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Abstract
A native nested configuration of the ROMS model is implemented on the marine area between the Ligurian and Tyrrhenian 
basins, which includes the Tuscany Archipelago. Initial and boundary conditions are provided by the CMEMS Mediterranean 
Sea Physical Reanalysis product (1/16°), feeding the parent ROMS model (BLUE, 1/72°), in which a high-resolution grid 
is nested (PURPLE, 1/216°). Atmospheric forcing comes from a downscaled version of ERA5 reanalysis. Temperature and 
salinity profiles from gliders and floats, and HF-radar-derived surface currents, are compared to model outputs within the 
high-resolution area for the whole year 2017. Results show the downscaling procedure is able to reduce model errors for 
temperature profiles, whereas errors in salinity profiles remain comparable. However, the downscaled model cannot recover 
large errors inherited from the parent one. The mean bias largest values found in both temperature and salinity profiles may 
be explained by a model underestimation of the depth of stable stratification limit with respect to field data. Errors in surface 
currents are reduced for the downscaled dynamics and appear to be uncorrelated to the original CMEMS product, being 
surface dynamics less affected by initial condition than by atmospheric forcing. A simple scalar metric, to quantify the error 
in the surface current vector fields from observations and models, is proposed. The novel metric allows to better quantify 
the improvement gained by the downscaling procedure.
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1  Introduction

The need for high-resolution oceanographic data, and in par-
ticular for reanalysis products, is rising due to the increasing 
importance gained by studies aimed at understanding the 
effect of climatic trends along the coast and the analysis 
of local oceanographic conditions both to manage produc-
tive activities, such as aquaculture and fisheries, and to sup-
port navigation. Furthermore, the production of hazard and 
risk maps is crucial for the evaluation of impacts caused 
by different environmental threats, including marine litter 
and various contaminants. All these aspects strongly affect 

social and economic challenges worldwide, both now and in 
the future (Visbeck 2018).

In coastal areas, characterized by complex coastline and 
variable bathymetry, high-resolution numerical models 
become important to better grab the interaction of the sea 
dynamics with the solid boundaries (e.g. when the circula-
tion is constrained by topography), and a higher spatial and 
temporal variability of atmospheric forcing. Downscaling 
Ocean General Circulation Models (OGCMs), to regional 
and sub-regional scales, is the principal mechanism to 
describe ocean dynamics in more detail for specific loca-
tions. Such a procedure consists of a “parent” model used 
to transfer information toward a “child” model, having a 
higher resolution grid. The exchange of information can be 
sequential (offline) (Mason et al. 2010), or simultaneous, 
both from the parent to the child (one-way) and mutual (two-
way) (Blayo and Debreu 2006).

In ocean sciences, several studies tried to understand 
whether the downscaling procedure is worthy anyway, 
and identify weaknesses and strengths with application in 
different areas of the world: Lorente et al. (2019) in the 
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Iberia-Biscay-Ireland system, Bricheno et al. (2014) in Great 
Britain, Onken et al. (2020) in the Baltic Sea, Katavouta and 
Thompson (2016) in the Gulf of Maine. The improvement 
in model capability to reproduce real physical patterns is 
indeed counterbalanced by the introduction of a higher vari-
ability, which may not be in phase with observations.

Concerning the Mediterranean Sea, the direct downs-
caling of the Copernicus - Marine Environment Monitor-
ing Service (CMEMS) products has been carried out with 
horizontal resolution ranging from 3.0 to 1.5 km (Olita et al. 
2013; Onken 2017; Aguiar et al. 2020), whereas the use of 
multi-level nested configuration allowed to reach resolution 
up to O(100) m (Sorgente et al. 2016; Trotta et al. 2017), 
and even to O(10) m by means of of unstructured grids 
(Cucco et al. 2012; Trotta et al. 2016). More specifically, 
the area of the Tuscany Archipelago has been analysed by 
Sorgente et al. (2016) to evaluate the effect of assimilating 
CTD data measurements into a model aimed at forecast-
ing of drifters trajectories, in oil spill emergencies, and by 
Trotta et al. (2016) to test the skill of a relocatable multiple-
level nested model platform. In both cases, the resolution 
of the grids covering the whole Archipelago was at most 
around 1200 m.

The Tuscany Archipelago is a complex shelf area char-
acterized by the presence of several islands (from north 
Gorgona, Capraia, Elba, Pianosa, Montecristo, Giglio, and 
Giannutri) which make the Corsica Channel the main path-
way connecting Ligurian and Tyrrhenian basins. The area 
is bounded westward by Eastern Corsica Current, which is 
characterized by a strong seasonal variability, and merges 
to the Western Corsica Current, farther north, to form the 
so-called Northern Mediterranean Current (Astraldi and 
Gasparini 1992; Millot 1999). At the southern edge of the 
shelf, the intermediate layer water coming from the south 
veers westward following the bottom topography (Millot 
1999). The mean circulation allows the relatively warmer 
waters from the Northern Tyrrenian Sea to enter the colder 
waters of the Ligurian Sea, affecting not only the distribu-
tion of marine species (Astraldi et al. 1995), but also the 
dispersion of pollutants, such as floating plastic debris, 
which tend to accumulate in the area of recurrent anticy-
clonic circulation corresponding to the so-called Capraia 
Gyre (Onken et al. 2005; Fossi et al. 2017; Iacono and 
Napolitano 2020).

The objective of the present work is to test the skill and 
reliability of a model configuration which covers the whole 
shelf area separating the Ligurian and Tyrrhenian basin, at 
sufficient resolution to analyse sub-mesoscale processes 
O(1 − 10) km, at least for the upper portion of their spatial 
range. The model configuration is built by downscaling the 
CMEMS Mediterranean Sea Physical Reanalysis product via 
a one-level, one-way nest in the ROMS model, implemented 
on the area between the Ligurian and the Tyrrhenian Seas. 

Atmospheric forcing is provided by a high-resolution down-
scaling of the ERA5 reanalysis. Both the CMEMS reanalysis 
product and the downscaled model outputs are systemati-
cally tested against in situ temperature and salinity profiles, 
and surface currents derived from HF-radars, to evaluate 
the improvement in model skill gained by the downscaling 
procedure.

The second section describes the model configuration, 
and the third one is dedicated to the available field observa-
tions employed to test model skills, which are assessed in the 
fourth section. The fifth section is dedicated to the discus-
sion of the results, analysing the source of errors, and pro-
posing a simple metric to compare vector fields and finally 
conclusions are drawn.

2 � Model configuration and validation

2.1 � One‑way nesting in ROMS

The Regional Oceanic Modelling System (ROMS) is a 
primitive equation, terrain-following coordinates, hydro-
static model (Shchepetkin and McWilliams 2003, 2005), 
which is widely used for several oceanographic applications 
(López et al. 2020). Both one-way and two-way native nest-
ing are available in ROMS (Warner et al. 2010). However, 
the one-way configuration is considered sufficiently accurate 
to allow the downscaling of prognostic model variables from 
low to high resolution, saving a significant amount of com-
putational effort, and is therefore employed for the present 
application.

The parent model, called BLUE, extends from −0.4 to 
15.9° longitude and from 39.6 to 44.5° latitude, covering the 
North-Western Mediterranean Sea (NWM), at 1/72°  resolu-
tion (roughly 1.2 km), and 30 sigma-layers. Nested model is 
called PURPLE and runs simultaneously to the parent one. 
It covers the area of the Tuscany Archipelago and part of the 
Ligurian Sea, from 8.96 to 12.29° longitude and from 41.95 
to 44.41° latitude, at 1/216°  (roughly 0.45 km), with a child 
to parent grid ratio equal to 3, and 30 sigma-layers (Fig. 1a 
and c). The sigma coordinates distribution along the vertical 
is determined by setting vtr = 2 , vstr = 4 , �s = 5 and �b = 0.4 
for both BLUE and PURPLE models. Horizontal and verti-
cal advections are handled with third-order upstream and 
fourth-order centered schemes, respectively. Harmonic 
horizontal diffusion of momentum along s-surfaces, and of 
tracers along geopotential surfaces, is adopted: turbulent 
horizontal eddy viscosity coefficients � are set equal to 3.0 
and 1.0 m2/s, whereas the eddy diffusivity coefficients �T 
for both temperature T and salinity S are set equal to 0.3 and 
0.1 m2/s for the BLUE and PURPLE models, respectively.

The Generic Length Scale turbulence closure scheme 
(Umlauf and Burchard 2003) with the k − � parameters is 
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employed, whereas the sea-atmosphere interaction is mod-
elled through the Fairall et al. (1996) parametrization.

Bathymetry has been derived from bathymetric data pro-
vided by the EMODnet portal (http://​www.​emodn​et-​bathy​
metry-​eu). Raw data have been interpolated at the grid points 
and smoothed through a sequence of Laplacian filtering with 
a target rx0 parameter equal to 0.25 (Haidvogel et al. 2000), 
using the approach proposed by Sikirić et al. (2009). The 
model run with rx0 = 0.25 and rx1 = 5.2 (Haney 1991) for 
the BLUE grid, and rx0 = 0.12 and rx1 = 2.4 for the PUR-
PLE grid. The contact file that allows the grids to interact 
is created by means of the Matlab package provided by the 
ROMS developers (https://​www.​myroms.​org/​wiki/​Matlab_​
Scrip​ts).

The downscaling covers the whole year 2017 on a weekly 
basis. Each run lasted 10 days, 3 of which are considered 
to be for spin-up and are removed, similarly to Trotta et al. 

(2016). Such a short spin-up period is chosen also with a 
view to implement an operational version of the downscaling 
procedure, for which a longer spin-up would be unfeasible. 
Baroclinic time step is equal to 45 and 15 s for parent and 
child models, respectively, and 30 barotropic time steps are 
set between each baroclinic one.

2.2 � Initial and boundary conditions 
and atmospheric forcing

Initial and boundary conditions for the prognostic vari-
ables temperature T, salinity S, sea surface height � , and 
horizontal velocity u and v are retrieved from the MED-
SEA_REANALYSIS_PHY_006_004 CMEMS reanalysis 
product (Simoncelli et al. 2019), on a daily-averaged basis, 
and 1/16° (roughly 6 km; see Fig. 1b). Vertical resolution 
varies linearly from 1 to 3 m at the surface to roughly 200 m 

Fig. 1   a View of the exten-
sion of BLUE and PURPLE 
domains. Flow fields at the 
resolution of NEMO model 
(blue arrows for a portion of 
model domain) (b), HF-radar 
(black arrows) (c), PURPLE 
model (red arrows for a portion 
of model domain) (d). Black 
and red squares in subfigure b 
represent the enlarged area in 
subfigures c and d, respectively. 
To facilitate the reading, flow 
field versors have been reported

http://www.emodnet-bathymetry-eu
http://www.emodnet-bathymetry-eu
https://www.myroms.org/wiki/Matlab_Scripts
https://www.myroms.org/wiki/Matlab_Scripts
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at the bottom. The dataset is produced through the NEMO 
v3.4 model (Madec 2014), atmospheric forcing from ERA-
Interim reanalysis (Dee et al. 2011), and a 3D-Var assimila-
tion scheme for the assimilation of in situ temperature and 
salinity profiles, and sea level anomaly (SLA) along track 
data (Dobricic and Pinardi 2008).

Daily-averaged boundary conditions are linearly interpo-
lated by ROMS at internal time steps. A radiating-nudging 
(Marchesiello et al. 2001) condition is set for T, S, u, and v 
at the southern boundary of the BLUE domain with inflow 
and outflow nudging timescales equal to 1 day and 5 days, 
respectively. At the same boundary, a Flather condition 
(Flather 1976) is applied to the barotropic velocity com-
ponents, a Chapman condition (Chapman 1985) to the free 
surface � , and a zero gradient condition to the total kinetic 
energy (TKE). Boundary conditions for the PURPLE model 
are provided every timestep by the BLUE model. Being a 
one-way configuration, no information flows from the nested 
grid to the parent one.

Atmospheric forcing is provided by a dynamical down-
scaling of the ERA5 dataset built upon a nested configu-
ration of the BOLAM and MOLOCH atmosperic models 
(Buzzi et al. 2014). The former, at 1 h and 7-km resolution, 
covering the Med-CORDEX domain, the latter, at 1 h and 
2.5-km resolution covering part of the North-Western Medi-
terranean Sea. A detailed description of the implementation 
of such reanalysis downscaling and the validation of the 
results is reported in Vannucchi et al. (2021). Outputs from 
BOLAM and MOLOCH models are employed to force the 
BLUE and PURPLE domains, respectively. To determine 
ROMS fluxes of heat, momentum, and freshwater at the sea-
air interface, the following physical variables are extracted 
from the dataset: horizontal velocities at 10 m, temperature 
and relative humidity at 2 m, atmospheric pressure at mean 
sea level, total cloud cover and downward short-wave radia-
tion flux.

River discharge is added to the downscaled model by 
considering only those major rivers included into NEMO, 
Rhone, and Ebro. Monthly averaged values of river dis-
charge are obtained from the database of the Global Runoff 
Data Centre, 56068 Koblenz, Germany (GRDC). Salinity 
values are set equal to 25 PSU for Rhone and 30 PSU for 
Ebro (Simoncelli et al. 2019); temperature is set equal to sea 
surface temperature at the mouth.

2.3 � Validation against field observations

To assess the capability of the high-resolution PURPLE model 
to improve the performance of the NEMO model in reproduc-
ing the actual sea dynamics, we compare the skills of the two 
models against two typologies of observations: in situ profiles 

of temperature T and salinity S, and surface current compo-
nents u and v, derived from HF-radar. To measure model skills, 
we use the following standard statistics: root mean squared 
error (RMSE), centred root mean squared error (cRMSE), cor-
relation coefficient ( � ), and mean bias (MB). A whole year 
(2017) of data is employed for the analysis. In the following, 
subscripts N and P correspond to NEMO and PURPLE mod-
els, respectively.

3 � Field observations

3.1 � In situ temperature and salinity profiles

In situ observations are retrieved from the CMEMS product 
INSITU_MED_NRT_OBSERVATIONS_013_035, for each 
month of the year 2017, coming from different instruments 
and platforms. Each of the downloaded data file contains 
observations from a specific platform for a specific month, 
clipped on the spatial domain of the PURPLE model. Each 
observation file is coded as XX_code, where XX represents 
the data type, if mentioned, and the code is specific for each 
platform. Herein, we use data from the following: profiling 
floats (PF), oceanographic CTD profiles (CT), and gliders 
(GL). A detailed description of the file-naming convention 
can be found in Copernicus Marine Team (2020).

Data availability is not uniform during the year; indeed, 
the months of September, October, and November show a 
much larger number of vertical profiles with respect to the 
other months of the year. In particular, in summer months, 
no observations are available within the analysed area. Data 
with a quality flag different from “good data” are set to NaN 
(not a number). As a consequence, not all available profiles 
are employed for the comparison with model outputs: those 
having less than 75% of valid data within an upper layer 200 
m deep are removed from the analysis.

3.2 � Surface currents from HF‑radar

The surface velocity components come from the INSITU_
GLO_UV_NRT_OBSERVATIONS_013_048 product, pro-
vided by CMEMS (Copernicus Marine In Situ TAC 2020). 
Specifically, we use near surface zonal ( uo ) and meridional 
( vo ) velocities derived from high frequency (HF) radar, part of 
the European HF-radar network (Mader et al. 2017; Corgnati 
et al. 2018).

The covered area is located in the Ligurian Sea, adjacent to 
the Cinque Terre coast (Liguria, Italy), and extends approxi-
mately 30 km cross-shore and 30 km alongshore (Fig. 1c). 
Temporal resolution is 1 hour, and spatial resolution is 2 km 
in both zonal and meridional directions. For the comparison 
with modelled values, only those data with quality flag cor-
responding to “good data” are employed.
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4 � Results

4.1 � Models performance in reproducing 
temperature and salinity profiles

The first comparison is made for temperature profiles up 
to a depth of 400 m, independently of the position. For 
each month, the profiles coming from different platforms 
are interpolated at common depth values: from 0 to 200 
m with 2 m step, and from 200 to 400 m with 20 m step. 
Then, the bias between observations and model output 
ΔT(z) = TO(z) − TM(z) is calculated, where TO(z) represents 
the measured temperature at a specific time, location, and 
depth, and TM(z) the corresponding modelled temperature, 

linearly interpolated at the same spatial and temporal coor-
dinates. ΔT(z) is determined for both NEMO and PURPLE 
outputs and averaged over multiple profiles, giving the 
mean biases MBT ,N(z) and MBT ,P(z) as a function of depth. 
The calculation of the standard deviation �ΔT (z) of ΔT(z) 
corresponds to the cRMSET (z) between observations and 
model output.

Values of MBT (z) ± �ΔT (z) for the 3 months with the 
largest amount of observations (September, October, and 
November), and the number of observation values available 
for different depth layers (grouped by 25-m intervals), are 
reported in Fig. 2 for both PURPLE and NEMO models. 
For each month, the data belonging to different observation 
platforms are grouped together. The number of observations 
collected by each observation platforms during the year 

Fig. 2   Mean temperature bias ± standard deviation for PURPLE 
(red solid line and shaded red area) and NEMO (blue solid line and 
shaded blue area) models, as a function of depth for different plat-
forms for the months of September, October, and November. The left 
column of each subfigure reports the distribution of data points with 
depth, subfigures a, b, and c. Normalized Taylor diagrams of tem-

perature profiles for different platforms for the months of September, 
October, and November for PURPLE (red dots) and NEMO (blue 
dots) models. Normalized standard deviation is reported in horizontal 
and vertical axes (black lines), correlation is read as an angular quan-
tity (blue radials from the origin), and normalized cRMSE is repre-
sented by arc of circles (green dotted line), subfigures d, e, and f
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are reported in Table 1. Not all months are present, since 
April, June, July, August, and December have no available 
measurements.

For all the subfigures (a, b, c), the mean biases MBT ,N(z) 
and MBT ,P(z) are larger in the upper layer from 0 to −75 m 
depth, whereas the remaining portion of the profile tends 
to show a positive bias (the model underestimates tempera-
ture) aroud 0.2–0.3 °C. A similar pattern is found for the 
variability of the deviation between model and observation, 
with higher values in the upper layer, with �ΔT ,N(z) and 
�ΔT ,P(z) ranging from −2 to +3 °C, and lower values below 
the thermocline given by �ΔT ,N(z) and �ΔT ,P(z) in the order 
of O(10−1) °C.

More specifically, Fig. 2a (September) shows that the 
PURPLE model is able to reduce the shaded area between 
−25 and −75 m depth, and therefore the cRMSET , even if 
mean bias is improved or worsen based on the depth. The 
October data (Fig. 2b) show no substantial change in the 
MBT (z) between the two models. However, a small reduc-
tion of the cRMSET for the PURPLE model with respect 
to NEMO is present for the layer between 0 and −100 m 
depth. Figure 2c (November) reports a reduction both in the 

MBT ,P(z) with respect to MBT ,N(z) , and in the �ΔT ,P(z) with 
respect to �ΔT ,N(z) for the depths ranging from 0 to −75 m.

In addition, we carried out the analysis considering the 
behaviour of the single profile, by plotting normalized Tay-
lor diagrams (Taylor 2001) for the three months of Septem-
ber, October, and November (Fig. 2d, e, f). In such a case 
the different statistics calculated are not referred to specific 
depths, but to each profile, taken individually. Profiles for 
September and October (Fig. 2d and e) show the most part of 
normalized cRMSE lower than 0.5 time the standard devia-
tion of observations and correlation higher than 0.9, for 
both NEMO and PURPLE models, whereas November data 
(Fig. 2f) are characterized by normalized cRMSE values up 
to 1. The improvement of model output due to the downscal-
ing procedure is more clearly detectable in Fig. 2f, where red 
dots (PURPLE) tend to get closer to the observation than the 
blue dots (NEMO).

To better understand whether the downscaling proce-
dure leads to an improvement of the solution concerning 
the T profiles, an estimate of how much the PURPLE root 
mean square error ( RMSET ,P ) is lower than that of NEMO 
( RMSET ,N ), is calculated for each observation file and each 

Table 1   Summary of the total 
number of analysed temperature 
profiles per month and 
provenance

ER
T
 and cER

T
 measure the reduction in root mean squared error and centred root mean squared error 

obtained with the downscaling procedure. Averaged root mean squared error RMSE
T
 and centred root 

mean squared error cRMSE
T
 for both PURPLE (P) and NEMO (N) models are also reported

Month Obs. file Profiles ER
T
 [%] cER

T
 [%] RMSE

T
 [°C] cRMSE

T
 

[°C]

P N P N

January PF_6901835 6 2.1 21.5 0.22 0.20 0.17 0.14
PF_6903199 1 49 57.8 0.10 0.07 0.1 0.06
XX_IBEX 12 6.9 19 0.30 0.28 0.22 0.18

February PF_6901835 6 −43.5 5.5 0.25 0.40 0.14 0.12
PF_6903199 4 11.1 −10.7 0.29 0.24 0.14 0.16

March PF_6901835 6 −17.4 −17.8 0.19 0.22 0.08 0.1
PF_6902692 3 25.7 −10.8 0.25 0.20 0.13 0.13
PF_6903199 6 9.7 −23.1 0.20 0.17 0.09 0.12
XX_IBIL 10 −15.6 −6.8 0.29 0.34 0.17 0.17

May PF_FKJB 1 1.5 0.3 0.47 0.46 0.41 0.41
PF_6901835 5 15.6 13.3 0.25 0.22 0.2 0.17
PF_6902692 7 7.3 3.2 0.27 0.26 0.21 0.21
PF_6903202 1 −0.2 −8.1 0.27 0.27 0.1 0.11
XX_ICGK 12 0.3 0.3 0.44 0.45 0.27 0.28

September CT_FNCM 8 −74.9 −53.6 0.63 1.50 0.56 1.22
GL_6801661 164 −21.3 −14.7 0.49 0.61 0.46 0.62
GL_6801663 251 −16.9 −12.5 0.65 0.76 0.58 0.65

October GL_6801661 621 −32.3 −22.7 0.52 0.75 0.45 0.57
GL_6801663 639 −0.5 −0.2 0.75 0.79 0.63 0.63

November GL_6801661 180 −35.6 −37.6 0.58 0.81 0.47 0.67
GL_6801663 78 −17.1 −29.1 0.43 0.41 0.28 0.38
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month, and expressed as an error reduction ERT . More spe-
cifically, ERT is determined as follows:

where the summation extends to the number of analysed 
profiles ( Np ) for each observation file. In case ERT < 0 , we 
have a general reduction of the temperature RMSE for the 
PURPLE model with respect to NEMO, the opposite for 
ERT > 0 . In a similar way, cERT is determined by consider-
ing the centred root mean squared error (cRMSE).

Such statistics, together with the number of analysed pro-
files, and the average value of the RMSET and cRMSET for 
each observation platform, are reported in Table 1. In the 

(1)ERT =
100

Np

∑ RMSET ,P − RMSET ,N

1

2
(RMSET ,P + RMSET ,N)

first months of the year (January to May), characterized by 
a lower number of available profiles, a majority of positive 
ERT values are found; however, this aspect does not hold 
true for the cERT , having both positive and negative val-
ues. Differently, for the last months of the year (September 
to November), with a significantly major number of ana-
lysed profiles, ERT and cERT values are negative, meaning 
a reduction in model error is obtained by the downscaling 
procedure. Average RMSET and cRMSET values for PUR-
PLE range between 0.1 and 0.7 °C, with a median value of 
0.27 °C; those for NEMO range between 0.06 and 1.5 °C, 
with a median value equal to 0.28 °C.

To analyse the skill of the models in reproducing the 
salinity S profile patterns, we used the same approach as for 
T profiles. Figure 3 (a, b, c) reports the mean salinity bias 

Fig. 3   Mean salinity bias ± standard deviation for PURPLE (red 
solid line and shaded red area) and NEMO (blue solid line and 
shaded blue area) models, as a function of depth for different plat-
forms for the months of September, October, and November. The left 
column of each subfigure reports the distribution of data points with 
depth, subfigures (a, b, c). Normalized Taylor diagrams of salinity 

profiles for different platforms for the months of September, October, 
and November for PURPLE (red dots) and NEMO (blue dots) mod-
els. Normalized standard deviation is reported in horizontal and verti-
cal axes (black lines), correlation is read as an angular quantity (blue 
radials from the origin), and normalized cRMSE is represented by arc 
of circles (green dotted line), subfigures (d, e, f)
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MBS(z) ± its standard deviation �ΔS(z) (i.e. the cRMSE(z)), 
for those months (September, October, and November) hav-
ing the largest amount of available observations (Table 2).

Principal feature standing out from Fig. 3 is the peak in 
MBS,N and MBS,P , ranging from 0.1 to 0.2 PSU, at a depth 
between −25 and −100 m, meaning the models tend to 
underestimate the salinity content. An exception is present 
for the November dataset (Fig. 3c), where the uppermost 
layer (0 to −50 m) shows an opposite small bias smaller 
than 0.1 PSU. These profiles show comparable performances 
between NEMO and PURPLE models both for MBS , with 
differences O(10−2) PSU, and �ΔS(z) . The values of �ΔS(z) 
are slightly lower for PURPLE for the October dataset (b), 
whereas for the other two analysed months (a and c) non-
overlapping shaded areas tend to compensate each other.

Normalized Taylor diagrams for salinity profiles are 
reported in Fig. 3 (subfigures d, e, f). Salinity profiles appear 
to be less accurately described by both models. Most part 
of the data are comprised within 1.5 normalized cRMSE, 
and the correlation ranges from 0.4 to 0.99 (Fig. 3d and 
e). November data show a lower value for the cRMSE and 
correlation higher than 0.75 (Fig. 3d). The examination of 
normalized Taylor diagram does not allow clearly assess-
ing which model performs better since both red and blue 
dots seem to be similarly spread on the chart for the three 
datasets.

As for the analysis of temperature profiles, a summary 
of the statistics used to estimate the potential improvement 
gained by the downscaling procedure in reproducing salinity 
profiles, is reported in Table 2.

For salinity profiles, most part of the data for the first 
months of the year show positive ERS and cERS values, 
meaning the PURPLE model performs worse than NEMO. 
On the contrary, months from September to November are 
characterized by both positive and negative values of ERS 
and cERS , with a majority of negative ones. Averaged values 
of RMSES and cRMSES have ranges 0.03–0.15 and 0.04–0.23 
with equal median values of 0.08 for both PURPLE and 
NEMO models, respectively.

To merge together the information from temperature 
and salinity, and to verify the presence of any significant 
difference in observed and modelled static stability pat-
terns, we determine the Brunt-Väisälä frequency squared 
N2 = −g∕� ⋅ ��∕�z (Cushman-Roisin and Beckers 2011). 
The same spatial and temporal interpolation procedure 
employed for the analysis of temperature and salinity pro-
files alone ( dz = 2 m from 0 to −200 m and dz = 20 m 
from −200 to −400 m) is also adopted to calculate N2 , and 
a 5-point moving average is applied to the profiles derived 
from observations. Water density � is determined using 
the algorithm provided by Fofonoff and Millard Jr (1983). 
The values of N2 derived from observations, PURPLE 
and NEMO models, for the platform GL_6801661 during 
the period 1 October–9 November, and for the platform 
GL_6801663 during the period 21 September–31 Octo-
ber, are reported in Fig. 4a and b, respectively. The first 
noticeable aspect is that the variability of the peak value 
of N2 decreases moving from observation to PURPLE and 
NEMO models, almost disappearing for the latter. This is 
more easily detectable if we consider the bottom plot for 

Table 2   Summary of the 
total number of analysed 
salinity profiles per month and 
provenance

ER
S
 and cER

S
 measure the reduction in root mean squared error and centred root mean squared error 

obtained with the downscaling procedure. Averaged root mean squared error RMSE
S
 and centred root mean 

squared error cRMSE
S
 for both PURPLE (P) and NEMO (N) models are also reported

Month Obs. file Profiles ER
S
 [%] cER

S
 [%] RMSE

S
 [PSU] cRMSE

S
 

[PSU]

P N P N

January PF_6901835 6 8.6 −2 0.09 0.07 0.06 0.06
February PF_6901835 6 24.6 4.3 0.15 0.11 0.07 0.07
March PF_6901835 6 6.1 10.6 0.08 0.07 0.05 0.04

PF_6902692 3 37.7 45.7 0.11 0.08 0.06 0.03
May PF_FKJB 1 1.1 −0.8 0.06 0.06 0.03 0.03

PF_6901835 5 36 19.1 0.07 0.05 0.05 0.04
PF_6902692 7 3.6 6.1 0.08 0.08 0.07 0.07

September CT_FNCM 8 −52 −24.5 0.12 0.23 0.1 0.12
GL_6801661 164 12.4 15.2 0.11 0.1 0.13 0.13
GL_6801663 251 4 11.4 0.13 0.13 0.12 0.11

October GL_6801661 621 −10.4 −8.3 0.11 0.12 0.09 0.09
GL_6801663 639 −6.8 0.9 0.13 0.14 0.11 0.11

November GL_6801661 180 −20 −11.1 0.07 0.09 0.07 0.08
GL_6801663 78 16.1 8.8 0.07 0.06 0.06 0.06
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each subfigure, reporting the depth at which the maximum 
N2 value is attained, zmax(N2) . The black dashed line in the 
first three plots of each subfigure represents the median 
value of zmax(N2) for the observation dataset. A slightly bet-
ter performance of PURPLE model with respect to NEMO 

is detectable for the dataset GL_6801661 (Fig. 4a), hav-
ing the former a higher vertical resolution than the latter 
within the upper layer. Both models tend to underestimate 
the depth at which the transition toward a stable stratifica-
tion occurs, except for the period 4–9 November.

Fig. 4   Depth-dependent value 
of the Brunt-Väisälä frequency 
squared N2 derived by tempera-
ture and salinity profiles from 
observations (top plot), PUR-
PLE model (second plot from 
the top), NEMO model (third 
plot from the top), and depth 
at which maximum N2 value is 
attained (bottom plot) for obser-
vations (black dots), PURPLE 
(red dots), and NEMO (blue 
dots) models. The black dashed 
line represents the median value 
of zmax(N2) for the observation 
dataset. Subfigures a and b refer 
to platform GL_6801661 and 
GL_6801663, respectively
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4.2 � Models’ performance in reproducing surface 
currents

Surface currents from HF-radar are available for the north-
ern part of PURPLE domain, as shown in Fig. 1c. To assess 
the improvement obtained by downscaling NEMO sur-
face velocity, several statistics similar to those employed 
in previous section are calculated. More specifically, we 
compare observed and modelled values for velocity module 
��� =

√
u2 + v2 and direction � = arctan (v∕u) by means of 

RMSE|�|(x, y) and RMSE�(x, y) , which account for the spatial 
distribution of the root mean squared error, given a spe-
cific time window, corresponding to each quarter of the year 

(JFM, AMJ, JAS, and OND). Furthermore, we determined 
the correlation coefficient �(x, y) between observed and mod-
elled data for the u- and v-component of the velocity, using 
the same quarterly time windows. To measure the signifi-
cance of the correlation, we performed a t-test hypothesis 
with significance level of 0.05.

To make the comparison possible, since the PURPLE 
model output is provided every 3 h, we interpolate 3-hourly 
original daily NEMO data, and take HF-radar data every 3 
h. Spatial interpolation is carried out linearly and modelled 
velocities are mapped to HF-radar observation points.

The spatial distribution of the root mean squared error for 
both |�| and � is reported in Fig. 5. It is possible to notice 

Fig. 5   Spatial distribution of the root mean squared error for the module of velocity RMSE|�|(t) and its direction RMSE�(t) , grouped by 3-month 
intervals
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that the two models exhibit similar error patterns for the 
velocity magnitude ( O(10−1) m/s), with larger errors toward 
the coast, whereas errors in velocity direction are rarely 
lower than 50°for both models and variably located based on 
the analysed period. For each of the analysed time window, 
both the RMSE|�|(x, y) and RMSE�(x, y) tend to be lower for 
the PURPLE model with respect to NEMO, except for the 
OND quarter (Fig. 5b).

To better quantify the improvement obtained by the 
downscaling procedure concerning the RMSE, the quantity 
ERcurr is defined as follows:

where the summation extends to the number of compua-
tional cells ( Nxy ) over which the comparison between model 
and radar is evaluated. Results are reported in Table 3. In the 
same table also the results obtained by daily-averaging PUR-
PLE and HF-radar data are reported ( ERcurr,d ). This makes 
the comparison between the two models more robust being 
the NEMO data daily-averaged values. For both the quanti-
ties ERcurr and ERcurr,d , it is possible to observe a reduction 
of model error due to the downscaling procedure, except for 
the velocity direction during the JAS window for the daily-
averaged analysis, and during the OND time windows.

In Fig. 6, the correlation coefficients for u and v for those 
data with a p-value lower than 0.05 are reported. �(x, y) val-
ues associated to p-values larger than 0.05 are set to NaN 
(not a number) and not shown in the subfigures. A charac-
teristic pattern for the spatial distribution of the correlation 
coefficient is not easily identifiable and variations through-
out the time windows are present. In general, larger cor-
relation values are noticeable for the PURPLE with respect 
to the NEMO model. This is also confirmed by the larger 
amount of data for which a correlation is statistically sig-
nificant, since some portions of the HF-radar domain for 
the NEMO model are characterized by �(x, y) with p-value 
> 0.05 (Fig. 6b and c, related to v).

The spatially averaged values of �(x, y)u and �(x, y)v are 
determined for both NEMO and PURPLE models and 
reported in Table 4, together with the fraction of data 

(2)ERcurr =
100

Nxy

∑ RMSEcurr,P − RMSEcurr,N

1

2

(
RMSEcurr,P + RMSEcurr,N

)

showing a significant correlation (in round brackets). As 
for the analysis of the RMSE, the values obtained by the 
analysis carried out on daily-averaged data are reported. 
For all the analysed time windows, a larger correlation is 
found for the PURPLE with respect to the NEMO model 
and a larger proportion of significantly correlated data. 
Few exceptions are �v , �u,d , and �v,d for the OND time 
window.

5 � Discussion

5.1 � Models performances and sources of error

Even if the amount of available observation does not uni-
formly cover the spatial and temporal domain, several 
aspects regarding the effectiveness of the downscaling 
procedure in providing more reliable and precise results 
are emerged and deserve to be analysed.

For temperature profiles, the comparison between mod-
elled and observed data allows us to conclude that the 
downscaling procedure is able to reduce the error between 
model and observations for those periods where a huge 
amount of observation values is available (September 
to November), whereas this is not clearly detectable in 
relation to periods poorly covered by field data. Indeed, 
looking at Table 1, from January to May, we have a pre-
dominance of positive values of ERT  (worsening) and a 
predominance of negative values for cERT (improvement). 
Of course, the performance of the downscaling procedure 
has nothing to do with the number of available observa-
tions, but being the uncertainty associated to the periods 
with a smaller number of data, we argue that a further 
number of observations in the winter and spring months 
would be required to more robustly confirm the better per-
formance of the PURPLE model with respect to NEMO.

The results regarding salinity profiles are more uncer-
tain. In such a case, the predominance of negative ERS and 
cERS values, among those months with the higher number 
of observations (September to November), is not present. 
Furthermore, for those having at most 7 profiles avail-
able, a worsening is detectable (see Table 2). However, 
mean bias for PURPLE model profiles resembles, for most 
part of observations, the mean bias from NEMO profiles 
(Fig. 3), raising the question of how much a downscaled 
model improves the output, in relation to the degree of 
inaccuracy of the parent model.

To tackle the issue, the scatter plot of RMSEN versus 
RMSEP , for all available temperature and salinity profiles 
from 0 to 200 m depth, is reported in Fig. 7 (a and c), 
together with the relative error reduction:

Table 3   Summary of the monthly synthetic values for the error 
reduction ER

curr
 for surface currents

Period ER
curr

 [%] ER
curr,d

 [%]

|�| � |�| �

JFM −4.1 −9.1 −13.6 −13.4
AMJ −14.9 −23.3 −21.4 −8.9
JAS −16.6 −8.6 −16.2 2.7
OND −2.3 7.2 −4.0 9.5
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Fig. 6   Spatial distribution of the correlation coefficient for u and v, grouped by 3-month intervals

Table 4   Summary of the spatially averaged values of the correlation coefficients �
u
 and �

v

Values obtained with daily-averaged data are indicated with �
u,d

 and �
v,d

 . Percentages in round brackets correspond to the proportion of correla-
tion coefficient values associated to p-values < 0.05. N and P refer to NEMO and PURPLE models, respectively

Period �
�
 (%) �

�
 (%) �

�,�
 (%) �

�,�
 (%)

N P N P N P N P

JFM 0.26 (84.8) 0.41 (98.3) 0.36 (96.3) 0.54 (99.2) 0.37 (69.6) 0.47 (93.0) 0.50 (72.8) 0.61 (98.7)
AMJ 0.19 (93.7) 0.45 (100) 0.20 (67.0) 0.57 (100) 0.34 (79.6) 0.42 (77.6) 0.28 (40.3) 0.57 (98.4)
JAS 0.21 (88.8) 0.41 (100) 0.14 (40.0) 0.46 (100) 0.34 (74.0) 0.44 (83.1) 0.29 (7.6) 0.46 (97.6)
OND 0.36 (97.8) 0.32 (99.1) 0.37 (86.1) 0.41 (92.7) 0.43 (92.4) 0.40 (81.5) 0.52 (73.1) 0.50 (82.2)
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as a function of the initial root mean squared error RMSEN 
(b and d). Points on the right of 1:1 line (black dashed line) 
in Fig. 7a and c mean a reduction in the root mean squared 
error due to downscaling, and indeed, most part of tem-
perature profiles (65%) are improved by PURPLE model 
(a), whereas if it is less evident (52% profiles improved) 
for salinity (c). As expected, a correlation seems to exist 
between RMSEN and RMSEP , meaning that the perfor-
mances of the downscaled model are anchored to those 
of the parent one. Furthermore, looking at Fig. 7b and d, 
we observe that error reduction (negative ΔRMSE∗ values, 
Eq. 3) is mostly concentrated within specific ranges of the 
error coming from the NEMO model (around 0.1 °C for tem-
perature, and between 0.01 and 0.02 PSU for salinity). For 
those profiles having larger initial errors ( RMSET ,N larger 
than 0.2 °C and RMSES,N larger than 0.03 PSU), the effect 
of downscaling is not able to reduce them more than 40% 
(i.e. only few values of ΔRMSE∗

T
 and ΔRMSE∗

S
 are lower than 

−0.4 in Fig. 7b and d).
Figures 2 and 3 (subfigures from a to c) show that most 

part of inaccuracies concerning temperature and salinity 
profiles lie within the depth range −25 to −75 m. Look-
ing at Fig. 4, the main source of error appears to be in an 
underestimation, by the models, of the depth at which the 
most stable stratification occurs. This was also noticed by 

(3)ΔRMSE∗ =
RMSEP − RMSEN

RMSEN

Onken (2017) for a similar application close to the western 
Sardinian coast (Mediterannean Sea), and might partially 
be ascribable to a low value of the vertical eddy viscosity, 
which can be enhanced by surface waves, which are, in fact, 
not included in the models. Moreover, the underestimation 
of the stable layer present in the NEMO model is hardly 
recovered by PURPLE. On the one hand, the daily-aver-
aged output and the vertical resolution of NEMO, which 
decreases linearly from 4 to 9 m passing from −20 to −100 
m depth, might not be sufficient to accurately resolve the 
stratification pattern. Indeed, the stable layer depth remains 
almost unchanged even if the NEMO model ingests both 
temperature and salinity profiles via a 3D-Var assimilation 
scheme (Simoncelli et al. 2019). On the other hand, the short 
spin-up period would not allow the nested model to deepen 
the mixed layer and is just sufficient to slightly increase the 
variability of the zmax(N2) for PURPLE with respect to NEMO 
(Fig. 4), whereas the models have almost the same behaviour 
below −100 m (Figs. 2 and 3).

This gives rise to the issue concerning the implemen-
tation strategy of the modelling system: if the interest is 
on surface processes, a frequent reinitialization avoids the 
nested model to drift, while allowing the development of 
superficial variability; if the interest is on deep layer pro-
cesses, a longer time is required to the nested model to 
develop a sufficient variability below the surface layer. An 
assimilation procedure or simple nudging toward measured 
values in the downscaled model might be useful to reduce 

Fig. 7   Scatter plot between NEMO and PURPLE root mean squared 
error for temperature (a) and salinity (c); black dashed line indicates 
1:1 reference. Scatter plot between relative error reduction ΔRMSE∗ 
as a function of initial root mean squared error RMSEN for both tem-
perature (b) and salinity (d); black dashed line is the horizontal ref-
erence between positive and negative values. Scatter plot between 

NEMO and PURPLE root mean squared error for velocity magnitude 
(e) and direction (g); black dashed line indicates 1:1 reference. Scatter 
plot between relative error reduction ΔRMSE∗ as a function of initial 
root mean squared error RMSEN for both velocity magnitude (f) and 
direction (h); black dashed line is the horizontal reference between 
positive and negative values. Colour bars indicate density of data
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the mismatch between observed and modelled stratification 
and to avoid the need for frequent reinitializations.

Surface current observations from HF-radar uniformly 
cover the whole year. To give a measure of the ability of the 
model to reproduce the main current patterns, the monthly-
averaged velocity field is reported in Fig. 8 for the months of 
January (a) and June 2017 (b). The winter flow field shows a 
northward transport through the Corsica Channel, together 
with the westward veering of the water coming from south 
(Millot 1999), whereas a flow reversal is present during the 
summer season, as reported by Sciascia et al. (2019). How-
ever, these main features at large temporal and spatial scales 
are strictly linked to the flow pattern coming from the par-
ent model and the downscaling procedure is hardly able to 
change them significantly.

Overall, the PURPLE model tends to improve the per-
formance of NEMO for most part of the year, but for the 
last quarter (Tables 3 and 4; Figs. 5 and 6). However, since 
the wind forcing has a first-order effect on surface currents, 
even at coastal scale (Lana et al. 2016), we may argue it is 
a worsening in the atmospheric forcing to be responsible of 
the increased error in November and December. This aspect 
deserves to be specifically addressed in future researches 
through a coupled analysis of the performances of atmos-
pheric and oceanographic models with respect to observed 
winds and currents, respectively. Furthermore, it is notewor-
thy to stress the high value of the root mean squared error 
in the current direction, for both the NEMO and PURPLE 
models (Fig. 5), ranging from 40 to 120°, and the values of 
the correlation coefficient which range between 0.36 and 
0.61 for the PURPLE model, and between 0.14 and 0.50 
for the NEMO model (Table 4). Both ERA-Interim origi-
nal winds and downscaled ERA5 winds may result impre-
cise close to the coast, especially where steep topographic 

gradients are present in the mainland (Zhang et al. 2013), as 
for the area monitored by HF-radar. This might be a reason 
why both NEMO and PURPLE models do not present good 
skills in reproducing surface current direction and achieve 
correlation coefficients of no more than 0.6 for u and v.

In addition to the increased spatial resolution, one of the 
reasons for the improvement obtained by the downscaling 
procedure, especially for the velocity magnitude, is attribut-
able to the differences in temporal outputs between the two 
models, daily-averaged values for NEMO and three-hourly 
intervals for ROMS. The results obtained from three-hourly 
interpolated and daily-averaged data, reported in Table 3, 
do not show a clear trend in the differences among results, 
and a predominance of negative values for the ERcurr is pre-
sent in both approaches. Furthermore, looking at Table 4, 
it is possible to notice that correlation tends to increase for 
NEMO when HF-radar data are daily-averaged, whereas it 
remains almost unchanged for PURPLE data. However, both 
for three-hourly interpolated and daily-averaged data, the 
downscaling procedure appears to increase the correlation.

To verify a potential relation between the error from the 
two models, the scatter plots of RMSE|�|,N versus RMSE|�|,P , 
and RMSE�,N versus RMSE�,P are reported in Fig. 7 (e and 
g). They show the lack of clear correlation between the 
errors for the NEMO and PURPLE models, and a predomi-
nance of data values below the reference line (1:1), 60% for 
velocity magnitude, and 57% for direction.

Furthermore, as for the temperature and salinity pro-
files, we determine the relative error reduction ΔRMSE∗ 
for both |�| and � (Fig. 7f and h). It is possible to observe 
that the error reduction (negative ΔRMSE∗ values) tends 
to span the initial RMSEN values, more uniformly, than 
observed for temperature and salinity profiles. Indeed, 
inaccurate initial condition for surface current may be 

Fig. 8   Monthly-averaged surface currents for January 2017 (a) and June 2017 (b) for the PURPLE model
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corrected by increased resolution or improved wind forc-
ing, being surface dynamics faster than interior in respond-
ing to atmospheric forcing.

To consider if the improvement/worsening of model solu-
tion due to downscaling is affected by the time after the 
spin-up period (3 days), we analyse if significant variations 
in the distribution of the ΔRMSE = RMSEP − RMSEN occur 
across the three sets composed by all the first, the fourth, 
and the seventh days after the spin-up period. The check 
is carried out for temperature, salinity, velocity magnitude 
and direction. We did not find significant differences in the 
statistical distribution of the ΔRMSE across the three sets of 
days (results not shown).

Another important issue concerns the spatial coverage of 
the HF-radar observations. They can be used to validate the 
model on a small portion of the computational domain and 
it is rather difficult to infer about the skill of the model away 
from the observation area. It is therefore important to keep 
in mind that the conclusions about the model’s performance, 
obtained by localized observations which give information 
on the surface layer, do not necessarily ensure similar results 
for the remaining part of the domain. This is especially true 
for the deeper layer, where the potential improvement of the 
downscaling procedure may not be significant due to the 
short spin-up period employed. Moreover, the present analy-
sis shows the intrinsic difficulty to unambiguously evaluate 
the skill of a model to reproduce observed patterns. A large 
amount of data, even if covering a portion of the analysed 
domain, requires several statistics and caution to interpret 
the results.

5.2 � A simple metric to compare vector fields

The use of root mean squared error to test the skill of the 
model to reproduce current direction and magnitude, sepa-
rately, can be partially misleading. It would therefore be use-
ful to have a metric which combines the performances of 
the model in reproducing current magnitude and direction. 
We propose to employ the measure of the error � , defined 
as follows:

where Δ� is the angular difference in radians between mod-
elled and observed velocity vectors, |�| = 1

2
(|�o| + |�m|) 

and Δ|�| = |�o| − |�m| , are the mean and the difference 
of the velocity magnitudes from observed (subscripts o) 
and modeled (subscripts m) values, respectively. The first 
component under the square root accounts for the error in 
direction, whereas the second for the error in magnitude.

(4)
� =

√(
Δ�|�|

)2

+ Δ|�|2

|�|

Another possible metric to measure the mismatch 
between observations and models is simply the ratio of the 
vectorial difference to the mean magnitude of velocity

The values assumed by the two measures of error � and �∗ 
(Eqs. 4 and 5) for a series of possible mismatches between 
observed and modelled vectors are reported at the bottom 
of Fig. 9. Each value of � and �∗ corresponds to a specific 
space-time coordinate (x, y, t). The two metrics behave simi-
larly when the velocity vectors have small differences in 
orientations, whereas the larger the value of Δ� , the larger 
the penalty obtained by � with respect to �∗ . This is indeed 
a way to emphasize the effect of mismatch in directions. A 
certain dose of arbitrariness affects the choice, but we argue 
it is a good compromise to weigh both the performance of 
the model in terms of current kinetic energy (i.e. velocity 
magnitude) and mean direction.

To assess the skill of the model to reproduce the observed 
current velocity field, the values of � are time-averaged. Fig-
ure 9 reports the spatially distributed �avg(x, y) for the four 
quarters of the year. All the quarters clearly show a better 
performance of PURPLE model with respect to NEMO. 
Moreover, if we determine a measure of the reduction of 
error ER, analogously to what was done for the other vari-
ables |�| and �:

where Nxyt represents the total amount of data points in a 
quarter. ER� gets always negative values equal to −40%, 
−66%, −46%, and −26% for the JFM, AMJ, JAS, and OND 
quarters, respectively. These values are determined employ-
ing velocity field data at 3-hourly time scale.

If the same procedure is carried out using daily-averaged 
velocity fields, the reduction of error ER is equal to −49%, 
−50%, −30%, and −23% for the JFM, AMJ, JAS, and OND 
quarters, respectively. In both cases, the reduction in the 
error is large and is not significantly affected by the use of 
3-hourly or daily-averaged data.

6 � Conclusion

In the present work, we try to quantify the improvement 
gained by downscaling the CMEMS reanalysis product 
MEDSEA_REANALYSIS_PHY_006_004 (Simoncelli 
et  al. 2019), in reproducing temperature and salinity 
profiles, and surface currents, in the area between Ligu-
rian and Tyrrhenian basins, for the year 2017. ROMS in 

(5)�∗ =

√
(uo − um)

2 + (vo − vm)
2

���

(6)ER� =
100

Nxyt

∑ �P − �N
1

2
(�P + �N)
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one-way nested configuration, with atmospheric forcing 
from ERA5 dynamic downscaling (Vannucchi et al. 2021), 
is employed to transfer ocean dynamics from 1/16° daily 
scale (NEMO model) to 1/216° 3-hourly scale (PURPLE 
configuration).

The comparison of model outputs with respect to tem-
perature profiles shows the downscaled model (PURPLE) 
has, in general, a lower root mean squared error than the 
parent one (NEMO). This is supported by a large number 
of observations O(102−103) , which were available during 
September, October, and November. On the contrary, for 
the other months where a few observations where available 
O(10), the two models appear to behave similarly: NEMO 
having a lower RMSE, PURPLE a lower cRMSE. If we con-
sider salinity profiles, the comparison is less straightforward, 
being the NEMO model to perform better for most part of 
the year if we consider observations grouped per months, but 
it is the PURPLE model to have a lower root mean squared 
error if we consider field measurements all at once.

The analysis of the static stability profiles shows that both 
models suffer for an underestimation of mixed layer depth, 
which is responsible for the largest values in mean bias for 
temperature and salinity profiles between −25 and −75 m 
depth. Such an inaccuracy is indeed hardly recovered by the 
downscaled model.

A simple analysis of the root mean squared error for tem-
perature profiles shows that the downscaling procedure is 
more effective in reducing those errors from parent model 
which are in between 0.05 and 0.15 °C, though it is less 
evident for salinity.

Surface currents from HF-radar cover an area roughly 
30 × 30 km2 in front of Cinque Terre (Liguria, Italy). The 
PURPLE model has better performances than NEMO in 
reproducing surface currents for at least three quarters of 
the year, being able to reduce the RMSE for both the module 
and the direction of velocity, and increasing the correlation 
coefficient for the u and v components. However, such a 
result is entirely obtained considering the limited area cov-
ered by HF-radars and caution is required to infer that the 
same holds true for the remaining part of the domain.

The analysis of dependencies between errors in surface 
velocity field from NEMO and PURPLE models shows there 
is not a preferential error range for which the downscaling 
procedure helps to improve the representation of surface 
sea dynamics. Indeed, surface currents are strongly affected 
by atmospheric forcing, and lose the dependency from the 
dynamic state provided by initial conditions faster than tem-
perature and salinity profiles.

A simple metric to compare vectorial quantities is pro-
posed to simultaneously account for both differences in 

Fig. 9   Spatially distributed time-averaged values �avg(x, y) for the quarters of the year from NEMO and PURPLE models, together with sketches 
showing the values attained by � and �∗ for different combinations of modelled and observed velocity vector
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velocity magnitude and direction between observed and 
modelled values. Using such a metric to assess the perfor-
mance of the models with respect to surface currents, a more 
clear improvement is observable as a consequence of the 
downscaling procedure.

At the present stage, the downscaling procedure of the 
updated reanalysis product provided by CMEMS, MED-
SEA_MULTIYEAR_PHY_006_004 (Escudier et al. 2020) 
is ongoing, and future works will compare this product with 
the downscaled model presented herein.

Funding  This research was partly funded by the EU SICOMAR Plus 
project (2018-2021).

Data availability  The datasets generated during and/or analysed dur-
ing the current study are available from the corresponding author on 
reasonable request.

Declarations 

Conflict of interest  The authors declare no competing interests.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

Aguiar E, Mourre B, Juza M et al (2020) Multi-platform model assess-
ment in the western mediterranean sea: impact of downscaling on 
the surface circulation and mesoscale activity. Ocean Dynamics 
70(2):273–288

Astraldi M, Gasparini G (1992) The seasonal characteristics of the 
circulation in the north mediterranean basin and their relationship 
with the atmospheric-climatic conditions. Journal of Geophysical 
Research: Oceans 97(C6):9531–9540

Astraldi M, Bianchi C, Gasparini G et al (1995) Climatic fluctuations, 
current variability and marine species distribution-a case-study 
in the ligurian sea (north-west mediterranean). Oceanologica acta 
18(2):139–149

Blayo E, Debreu L (2006) Nesting ocean models. In: Ocean weather 
forecasting. Springer, p 127–146

Bricheno LM, Wolf JM, Brown JM (2014) Impacts of high resolution 
model downscaling in coastal regions. Continental Shelf Research 
87:7–16

Buzzi A, Davolio S, Malguzzi P et al (2014) Heavy rainfall episodes 
over liguria in autumn 2011: numerical forecasting experiments. 
Natural Hazards and Earth System Sciences 14(5):1325

Chapman DC (1985) Numerical treatment of cross-shelf open bound-
aries in a barotropic coastal ocean model. Journal of Physical 
Oceanography 15(8):1060–1075

Copernicus Marine In Situ TAC (2020) Copernicus in situ NRT current 
product user manual (PUM). Ifremer. https://​doi.​org/​10.​13155/​
73192

Copernicus Marine Team (2020) Product User Manual for multipa-
rameter Copernicus In Situ TAC (PUM). Copernicus in situ TAC. 
https://​doi.​org/​10.​13155/​43494

Corgnati L, Mantovani C, Rubio A et al (2018) Building strong foun-
dations towards the pan-european high frequency radar network. 
Boll Geof Suppl 59:246–247

Cucco A, Sinerchia M, Ribotti A et al (2012) A high-resolution real-
time forecasting system for predicting the fate of oil spills in the 
strait of bonifacio (western mediterranean sea). Marine Pollution 
Bulletin 64(6):1186–1200

Cushman-Roisin B, Beckers JM (2011) Introduction to geophysi-
cal fluid dynamics: physical and numerical aspects. Academic 
Press, New York

Dee DP, Uppala S, Simmons A et al (2011) The era-interim rea-
nalysis: Configuration and performance of the data assimilation 
system. Quarterly Journal of the Royal Meteorological Society 
137(656):553–597

Dobricic S, Pinardi N (2008) An oceanographic three-dimen-
sional variational data assimilation scheme. Ocean Modelling 
22(3–4):89–105

Escudier R, Clementi E, Omar M, et al (2020) Mediterranean sea 
physical reanalysis (cmems med-currents). Copernicus Monitor-
ing Environment Marine Service (CMEMS)

Fairall CW, Bradley EF, Rogers DP et al (1996) Bulk parameteri-
zation of air-sea fluxes for tropical ocean-global atmosphere 
coupled-ocean atmosphere response experiment. Journal of 
Geophysical Research: Oceans 101(C2):3747–3764

Flather R (1976) A tidal model of the north-west european conti-
nental shelf. Memoires de la Societe Royale de Sciences de 
Liege 6:141–164

Fofonoff N, Millard Jr R (1983) Algorithms for computation of fun-
damental properties of seawater. endorsed by unesco/scor/ices/
iapso joint panel on oceanographic tables and standards and 
scor working group 51. unesco technical papers in marine sci-
ence, no. 44. Tech. rep., UNESCO

Fossi MC, Romeo T, Baini M et al (2017) Plastic debris occurrence, 
convergence areas and fin whales feeding ground in the medi-
terranean marine protected area pelagos sanctuary: A modeling 
approach. Frontiers in Marine Science 4:167

Haidvogel DB, Arango HG, Hedstrom K et al (2000) Model evalua-
tion experiments in the north atlantic basin: simulations in non-
linear terrain-following coordinates. Dynamics of Atmospheres 
and Oceans 32(3–4):239–281

Haney RL (1991) On the pressure gradient force over steep topog-
raphy in sigma coordinate ocean models. Journal of Physical 
Oceanography 21(4):610–619

Iacono R, Napolitano E (2020) Aspects of the summer circulation 
in the eastern ligurian sea. Deep Sea Research Part I: Oceano-
graphic Research Papers 166(103):407

Katavouta A, Thompson KR (2016) Downscaling ocean conditions 
with application to the gulf of maine, scotian shelf and adjacent 
deep ocean. Ocean Modelling 104:54–72

Lana A, Marmain J, Fernandez V et al (2016) Wind influence on 
surface current variability in the ibiza channel from hf radar. 
Ocean Dynamics 66(4):483–497

López AG, Wilkin JL, Levin JC (2020) Doppio–a roms (v3. 6)-based 
circulation model for the mid-atlantic bight and gulf of maine: 
configuration and comparison to integrated coastal observ-
ing network observations. Geoscientific Model Development 
13(8):3709–3729

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.13155/73192
https://doi.org/10.13155/73192
https://doi.org/10.13155/43494


	 Ocean Dynamics

1 3

Lorente P, García-Sotillo M, Amo-Baladrón A, et al (2019) Skill 
assessment of global, regional, and coastal circulation forecast 
models: evaluating the benefits of dynamical downscaling in ibi 
(iberia–biscay–ireland) surface waters. Ocean Sci 15(4)

Madec G (2014) the nemo team: Nemo ocean engine–version 3.4. 
Note du Pole de modelisation, Institut Pierre-Simon Laplace 
(IPSL) 27

Mader J, Rubio A, Asensio J, et al (2017) The European HF radar 
inventory. publication date 15 Sep 2016 (updated version 30 Jan 
2017). Tech. rep., EuroGOOS

Marchesiello P, McWilliams JC, Shchepetkin A (2001) Open boundary 
conditions for long-term integration of regional oceanic models. 
Ocean Modelling 3(1–2):1–20

Mason E, Molemaker J, Shchepetkin AF et al (2010) Procedures for 
offline grid nesting in regional ocean models. Ocean Modelling 
35(1–2):1–15

Millot C (1999) Circulation in the western mediterranean sea. Journal 
of Marine Systems 20(1–4):423–442

Olita A, Ribotti A, Fazioli L et al (2013) Surface circulation and 
upwelling in the sardinia sea: A numerical study. Continental 
Shelf Research 71:95–108

Onken R (2017) Validation of an ocean shelf model for the predic-
tion of mixed-layer properties in the mediterranean sea west of 
sardinia. Ocean Sci 13(2)

Onken R, Robinson AR, Kantha L et al (2005) A rapid response now-
cast/forecast system using multiply nested ocean models and dis-
tributed data systems. Journal of Marine Systems 56(1–2):45–66

Onken R, Baschek B, Angel-Benavides IM (2020) Very high-resolution 
modelling of submesoscale turbulent patterns and processes in the 
baltic sea. Ocean Science 16(3):657–684

Sciascia R, Magaldi MG, Vetrano A (2019) Current reversal and 
associated variability within the corsica channel: The 2004 case 
study. Deep Sea Research Part I: Oceanographic Research Papers 
144:39–51

Shchepetkin AF, McWilliams JC (2003) A method for computing 
horizontal pressure-gradient force in an oceanic model with a 
nonaligned vertical coordinate. J Geophys Res Oceans 108(C3)

Shchepetkin AF, McWilliams JC (2005) The regional oceanic mod-
eling system (roms): a split-explicit, free-surface, topography-fol-
lowing-coordinate oceanic model. Ocean Modelling 9(4):347–404

Sikirić MD, Janeković I, Kuzmić M (2009) A new approach to bathym-
etry smoothing in sigma-coordinate ocean models. Ocean Model-
ling 29(2):128–136

Simoncelli S, Fratianni C, Pinardi N, et al (2019) Mediterranean sea 
physical reanalysis (cmems med-physics)[data set]. Copernicus 
Monitoring Environment Marine Service (CMEMS)

Sorgente R, Tedesco C, Pessini F et al (2016) Forecast of drifter tra-
jectories using a rapid environmental assessment based on ctd 
observations. Deep Sea Research Part II: Topical Studies in 
Oceanography 133:39–53

Taylor KE (2001) Summarizing multiple aspects of model performance 
in a single diagram. Journal of Geophysical Research: Atmos-
pheres 106(D7):7183–7192

Trotta F, Fenu E, Pinardi N et al (2016) A structured and unstructured 
grid relocatable ocean platform for forecasting (surf). Deep Sea 
Research Part II: Topical Studies in Oceanography 133:54–75

Trotta F, Pinardi N, Fenu E et al (2017) Multi-nest high-resolution 
model of submesoscale circulation features in the gulf of taranto. 
Ocean Dynamics 67(12):1609–1625

Umlauf L, Burchard H (2003) A generic length-scale equation for 
geophysical turbulence models. Journal of Marine Research 
61(2):235–265

Vannucchi V, Taddei S, Capecchi V et al (2021) Dynamical downscal-
ing of era5 data on the north-western mediterranean sea: From 
atmosphere to high-resolution coastal wave climate. Journal of 
Marine Science and Engineering 9(2):208

Visbeck M (2018) Ocean science research is key for a sustainable 
future. Nature communications 9(1):1–4

Warner JC, Geyer WR, Arango HG (2010) Using a composite grid 
approach in a complex coastal domain to estimate estuarine resi-
dence time. Computers & Geosciences 36(7):921–935

Zhang H, Pu Z, Zhang X (2013) Examination of errors in near-surface 
temperature and wind from wrf numerical simulations in regions 
of complex terrain. Weather and Forecasting 28(3):893–914


	High-resolution downscaling of CMEMS oceanographic reanalysis in the area of the Tuscany Archipelago (Italy)
	Abstract
	1 Introduction
	2 Model configuration and validation
	2.1 One-way nesting in ROMS
	2.2 Initial and boundary conditions and atmospheric forcing
	2.3 Validation against field observations

	3 Field observations
	3.1 In situ temperature and salinity profiles
	3.2 Surface currents from HF-radar

	4 Results
	4.1 Models performance in reproducing temperature and salinity profiles
	4.2 Models’ performance in reproducing surface currents

	5 Discussion
	5.1 Models performances and sources of error
	5.2 A simple metric to compare vector fields

	6 Conclusion
	References


