informatica 74 —~ Bled, 7.—12, oktobra 1974

C3G- 0 1011

A MODULAR AND STRUCTURED CONTROL LANGUAGE INTERPRETER

“P.Ancilotti, M.Fusani,. N.Lijtmuzer, C.Thanos

Istituto di Elaborazione defla Informazione
Consiglio Nazionale defle Ricerche

Pisa,

Italy

The purpose of this papen is to descnibe the functional characteristics and Zhe structure
uf the Control Language Intenpreter (CLI) fon the Pisa Software Laboratorny (PSL) which has
"been implemented at TEI-CNR on a virtual machine gencrated by CP-67 on an IBM 360/67 com- -
puter., The CLT is itself a modulanr sysiem and enables Zhe user Zo converse with the PSL
using the typewriten as a system console. This paper discusses a "gudided” modularization
as a mechanism to achieve the aims of the CLI, namely: Modularity, extens.ibility and re-

Liability.

1. INTRODUCTION

The main purpose of the Pisa Software Labo-
ratory -PSL- is to provide a special envi-
ronment within which researchers, students
and designers may experiment in building
new software systems, interactively. Exper-
iments may follow a structured design to ob
tain modular software systems [1]. In this
context, a software system is a set of inde
pendent modules connected to fit the needs
of the user. Each module is a functional u-
nit and is programmed regardless of the oth
ers using the rules of structured program-
ming. Thus, programs should be written
using the three basic control structures:
Concatenation, selection and repetition [2].
‘It should be noted that these restrictions
need not be limited to higer level lan-
guages but it is also possible to induce a
block structure and provide special macros
.for assembly language programs.

Communication between program modules is an
area of increasing importance and interest
in the design and implementation of relia-
ble software systems. This communication is
handled by what are known as interfaces,
which in PSL are based on the port ap-
proach [3]. In this approach, modules must
have input and output plugs, known as ports
dangling from them. An input port from a
mcdule can be connected to an output port
of any other module through maifboxes (mes-
.sage buffers). Modules send messages along

output ports and receive messages along in-

put ports. Modules refer to ports with local
names and as such do not need to know which:
other modules their ports are connected to. '

One major advantage introduced by the port
approach is modufarity. In fact, Dennis con
siders modularity to be a property of comput
er systems and gives the following defini- ~
tion [4] :"A computer system has modularity
if the linguistic level defined by the com-
puter system meets these conditions:

a) Associated with the linguistic level is
a class of objects that are the units of
program representation. These objects are
program modules. :

b) The linguistic level must provide a means
of combining program modufes into larger :
program modules without requiring changes
to any of the component modules. Further,
the meaning of a program module must be
independent of the context in which it is
used" :

The PSL meets the requirements described a-
bove:

2) PSL modules are the units of program rep-
resentation and global variables refer-
ences are not allowed in order to guar-
antee the context independence condition.

)

111

b) Furthermore, the PSL provides a mecha-
nism to combine modules to obtain soft-
ware systems.

In this picture, each module conceived as an
entity is continuosly active, processing mes
sages as long as they are available. Concur-
rency of operations 1is an inherent part of
this notion of modularity. In fact, during
execution each module becomes a CyCllu se-
quential process and the software system may
be viewed as a family of cooperating asyn-
chronous processes., Morecver, each process
runs in its own name space: Full protection
between modules is achieved.

A software system design is done in two
phases: The functional analysis phase and
the module implementation phase. In the
first one, the analysis of the specifica-
tions for the desired system determines the
structure to be chosen and a complete list
of the functions., Then, the functional spec-
ification for each module arises and the set
of connections is defined.'In the second
phase, module programming takes place. Of
course, this phase may be skipped if-a 1i-
brary with the desired modules is available.

When these two phases are completed, modules
are loaded and connected by means of the Con
trol language Interpreter (CLI), and then
the software system may run.

2. GOALS AND FUNCTIONAL CHARACTERISTICS OF
THE CONTROL LANGUAGE INTERPRETER

The CLI executes a set of commands which al-
low the user to create software systems sup
ported by the PSL., By means of these com-
mands three basic functions are performed:
1) to create system modules;

2) to connect modules;

3) to assign and/or modify the system param-
eters.

1

Th in the desi of the
CL

-t
DCQ

O
T

(I‘ W

S e m 2d

th t;ll'wlﬂjz

a) Extensibifizty and §{Lexilbility
The CLI system must provide-the facility
to introduce additional Control Language
Commands without programming again those
CLI parts that are related with the basic
functions provided. Side effects produced
by the new parts must be avoided. Moreo-
ver, changes in the system must be easy
to carry out.

b) RefiabllLity
The CLI must be designed in such a way
that its correctness should be easy to
prove and errors could be isolated and
detected., The CLI reliability is an es-
sential requirement; in fact, since the
CLI is a tool used by all the users to
create new software systems, themn the

possible repercussions of errors increase.
The user should be sure that any error de
tected is due only to bugs in his own
system.

c) Eas.iness to use
The user should not be placed under heavy
constraints: The commands should be free
format and their sequences should not fol
low a precise order. Moreover, the CLI
should be able to recognize the user mis-
takes and should permit. the user to recoy
er from then,

d) Easdiness cf documentation
The design and the specifications of the
structure should be fully documented; in
fact it should be easy to introduce
changes or improvements.

3. GUIDELINES FOR CLI DESIGN

After the definition of the objectives given
in the previous paragraph, the next question
is how to build the CLI in order to achieve
these goals.

To design the CLI two alternative solutions
have been taken into account. The first one
was to extend the PSL nucleus to execute the
CLI functions; the other was tc build the
CLT just Like a software sysfem supponted by
PSL. The latter solution has been chosen: In
fact, the goal of the extensibility would be
impossible to meet by using the former,
while the other goals are more difficult to
achieve. Furthermore flexibility, extensibil
ity, reliability and easiness of documenta-
tion are standard characteristics of a mod-~
ular software system{5] .

As far as reliability is concerned two re-
marks may be cutlined:

a) Since each PSL module is written using
the structured programming approach, the
CLI may be amenable to proofs of correc-
tness,

2 Since e me g ocxe
cutlion a sequential process with its own
address space, undesired interactions be-
tween the CLI modules are avoided., In
fact , the only interactions between PSL
modules are achieved by means of a mes-
sage passing mechanism. Furthermore mem-
ory references to the dynamic nucleus
area are forbidden and then full protec-
ticn is obtained.

A drawback to build the CLI like a software
system 1s that there is no way to initialize
the nucleus data structures. However, to per
form the basic functions, the CLI must allo-
cate some specific data structures: User
process descriptors, mailboxes, etc. In fact
these objects will be handlied by the PSL dy-
namic nucleus during the execution phase to
control process activity{l} . To overcome
this obstacle an interface between the CLI

e R S

and the dymamic nucleus is interpcsed: This

interface is called the static nucfeus and

must be present whenever a static interac-

tion takes place. For ecxample every interac-
tion during debugging time must be also sup-
ported by the static nucleus.

\

Voopynanic 1 STATIC

Y
NWARF)
HARDWARE NUCLEUS/; NUCLEUS/J

fig. 3.1

4, THE PSL STATIC NUCLEUS

The static nucleus must carry out the map-
ping function from the CLI module address

space into the dynamic nucleus acddress space.

This function is applied to the data struc-
tures created and referenced by the CLI mod-
ules. The mapping function is implemented by
twe procedures: ALLOCATE and TEST. While
ALLOCATE is invoked by a module to initial-
ize a specific data structure, TEST reflects
its status. Two parameters must be provided.
Since there are several types of data struc-
tures to be allocated, or tested, the first
parameter specifies the obfect fype.' The sec
ond one defines the address of the object. ~

All the objects to be allocated by the stat-
ic nucleus have a fixed format.

NAME

TYPE
DEPENDENT
INFORMATION

fig. 4.1

S~
1

Two items corpose the objeuc forvwen, The
first item is the object unique name, while
the second one consists of type dependent da
ta. The length of the second field is varia-
ble and changes from type to type. Some ob-
ject types are listed below: ’

ot

Module Control Block - MCB specifies the re-
quired information to
initialize the named
process descriptor.

Port Information Descriptor - It denotes the
module the named port
belongs to, and the
mailbox to which the
port must be con-
nected.

failbox - It denotes the dimension of the

111

named mailbox.

riority- It specifies the MCB to which the
priority must be assigned.

Clock - It indicates the time-slice
length.

Other objscts were also defined: The previ-
ous list is not complete and is given as an
example of objects frequently referenced by
the CLI.

5. THE CLI COMMANDS

To accomplish the three basic functions
pointed out above, the CLI must interpret
and execute a set of commands. The CLI com-
mands are classifieg, according to their
functions, into four subsets, namely:

1) Process creation commands.

2} Module connection commaﬁds.

3) Parameter assignment conmands.
4) Control commands.

The first subset performs the functions re-
lated with the creation of processes. Only
one command is provided:

CREATE PROCESS (<name>,<module>,<priority>)

A1l the three parameters must be supplied.
Otherwise an error condition will be de-
tected by the CLI and an error message will
be sent to the user. The first paramcter
specifies the process unique name, instead
the second one denotes the name of the pro-
gram module to be retrieved from the 1li-
brary. This program module will become, dur
ing execution, the sequential process spec-
ified by the first parameter. Note that the
same program module may be invoked in dif-
ferent CREATE PROCESS commands, but they al
ways lead to distinct sequential processes’.
The third parameter specifies the priority
to be assigned to the process.

Shmmaci o ins the action £ the ahoy N
Summarlzing the actions of tne apove com-
o7

mand consist in

a) MCB allocation.

b) Program module loading.

The commands of the second subset are con-
cerned with the connections between mod-
ules, These commands are:

CONNECT (<MCB>,<port>,<mailbox>)
DISCONNECT (<MCB>,<port>,<mailbox>)

Since every, connection implies a link be-
tween one port (belonging to a specific

MCB) and one mailbox, three parameters must
be provided. ‘Note thdat while no more than

1o 11

one mailbox may be connected to any given
port, it is allowed to connect more than one
port to any mailbox.

The first action developped by the CONNECT
command is a TEST procedure call with the
mailbox name as a parameter. If the named
mailbox was not previously declared, then
ALLOCATE (<mailbox>,<address>) takes place
and thus a new mailbox with.the maximun
length is created. In any case a port infor-
mation descriptor is allocated and thus the
connection is achieved.

The DISCONNECT command operates in the oppo-
site way. .

The parameter assignment commands are:
MATLBOX DIMENSION (<mailbox>,<size>)
CHANGE PRIORITY (<MCB»>,<priority>)
QUANTUM CLOCK (<time~slice>)

The MAILBOX DIMENSION command allocates a
mailbex with the declared size. The CHANGE
PRIORITY command modifies the priority of
the specified MCB. QUANTUM CLOCK allocates
the time-slice length. ,
The last subset of commands allows the user
to perform control functions, namely:

PERIPHERAL FILE (<device>,<module| system>)

This command denotes the de-
vice where the module or the
system resides and must pre-
cede the CREATE PROCESS com~
mand. Disk device is assumed
by default of the PERIPHERAL
FILE command,

SYSTEM (<system name>)

This command denotes that
the set of commands needed
to create a software system
resides in disk or in the de
vice specified by the previ-
ous PERIPHERAL FILE command.
The SYSTEM command allows
the user to load a Librany
system without typing all
the commands needed to cre-
ate this system.

DE#INE SYSTEM (<system name>)
This command is the dual of
the previous one and allows
to store a system in the 1i-
brary.

END

It denotes the end'of the

set of the building commands.

STARY

This command asks the nucle
us to execute the new soft™
ware system. It must follow
the END command.

REMARK: The CONNECT, DISCONNECT and CHANGE
PKIORITY commands may be given before the
relative CREATE PROCESS command. In this
case no error message 1s sent to the user,
but the execution of those commands is de-
layed until the CREATE PROCESS arrives.
This method allows the CLI to correct auto-
matically certain mistakes on the, sequences
of commands typed by the user.

6., CRITERIA FOR THE CLI MODULARIZATION

Before giving the structure description of
the CLI, some remarks on the criteria
chosen for the CLI modularization are pres
ented [6-7]. ' -

REMARK I: There are a number of design deci
sions which are questionable ‘and likely to
change. The first criterion, then, must be
changeabdility: That is the system must be
designed in order to allow the user to con-
fine any change to only one module.

REMARK II: PSL gives a parallel environment
and considers modules like sequential proc-
esses. The second criterion, then, is how
to ensure a high order of paraflfelism: The
interfaces between modules must be clearly
defined and they must be chosen to reveal,
as little as possible, its inner workings.
Modules must not correspond to steps in the
processing but to independent tasks.

REMARK II1: A single function must be per-
formed by a single module and implemented
and tested just once, thus standardizing
the way such function is performed. Func-
tlonal analysis must be carried out trying
to minimize the system complexity.

According to these criteria the CLI was de-
siyned as follows:

a) All logical or physical resources in-
volved were specified.

b} The management of each resource was as-
signed to one module.

¢} Some particular functions (Syntactical
Analysis, Error Analysis, etc.) were sin
gled out. Bach of them is performed by ~
one module.

The structure of the CLI and the implica-
tions of this choice in the CLI behaviour
are described in the next paragraph.

7. CLI: STRUCTURE AND BEHAVIOUR

The set of modules and the CLI topological
structure -aré shown in fig. 7.1. In the pic

fig.

TrrYTvouT

)

A
(=]

I
]

Bl

Py

BTH By Pg AnNAaL P, ERAR
Ps P
‘ P [Py iy .
) :
"]
By
A =T 4 ﬁ RAE XM
y =y Po
' i 5] ,1(3 !
dfion s Pa P N
= - Y
- M EBM

Py

[

s Nt B & § S ———

Lot

7.1

I b

i

111

ture large boxes represent modules, the
small ones are mailboxes, arrows spocify the
directed connections and P's identify ports,

Four physical resources and two logical re-
sources are involved in the CLI design. Both
resources and relative modules are listed
below:

Typewriter TTYIN
Printer TTYouTt
Disk 1/0
Clock CLK
failboxes MBXM
Module Control Blocks MCBM

(with their own port
descriptors)

One specific module must be added for each
other peripheral device.

While the modules listed above are resource
handlers, the other modules are related with
the specific functional characteristics of
the CLI, namely:

ANAL

Syntactical analysis
Error management ERR
Loading functions LOAD

. System start functions STR

System end functions Sys

An user types the commands on the typewriter.

TTYIN sends these commands like messages
through the port P, to mailbox 1, then ANAL,
which is waiting for this type of message,
analyzes them., If a syntactical error is de-
tected, then, wrong messages are sent
through port P, to mailbox 3. ERR will re-
ceive these messages generating the corre-
sponding error messages to be printed by
TTYOUT. Otherwise, if the command is valid,
it is sent to diffevent wmallboxes
to ics type.

o~ T 1y
accarding

The MATILBOX DIMENSION and the QUANTUM CLOCK
commands will be received by MBXM and CLK,
respectively. While the first module 2llo-
cates mailboxes, the second cne allocates
the new clock.

MCBM is concerned with the MCB management,
Then, every command, namely: CREATE PROCESS,
CONNECT, DISCONNECT and PRIORITY, which ini-
tializes and/or modifies a particular MCB is
received by MCEBM.

For each CREATE PROCESS, MCBY sends through
port P, to mailbox 9 a message that speci-

fies the module to be loaded and waits on B
for the answer. If MCBM receives an OK, then
the MCB is allocated, otherwise an error mes

sage is sent to ERR.

LOAD stores the module while 1/0 handles the
chosen device. Note that both modules could
be considered like only one function: Inher-
ent concurrency in this function recommends
to split it into two modules regarding the
parallelism criterion and then increasing
the efficency of the CLI system.

For every CONNECT, DISCONNECT and PRIORITY
command MCBM calls the TEST procedure to
know if the MCB specified by these commands
was previously defined., If MCB does not ex-
ist the commands are delayed: They are sent
through the output port Py to the same mail-
box from which they were received. Otherwise
MCBM allocates the specific objects required
by those commands.

To perform CONNECT and DISCONNECT commands
MCBM sends also a message to MBXM to test if
the named mailbox was yet defined and waits
for an answer before allocating the port in-
formation descriptor.

END command allows MCBM to check if mailbox
5 is empty, otherwise sends a message to
ERR. This condition arises when there are
delayed commands trying to modify inexistent
MCB's.

A more detailed discussion of the CLT system
is contained in (8] :

8, CONCLUSIONS

This paper ‘has described a design methodolo-
gy for the development of a Control Language
Interpreter, that runs under PSL. The basic
objectives were reliability, flexibility,
extensibility, easiness to use and -to docu-
ment. These objectives were achieved by a
"guided" modularization based on the three
criteria: Changeability, parallelism and
functional analysis.

9. REFERENCES

[1] Ancilotti,P.; Cavina,R.,; Fusani,M.; Gra-
maglia,¥.; Lijtmaer,MN.; Martinelli,E.;
Thanos,C. "Dasigning a softwayes
ratory'. Proceedings of zhe & "Vugoslav
Intennational Symposium, Bled 1873.

3 Al
Labo-

{2} Dijkstra,E.W. "Notes on structured
programming'. Stiauctured Programming.
Academic Press 1972.

[3] Corwin,W.; Wulf,W. "SL230 - Software
Laboratory intermediate report'.
Carncgie-Mellon University, May 1972.

{4] Dennis,J.B. "Modularity". Advanced
Course on Software Engdneerading. Bauer,
editor, Springer-Verlag, 1973.

[s] Parnas,D.L. "Information Distribution
Aspects of Design Methodelogy". IFIP,
Proceedings - Ljubliana, Yugoslavia 71,

(6]

(7

Parnas,D.L. "On the Criteria to be used
in Decomposing Systems into Modules'.
Comm. ACM 15, Dec. 1972,

Liskov,B.H. "A Design Methodology for
Reliable Software Systems'". Proc. cf
the Fall Jodini Computes Conference 1972
AFIPS Vob. 41, parnt 1.

Ancilotti,P.; Fusani,M.; Lijtmaer,N.;
Thanos,C. *“The PSL Control Language
Interpreter". JEI -. CNR Inteinal
Report {to be padinted).

111

