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Background. Cardiovascular risk models are based on traditional risk factors and inves-
tigations such as imaging tests. External validation is important to determine reproducibility
and generalizability of a prediction model. We performed an external validation of t the
Japanese Assessment of Cardiac Events and Survival Study by Quantitative Gated SPECT (J-
ACCESS) model, developed from a cohort of patients undergoing stress myocardial perfusion
imaging.

Methods. We included 3623 patients with suspected or known coronary artery disease
undergoing stress single-photon emission computer tomography (SPECT) myocardial perfusion
imaging at our academic center between January 2001 and December 2019.

Results. In our study population, the J-ACCESS model underestimated the risk of major
adverse cardiac events (cardiac death, nonfatal myocardial infarction, and severe heart failure
requiring hospitalization) within three-year follow-up. The recalibrations and updated of the
model slightly improved the initial performance: C-statistics increased from 0.664 to 0.666 and
Brier score decreased from 0.075 to 0.073. Hosmer–Lemeshow test indicated a logistic
regression fit only for the calibration slope (P = .45) and updated model (P = .22). In the update
model, the intercept, diabetes, and severity of myocardial perfusion defects categorized coef-
ficients were comparable with J-ACCESS.

Conclusion. The external validation of the J-ACCESS model as well as recalibration
models have a limited value for predicting of three-year major adverse cardiac events in our
patients. The performance in predicting risk of the updated model resulted superimposable to
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the calibration slope model. (J Nucl Cardiol 2023) Key Words: CAD Æ SPECT Æ MPI Æ
diagnostic and prognostic application

Abbreviations
SPECT Single-photon emission computed

tomography

J-ACCESS Japanese Assessment of Cardiac Events

and Survival Study by Quantitative

Gated SPECT

MACE Major adverse cardiac event

CAD Coronary artery disease

LV Left ventricular

dmax Maximum difference in predicted vs.

loess-calibrated probabilities

dmean Mean difference in predicted vs. loess-

calibrated probabilities

CI Confidence interval

INTRODUCTION

The evaluation of cardiovascular risk is based on

traditional risk factors and data from clinical investiga-

tions such as imaging tests. This methodology is

currently used to forecast the outcome of cardiovascular

tests as well as risk of cardiac events.1–9 However, using

these prediction models at different times or with

different cohorts from which they derived, frequently

they proved inadequate.5,10,11 The poor performance can

be due to several factors. With regards to the time factor,

in the last decades the prevention as well as the

development of diagnostic and therapeutic techniques

have reduced mortality and morbidity in cardiovascular

patients.12,13 In several studies on temporal trend of

single-photon emission computed tomography (SPECT)

myocardial perfusion imaging, the total volume of

performed studies declined, the number of traditional

risk factors increased, and the prevalence of abnormal

studies decreased.14–19 On the other hand, also a

contemporary model can result inadequate when it is

used with a different cohort. In particular, when a model

results poor by external validation, a procedure of data

adaptation consists in its recalibration.20,21 In this case,

the risk evaluation is computed by one (additive) or

more parameters (additive and multiplicative) that

change the values of the intercept and covariate coef-

ficients of the logistic regression, that represents the

model. Instead, a model that became obsolete or remains

poor can be updated using the same variables of the

model but with new coefficients inferred from values

observed in a new cohort. Therefore, new coefficients of

the variables are obtained. In the present study we

performed an external validation of the Japanese

Assessment of Cardiac Events and Survival Study by

Quantitative Gated SPECT (J-ACCESS) model7,8 to

evaluate its ability for predicting cardiac events using

data from our institution. To obtain a complete valida-

tion, we performed two recalibrations and the update of

the model.

METHODS

Patients

We included a total of 3623 patients undergoing

stress and rest SPECT myocardial perfusion imaging at

our academic center between January 2001 and Decem-

ber 2019, with available follow-up for major adverse

cardiac event (MACE), defined as cardiac death, non-

fatal myocardial infarction, and severe heart failure

requiring hospitalization within 3 years of the imaging

study. These patients were part of an ongoing prospec-

tive dedicated database.22

The criteria used for patient selection were the same

reported in the J-ACCESS study.7,8 More in detail, the

inclusion criteria were C 20 years of age and stress and

rest ECG-gated SPECT performed for suspected or

known coronary artery disease (CAD). Patients with

onset of myocardial infarction or unstable angina pec-

toris within 3 months, valvular heart disease, idiopathic

cardiomyopathy, severe arrhythmia, heart failure with

class III or higher New York Heart Association classi-

fication, and severe liver or renal disorders were

excluded. In agreement with the J-ACCESS protocol,

we also excluded patients submitted to coronary artery

revascularization within 60 days of the SPECT study. At

the time of testing, clinical teams collected pertinent

demographic and clinical information, past cardiac

history, and CAD risk factors based on patient report

or available medical records. Patients were classified as

having diabetes if they were receiving treatment with

oral hypoglycemic drugs or insulin. The review com-

mittee of our institution approved this study (Ethics

Committee, University Federico II, protocol number

110/17), and all patients gave informed consent.

Myocardial perfusion imaging

Patients underwent stress-optional rest 99mTc-ses-

tamibi SPECT myocardial perfusion imaging by

physical exercise or pharmacologic stress using dipyri-

damole, according to the recommendations of the

European Association of Nuclear Medicine.23 In all

patients, beta-blocking medications and calcium
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antagonists were withhold for 48 hours and long-acting

nitrates for 12 hours before testing. For patient under-

going exercise test, symptom-limited treadmill

standardized protocols were performed. For dipyri-

damole stress test, patients were instructed not to

consume products containing caffeine for 24 hours

before the test. Dipyridamole was infused at dose of

0.142 mg�kg-1 min-1 intravenous over 4 minutes. A

dose of 100 mg of aminophylline was administered

intravenously in the event of chest pain or other

symptoms, or after significant ST depression. At peak

exercise, or 4 minutes after completion of dipyridamole

infusion, patients were intravenously injected with

99mTc-sestamibi (8 to 10 mCi for stress and 32 to

40 mCi for rest). Imaging was started 30 to 45 minutes

after tracer injection using a dual-head rotating gamma

camera (E.CAM, Siemens Medical Systems, Hoffman

Estates, IL, USA) equipped with a low-energy, high

resolution collimator and connected with a dedicated

computer system. No attenuation or scatter correction

was used.

An automated software program (e-soft, 2.5, QGS/

QPS, Cedars-Sinai Medical Center, Los Angeles, CA)

was used to calculate left ventricular (LV) volumes and

ejection fraction and the scores incorporating both the

extent and severity of perfusion defects using standard-

ized segmentation of 20 myocardial regions.24 Perfusion

defects were quantified adding the scores of the 20

segments and expressed as summed stress score, repre-

senting the total myocardium abnormal. Summed stress

and summed rest scores were measured independently

from the stress and rest scans and summed difference

score was defined as their difference. According to the J-

ACCESS model, the severity of myocardial perfusion

defects was defined with four grades of category (0, I, II,

and III) using summed stress score: normal (score 0–3)

and mildly (4–8), moderately (9–13), or severely (C 14)

abnormal.7,8

Statistical analysis

Statistical analysis was performed using the R

software, version 6.3.3 (The R Foundation for Statistical

Software, Vienna, Austria). Continuous variables were

expressed as mean ± standard deviation and categorical

data as percentages. Differences between groups were

analyzed by Student t test or v2 test, as appropriate.

Two-sided P values\ .05 were considered statistically

significant. Marginal probability was defined as the

percentage of patients with major adverse cardiac event

with respect to the entire study population. For the

external validation, we used the coefficients obtained

from the J-ACCESS study.7–9 In particular, logit and

probability were computed by the following formulas:

logit ¼ �4:8125þ 0:8858 diabetes : 0; 1ð Þ
þ 0:0558 ageð Þ þ 0:1941 SSS : 0� 3ð Þ
� 0:0475 LVejectionfractionð Þ

p %ð Þ ¼ 1

1þ e�logit
� 100

For the J-ACCESS external validation, we plotted

the predicted probability across deciles versus the

observed probability. These values were fitted by a

linear regression, and the coefficient of determination

(R2) was reported to evaluate the goodness-of-the-fit. On

the same plot, we also reported the continuous values of

the predicted versus observed variables, and the 95%

confidence interval (CI). In order to obtain an exhaustive

external validation, we recalibrated this model (logit (p))
with the calibration-in-the-large and the calibration

slope (also called Logistic recalibration).20,21 In the first

case, the statistic is given as the intercept term a from

the recalibration model [logit (p0) = a ? logit (p)] that
changes baseline hazard. In the second case, b coeffi-

cient for all the variables and a new intercept are

estimated from the recalibration model [logit (p00) =
a ? b 9 logit (p)]. We also realized an update of the J-

ACCESS model by our data, using the same variables

and computing new coefficients by a multivariable

logistic regression with MACE as dependent variable. A

flow chart of the study methods is sketched in Figure 1.

Statistic difference between initial and recalibration

models was evaluated by residual deviance and likeli-

hood ratio test (LRT) from v2. We also computed the

maximum (dmax) and mean (dmean) difference in pre-

dicted vs loess-calibrated probabilities. For all the

models, statistic concordance was calculated by the C-

statistic, that represents the probability that patients with

the outcome receive a higher predicted probability than

those without. We also computed the Brier score that

includes components of discrimination and calibration

for models. This score improves decreasing from one to

zero value. Finally, we evaluated the Hosmer–Leme-

show test, as a measure of goodness of fit, for predictive

models of binary outcomes (logistic regressions), and

sometimes used as a proxy for calibration.25 The 95%

confidence interval (CI) for the continuous values of the

predicted versus observed variables, dmax, dmean, area

under receiver operating characteristic curve, and Brier

scores were computed by 1000 bootstrap resampling.

RESULTS

The percentage of our patients with MACE was

8.2%, significantly higher compared to the 4.3% found

in the J-ACCESS study (P\ .001). More in detail, we

observed 140 (47%) cardiac deaths, 88 (30%) nonfatal
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Figure 1. Flow chart of the study methods: external validation, recalibration procedures, and
updated model.
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myocardial infarctions, and 70 (23%) severe heart

failures requiring hospitalization. The clinical charac-

teristics and imaging findings of patients according to

the occurrence of MACE are reported in Table 1.

Patients with MACE had a higher prevalence of history

of myocardial infarction or revascularization, diabetes

and hypertension, and had a higher summed stress and

rest scores and a lower LV ejection fraction than those

without MACE.

Table 1. Clinical characteristics and imaging findings in patients with and without MACE

No MACE (n = 3325) MACE (n = 298) P value

Age (years) 63 ± 11 67 ± 10 \ .001

Male gender, n (%) 2184 (65) 211 (71) .04

Typical chest pain, n (%) 630 (19) 44 (15) .09

Body mass index, kg/m2 28.6 ± 13.8 28.1 ± 4.9 .15

History of myocardial infarction, n (%) 832 (25) 104 (35) \ .001

History of revascularization, n (%) 826 (25) 100 (34) \ .005

Diabetes, n (%) 1075 (32) 143 (48) \ .001

Hypertension, n (%) 2513 (76) 246 (83) \ .01

Hyperlipidemia, n (%) 1931 (58) 179 (60) .54

Family history of CAD, n (%) 1316 (40) 128 (43) .28

Currently smoking, n (%) 1015 (31) 103 (35) .17

Ischemia during exercise ECG, n (%) 352 (11) 26 (9) .36

Summed stress score 7.57 ± 8.97 10.5 ± 10.2 \ .001

Summed rest score 4.71 ± 8.18 7.25 ± 10.0 \ .001

Summed difference score 2.86 ± 4.19 3.25 ± 4.32 .14

LV end-diastolic volume (mL) 95 ± 47 117 ± 66 \ .001

LV end-systolic volume (mL) 50 ± 39 69 ± 54 \ .001

LV ejection fraction (%) 55 ± 12 50 ± 14 \ .001

Table 2. Statistics related to the J-ACCESS, recalibration, and updated models

J-ACCESS
model

Calibration in the
large

Logistic
recalibration

Revised
model*

Intercept 0 0.593 - 0.615 –

Slope 1 1 0.564 –

Degrees of freedom 3623 3622 3621 3618

Residual deviance 2090 2015 1962 1960

dmax 0.226 (0.055,

0.394)

0.354 (0.193, 0.488) 0.039 (0.012, 0.147) 0.033 (0.010,

0.139)

dmean 0.034 (0.026,

0.043)

0.024 (0.016, 0.032) 0.005 (0.002, 0.012) 0.003 (0.002,

0.010)

Likelihood ratio test v2 – P\ .001 P\ .001 P\ .001

Hosmer–Lemeshow

test v2
214.9; P\ .001 69.8; P\ .001 7.8; P = .45 10.6; P = .22

Fit on deciles R2 0.938; P\ .001 0.946; P\ .001 0.941; P\ .001 0.900; P\ .001

C-statistic 0.664 (0.632,

0.696)

0.664 (0.632, 0.696) 0.664 (0.632, 0.698) 0.666 (0.638,

0.700)

Brier score 0.075 (0.066,

0.083)

0.075 (0.067, 0.083) 0.073 (0.066, 0.081) 0.073 (0.066,

0.08)

95% Confidence interval obtained by 1000 resampling bootstrap are reported in parentheses
*Intercept and coefficients of the revised model are reported in Table 3
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In our study population, myocardial perfusion was

normal in 2177 (60%) and abnormal in 1446 (40%)

patients. In these latter patients, 704 (19%) had mildly

abnormal, 325 (9%) moderately abnormal, and 417

(12%) severely abnormal myocardial perfusion defects.

The statistics associated with the J-ACCESS, recal-

ibration, and updated models are summarized in Table 2.

For the calibration-in-the-large model a was 0.593,

whereas for the calibration slope a was - 0.615 and b
0.564. The recalibrations improved the performance of

the initial model. In fact, the residual deviance and dmean

decreased (from 2090 to 1962 and from 0.034 to 0.005,

respectively). Also, the C-statistics and Brier score

improved slightly (from 0.664 to 0.666 and from 0.075

to 0.073, respectively), indicating a little better discrim-

ination and calibration of the models. Confirming this

improvement, the models were all different compared to

the initial one by the LRT test (P\ .001). The Hosmer–

Lemeshow test (calculated on deciles) indicated a

logistic regression fit for the calibration slope

(P = .45) and updated model (P = .22). High similarity

between these two models we also found by LRT

(P = .58). Lastly, the fits obtained by deciles between

predicted and calculated probabilities resulted signifi-

cant (P\ .001) and highly correlates (R2 C 0.90),

highlighting a linear relationship.

Figure 2 shows the predicted vs. observed proba-

bility for the J-ACCESS model (panel A), calibration-in-

the-large (panel B), calibration slope (panel C), and

updated model (panel D). These variables are presented

both across deciles and as continuous. In general, the J-

ACCESS model underestimates the observed data. For

the calibration-in-the-large model is evident a shift

toward the diagonal, with an underestimation for low

values of the observed probability and an overestimation

for those high. This effect was due to the intercept (a)
introduced in the model. The logistic recalibration

shows a better fit of the data than the initial model,

mainly due to the b coefficient that causes a compres-

sion of probabilities. The updated model was no more

performing than the recalibrated logistic model, high-

lighting a limited value of the J-ACCESS variables.

The multivariable logistic regression findings

related to the updated model are reported in Table 3.

All the independent variables resulted significant

(P\ .01). With respect to age, the risk of MACE

increased by 4% for each year. Patients with diabetes

were found to have a 73% higher risk than those

without. For summed stress score the risk was 16%

higher for each gap between two categories. As

expected, the increase in LV ejection fraction was

protective (2% for each percent of increment). Within 3

standard errors, intercept, diabetes, and summed stress

score categorized coefficients of the updated model were

comparable with J-ACCESS ones.

To assess the time effects on the patient character-

istics, we split our study population into group 1 (from

2001 to 2010, n = 1788) and group 2 (from 2011 to

2019, n = 1835). For group 1, more contemporary to the

J-ACCESS model, we found a slightly better adaptation

of data to the model (see Tables S1, S3 in the

supplementary materials). There was a significant dif-

ference between the two groups only comparing the

Brier score (0.052 vs 0.096). This difference was due to

the lower number of events in patients of group 1

compared to those of group 2 (5.5% vs 10.8%).

Investigating this difference, we found a higher number

of patients with abnormal summed stress score in group

1 compared to group 2 (51% vs 70%). Regarding the

updated models, group 1 and group 2 were superimpos-

able, highlighting similar characteristics with respect to

the J-ACCESS variables. In fact, the P resulted different

in absolute value, but with same statistical significance

(see Table S2 and Table S4 in the supplementary

materials).

For the entire study population, we also evaluated a

more complete updated model considering as covariates

in the multivariable logistic regression the J-ACCESS

variables and traditional risk factors (angina, dyspnea,

gender, hyperlipidemia, hypertension, and smoking).

We did not find significant differences between this

model and the updated model with only the J-ACCESS

variables (see Table S5 in the Supplementary materials).

DISCUSSION

The present study was designed to obtain an

external validation and an update of the J-ACCESS

model, for predicting three-year major cardiac events in

patients with and without history of CAD. Comparing

our and J-ACCESS cohorts it is important to highlight

that the variables between the group of patients with and

without events showed significant different for body

mass index, history of coronary artery revascularization,

bFigure 2. Predicted vs. observed probability for the J-
ACCESS (panel A), calibration-in-the-large (panel B), cali-
bration slope (panel C), and updated (panel D) models. The
full circles represent probability expressed in deciles, whereas
the error bars highlight the standard deviations. The black
dashed line represents the linear regression calculated by
deciles. The red line is related to the continuous values of the
variables, with the 95% CI highlighted by the shaded zone.
The diagonal represents the best agreement line between
predicted and observed probabilities. The histogram in the
graph below reports the predicted probability distribution.
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and hypertension. It should also be noted that the

characteristics of J-ACCESS patients were obtained for

hard events, i.e., without considering patients with heart

failure requiring hospitalization. However, from the

point of view of patients’ characteristics our and J-

ACCESS cohorts were quite similar. Instead, a differ-

ence between the two cohorts was due to the percentage

of patients with outcome that in J-ACCESS study was

significantly lower than in our study. This finding is in

line with a lower cardiovascular risk in Japan than in

Italy.26

Using the J-ACCESS model in our study popula-

tion, we observed an underestimation of the predicted

risk compared to the observed risk. The effect is evident

from the graph of predicted versus observed probabil-

ities, where the full circles representing deciles are over

the diagonal (i.e., equal probability line). We can likely

explain the non-optimal fit of the J-ACCESS model to

our data on the bases of the different marginal proba-

bility between the two cohorts.

To obtain a more accurate external validation, we

considered the calibration-in-the-large and the logistic

recalibration models. The term of intercept computed by

the calibration-in-the-large model did not significantly

improve the external validation findings. Instead, using

the logistic recalibration model, we observed a better

agreement between predicted versus observed probabil-

ity. As a matter of fact, in comparison with the two

previous models we obtained the lower dmean, the

Hosmer–Lemeshow test indicated a good adaptation of

the logistic regression fit to data, and the Brier score

slightly increased. The improvement is explainable by

the change in profile of the predicted probability

distribution due to a and b terms of the recalibrated

model. In general, nevertheless the models resulted

different to the LRT, they did not show a significant

improvement to the C-statistic and Brier score. There-

fore, to verify the predictivity of the independent

variables we also evaluated an update of the J-ACCESS

model. As expected, we observed a good agreement

between predicted and observed probabilities. However,

we did not find significant improvements than to the

calibration slope model by the statistics. In fact, the two

model are superimposable with respect to all performed

tests. This result brings to lite two aspects. On the one

hand, we can infer that the features used for the model

have a limited value for the prediction of risk. On the

other hand, it indicates that the recalibration model used

is an effective method because gives findings very

similar to the model obtained with an internal cohort.

The time effects on the study population character-

istics were marginal, explainable by higher number of

patients with major burden of disease in the more recent

years. This situation was probably due to the greater

appropriateness of clinical tests adopted in the last years.

Adding traditional risk factors to the updated model

we did not find other significant variables. This result

highlights that age and diabetes are predominant tradi-

tional risk factors. In fact, they, together with summed

stress score and LV ejection fraction, adjust the other

covariates making those not significant at the multivari-

able logistic regression nevertheless some of them

resulted significant to the v2 test (e.g., gender and

hypertension).

With regards to the external validation related to

major cardiac events, in another study we evaluated the

performance of the CRAX2MACE model.11 Unlike

what has happened in the present study, the risk

evaluation was within two-year and only included

subjects with suspect CAD. Moreover, the study was

conducted in North America. The external validation of

the CRAX2MACE model with our data resulted in

overestimating the risk and the recalibration models did

not give better results than the initial one.

The findings obtained through this study and pre-

vious investigations confirm that any prediction model

performs best in the population it was derived from.

Therefore, an optimal model for predicting of major

cardiac events adaptable to generalized data does not

seem currently available. Likely, a multicenter model

Table 3. Multivariable logistic regression for MACE

Estimate Standard error P value Odds ratio (95% CI)

Intercept - 3.8988 0.4986 \ .001 –

Diabetes 0.5482 0.1238 \ .001 1.73 (1.36, 2.20)

Age 0.0348 0.0065 \ .001 1.04 (1.02, 1.05)

Summed stress score* 0.1452 0.0576 \ .01 1.16 (1.03, 1.29)

LV ejection fraction - 0.0211 0.0050 \ .001 0.98 (0.97, 0.99)

*Summed stress score was categorized as normal (score 0–3), mildly (score 4–8), moderately (score 9–13), or severely
(score C 14) abnormal
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obtained by a large amount of heterogeneous data, also

supported from machine learning techniques, could

carried out a more efficacy model. In particular, this

technique of artificial intelligence is finding many

applications from clinical imaging to pretest as a support

to diagnosis in different medical fields, also with specific

recommendations in cardiology.27–31

Another multicenter study, based on traditional risk

factors, was conducted to estimate 10-year risk of

cardiovascular disease in Europe (SCORE2).32 The

authors derived risk prediction models using individ-

ual-participant data from 45 cohorts (677,684

individuals, 30,121 cardiovascular disease events), and

defined four risk regions in Europe according to country-

specific cardiovascular disease mortality, recalibrating

models to each region using expected incidences and

risk factor distributions. In particular, region-specific

incidence was obtained by data over ten millions of

persons, and for the external validation were used data

from 25 additional cohorts (over one million of indi-

viduals, and 43,492 cardiovascular events). After

applying the derived risk prediction models to external

validation cohorts, C-statistic ranged from 0.67 (0.65–

0.68) to 0.81 (0.76–0.86). These C-statistic values are in

line with, or slightly better than, the cited studies based

on traditional risk factors.

To improve the performance of cardiologic fore-

casting models, it may be necessary to find novel

variables. An example of multicenter study obtained

using non-traditional risk factors and finalized to fatal

cardiovascular disease risk prediction was reported by

Tillmann et al.33 Patients from various Eastern European

states took part to the derivation cohort (* 14,600), and

patients from Estonia formed the validation cohort

(* 4,600). In this study three models were evaluated,

also using variables such as education and depression.

The authors found the area under receiver operating

characteristic curve in the range 78–87%, with better

values in the validation cohort.

In general, the research of new features is desirable

also in other areas of cardiology. For example, in

subjects with zero-calcium score who underwent coro-

nary artery computer tomography, the predicted models

were unable to identify individuals with a very low

probability of an abnormal stress myocardial perfusion

imaging.34 Efficiency of models in cardiology remains a

field still to be improved, and the use of strategies as

multicenter data, novel features, and machine learning

techniques seems to be an interesting way to go.

To the best of our knowledge, the errors on the J-

ACCESS intercept and coefficients are not available.7,8

Therefore, we compared our updated model with the J-

ACCESS model considering our estimates of parameters

and standard errors vs. the J-ACCESS parameters alone,

without their errors. Patients’ characteristics in our study

were computed with respect to major adverse cardiac

events, while in J-ACCESS7 were computed for patients

with ‘‘hard cardiac events’’, that is only using cardiac

death and nonfatal myocardial infarction. Our choice

was due to the fact that the J-ACCESS parameters used

in this study were given in several articles where were

considered patients with major adverse cardiac

events.7–9,35–37

NEW KNOWLEDGE GAINED

This study confirms that clinical prediction models

perform best in the population they were derived from.

In addition, it supports the use of recalibration of

predictive models to improve the model performance on

external cohorts. Based on changes in diagnostic and

therapeutic approaches for many diseases, predictive

models may lose efficacy on time. Therefore, external

validation and updating of the models in different

cohorts is worthwhile to address the reproducibility and

generalizability of any clinical prediction model.

CONCLUSION

External validation of a predictive model is neces-

sary to determine reproducibility and generalizability to

new cohorts. This method is gaining increasing impor-

tance for considering a model clinically acceptable. The

results of this study indicate that the J-ACCESS model

have a limited value for predicting of three-year major

cardiac events in our study population. The performance

in predicting risk of the updated model resulted super-

imposable to the calibration slope model.
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