses in liver resection and initiates events
that critically curtail the limits of regeneration.30

Therefore, the blockade of RAGE may be a novel strat-
egy for promoting regeneration in massively injured
livers. The active involvement of RAGE in the liver was
also shown in an acetaminophen-induced hepatotox-
icity mouse model: treatment with sRAGE increased
survival, attenuated the extent of the liver injury,
decreased necrosis, and enhanced the expression of
TNF-a and interleukin-6.31 Although physiologically
high levels of RAGE expression in the lungs appear to
have a protective role in preventing pulmonary fibro-
sis, RAGE seems be involved in the mechanisms lead-
ing to renal and liver fibrosis.18,48,49 A number of
studies have shown that RAGE expression is up-regu-
lated during the transdifferentiation and subsequent
migration of HSCs to myofibroblasts.12,15,50 It has
also been shown that the release of HMGB151 (but not
AGEs or CML18) can directly activate HSCs and stim-
ulate fibrogenesis through (1) cell proliferation, (2) the
expression of alpha-smooth muscle actin, transform-
ing growth factor b1, and the collagen type Ia2 gene,
and (3) the suppression of MMP2 activity (Fig. 2). In
addition, in rats in which liver fibrosis was induced
by bile duct ligation or a thioacetamide treatment,
both the RAGE transcript and the alpha-smooth mus-
cle actin transcript were up-regulated.18

In another rat model in which different stages of he-
patic fibrosis were induced with carbon tetrachloride,
RAGE gene silencing suppressed nuclear factor kappa
B transcriptional activity, HSC activation, and the
accumulation of extracellular matrix proteins in the
fibrotic liver and thus improved the ultrastructure of
liver cells.49 Altogether, these observations suggest
that RAGE may be involved in the initial processes of
liver fibrosis and that RAGE blockade or RAGE gene
silencing may be a therapeutic modality for preventing
fibrosis in liver grafts.

RAGE-LIGAND AXIS AND LIVER
DISEASES: CLINICAL ASSOCIATION
STUDIES

The liver, a multifunctional organ specializing in
detoxification and metabolism, is susceptible to many
diseases, including nonalcoholic fatty liver disease
(NAFLD), fibrosis, cirrhosis, and hepatocellular carci-
noma (HCC). NAFLD is difficult to be distinguished
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histologically from alcoholic liver disease, and its eti-
ology remains partly unknown; however, the funda-
mental pathophysiological mechanism appears to
involve insulin resistance and oxidative stress related
to metabolic syndrome.52 Several clinical studies
have investigated the involvement of ligands (AGEs,
CML, and HMGB1) and RAGE (its tissue-bound and
soluble form) in different liver diseases, such as non-
alcoholic steatohepatitis (NASH), liver cirrhosis, and
HCC. Butscheid et al.33 did not find any differences
in the CML levels of patients with hepatitis C virus
(with or without steatosis), NAFLD, or NASH. Con-
versely, in patients with liver cirrhosis, high levels of
circulating CML were related positively to the severity
of the disease and negatively to residual liver func-
tion.28 Furthermore, serum CML levels were signifi-
cantly higher in patients with chronic liver disease
versus healthy controls and were associated with
less liver function capacity.53 Although these results
are controversial, they suggest that a moderate
impairment of hepatic function does not affect circu-
lating CML levels, which increase in patients with
severe cirrhosis as a result of reduced AGE catabo-
lism; CML does not cause the disease. A recent
study found that serum levels of HMGB1 were signif-
icantly higher in patients with chronic hepatitis B vi-

rus (HBV) versus controls and higher in chronic HBV
patients with moderate fibrosis versus those with
severe fibrosis; this suggests that fibrotic progression
in chronic HBV patients may be prevented by the in-
hibition of HMGB1.54

The levels of circulating sRAGE—the cell membrane
RAGE competitor for ligand binding—were found to
be significantly lower in patients with NASH but not
in patients with simple steatosis in comparison with
controls.35 Recently, esRAGE and sRAGE levels were
found to be significantly lower in obese prepubertal
children with liver steatosis versus control children
and were independently related to liver steatosis; this
suggests that the ligand-RAGE pathway plays an in-
dependent role in the development of liver injury even
in this age group.55 Cheng et al.,11 using a tissue
microarray technique, studied the expression profile
of esRAGE in human organs and highlighted the dis-
tribution of esRAGE as dotlike granules in the supra-
nuclear regions facing the luminal surfaces of the bile
ducts. The fact that esRAGE expression decreases in
the hepatocytes of patients with obstructive jaundice
suggests that esRAGE may contribute to the secretion
of bile.11

A number of studies have compared different
expression patterns of RAGE, sRAGE, and ligands in

Figure 2. Role of RAGE in hepatic fibrosis. HMGB1, a protein present in the nucleus, can be released by necrotic cells or in response
to hepatic hypoxia. Therefore, the HMGB1-RAGE interaction can directly activate HSCs and drive them toward fibrogenesis through
the stimulation of cell proliferation, the expression of alpha-smooth muscle actin, and the suppression of MMP2 activity.
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liver specimens of subjects with various degrees of
liver impairment. Patients with NASH had detectable
tissue AGEs in hepatocytes, but subjects with simple
steatosis did not.32 Biopsy specimens from subjects
with different diagnoses (healthy controls and patients
with steatohepatitis, virus-related hepatitis, cholesta-
sis, or cirrhosis) were immunostained, and CML and
RAGE were detected in the hepatocytes of all patients
independently of the diagnosis.17

Liver tissues from normal subjects and subjects
with hepatitis or HCC showed the coexpression of
RAGE and HMGB1 transcripts in all subjects. How-
ever, although the HMGB1 transcripts were compara-
ble, the RAGE levels were different: they were lower in
the normal subjects versus the subjects with hepatitis
and were highest in the subjects with HCC.34 These
data suggest that RAGE expression is involved in
HCC because this receptor probably up-regulates the
transcription of its own gene through a positive feed-
back loop with its ligands, which in turn are produced
in large quantities in patients with HCC (ie, HMGB1
may be released from necrotic cells, and AGEs may be
generated because of impaired hepatic glycemic
control).

INVOLVEMENT OF THE RAGE-LIGAND
AXIS IN LIVER TRANSPLANTATION (LT)

LT is the treatment option for end-stage liver dis-
eases.56 Over the last decade, data about the involve-
ment of the RAGE-ligand axis in inflammation and
regeneration after solid organ transplantation have
emerged from clinical studies of lung transplanta-
tion,57-59 kidney transplantation,57-59 heart transplan-
tation,60 and LT.28,36,61 Interestingly, elevated plasma
CML levels in patients with liver cirrhosis decreased
by 50% 3 months after LT; this finding confirms that
the liver acts as a clearing organ for AGEs through
AGE scavenger receptors.28 More importantly, during
LT, circulating levels of the proinflammatory RAGE
ligand HMGB1 were undetectable before graft reperfu-
sion and increased after reperfusion, and their level
was correlated to graft steatosis.36 These data suggest
that HMGB1 originates from the graft and may be a
marker of hepatocellular injury.

New-onset diabetes is frequent after LT and is asso-
ciated with impaired long-term graft function and
reduced patient survival.62 Patients affected by diabe-
tes or metabolic syndrome show increases in the for-
mation and accumulation of AGEs and other RAGE
ligands as well as low levels of sRAGE; this supports
their involvement in the pathogenesis of vascular dis-
eases.19 In studies of diabetes-associated cardiovas-
cular and renal diseases, the up-regulation of RAGE
has been linked to enhanced levels of AGEs63 and has
been associated with epithelial-myofibroblast transdif-
ferentiation64 and the induction of fibrogenesis.65

According to these observations, it is possible that the
RAGE-ligand axis contributes to cardiac complica-
tions in patients undergoing LT, and its dysfunction
might affect short- and long-term patient survival.

CONCLUSION

The RAGE-ligand axis is involved in several inflamma-
tion-based chronic diseases and could be the missing
link between environment-induced inflammation and
liver disease. We have reviewed the experimental and
clinical evidence supporting the hypothesis that
ligand-RAGE interactions can alter liver function
through several mechanisms (ie, the decreased release
of proregenerative cytokines, the increased production
of extracellular matrix proteins, and the fibrotic trans-
differentiation of HSCs and their subsequent migra-
tion). There is also evidence supporting the idea that
the RAGE-ligand axis is involved in the regeneration
of the graft and its survival after LT. Therefore, this
axis is a potential molecular target for the control of
liver injury in the setting of transplantation.

The balance of the levels of RAGE ligands, cell sur-
face RAGE, and sRAGE/esRAGE may represent a
complex, dynamic system. In liver pathology, the
expression of RAGE and its ligands (AGEs, CML, and
HMGB1) increases, whereas the expression of sRAGE
decreases. A negative feedback has been shown for
sRAGE when RAGE interacts with its ligands; there-
fore, the relationship between the up-regulation of
membrane-bound RAGE/RAGE ligands and protective
sRAGE levels has pathophysiological and therapeutic
implications. The precise mechanisms responsible for
the fine balance between cell surface RAGE and its
secreted/cleaved circulating form are currently
unknown, and the elucidation of the molecular mech-
anisms underlying their regulation is an important
research objective.
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