
Annual Review of Condensed Matter Physics

Coherently Coupled Mixtures
of Ultracold Atomic Gases
Alessio Recati1,2 and Sandro Stringari1,2
1Istituto Nazionale di Ottica–Consiglio Nazionale delle Ricerche (INO-CNR) Bose–Einstein
Condensation (BEC) Center, Dipartimento di Fisica, Università di Trento, Povo, Italy;
email: alessio.recati@unitn.it
2Trento Institute for Fundamental Physics and Applications, Istituto Nazionale di Fisica
Nucleare (INFN), Povo, Italy

Annu. Rev. Condens. Matter Phys. 2022. 13:407–32

The Annual Review of Condensed Matter Physics is
online at conmatphys.annualreviews.org

https://doi.org/10.1146/annurev-conmatphys-
031820-121316

Copyright © 2022 by Annual Reviews.
All rights reserved

Keywords

spinor Bose–Einstein condensates, superfluidity, magnetism, spin–orbit
coupling

Abstract

This article summarizes some of the relevant features exhibited by binary
mixtures of Bose–Einstein condensates in the presence of coherent coupling
at zero temperature. The coupling, which is experimentally produced by
proper photon transitions, can involve either negligible momentum transfer
from the electromagnetic radiation (Rabi coupling) or large momentum
transfer (Raman coupling) associated with spin–orbit effects. The nature of
the quantum phases exhibited by coherently coupled mixtures is discussed
in detail, including their paramagnetic, ferromagnetic, and, in the case of
spin–orbit coupling, supersolid phases. The behavior of the corresponding
elementary excitations is discussed, with explicit emphasis on the novel
features caused by the spin-like degree of freedom. Focus is further given
to the topological excitations (solitons, vortices) as well as to the superfluid
properties. This review also points out relevant open questions that deserve
more systematic theoretical and experimental investigations.
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1. INTRODUCTION

Since the first experimental realization of Bose–Einstein condensation in cold gases of alkali atoms
(1, 2), the investigation of quantum mixtures (3) has become a very popular subject of research in
atomic physics, stimulating extensive theoretical and experimental activity of both fundamental
and applicative interest. Important achievements have concerned, among others, the realization
of novel quantum phases, the study of collective dynamics and solitonic configurations, the re-
alization of polar molecules, and the formation of quantum droplets. First experiments focused
on alkali-metal gases, but there is currently a growing interest in mixtures composed of different
atomic species, including Bose–Bose, Bose–Fermi, and Fermi–Fermi mixtures. These studies, re-
ported by an impressive number of scientific works, represent the systematic implementation of
the pioneering studies on quantum degenerate mixtures realized with helium fluids (4, 5).

An intriguing possibility is given by the creation of coherent coupling among the different
atomic species forming the mixture, giving rise to novel scenarios for nontrivial equilibrium and
nonequilibrium many-body configurations. The aim of this paper is to summarize some of the
most salient features exhibited by these configurations. For simplicity, we limit our discussion to
the case of quantum mixtures occupying two different hyperfine states, hereafter called |↑〉 and
|↓〉. Employing the usual spin s = 1/2 representation these two single-particle states are classified
as eigenstates of the Pauli matrix operator, σ z, according to σ z|↑〉 = +|↑〉 and σ z|↓〉 = −|↓〉. The
transfer of atoms between the two hyperfine states can be induced by proper photon transitions.
Within the rotating wave approximation and using a suitable polarization of the electromagnetic
radiation, the relevant single-particle spinor Hamiltonian takes the following form:

hsp = p2

2m
− ��

2
σx cos(2k0x− �ωLt ) − ��

2
σy sin(2k0x− �ωLt ) + ��ωhf

2
σz, 1.

where p is the canonical momentum,� (hereafter assumed real and positive) defines the intensity
of the coupling of the atoms with the electromagnetic field, k0 is the modulus of the wave vector
difference between the two electromagnetic fields (hereafter chosen to be counter propagating
along the x direction), and �ωL is the corresponding frequency difference. The energy ��ωhf is
the energy difference between the two hyperfine states, including the nonlinear Zeeman effect.

In the following, we distinguish the case in which one can neglect the momentum transfer
(k0 = 0), which we refer to as Rabi coupling, from the case in which the value of k0 cannot be
ignored, which we refer to as Raman (or spin–orbit) coupling (SOC).

The Hamiltonian (Equation 1) is not translational invariant, but exhibits a peculiar continu-
ous screw-like symmetry, being invariant with respect to helicoidal translations of the form exp
[id( px − �k0σ z)/�], consisting of the combination of a rigid translation with displacement d and a
spin rotation by the angle −2dk0 around the z axis. Translational invariance is obviously recovered
for the Rabi coupling case.

The Hamiltonian (Equation 1) can be made time-independent and translational invariant by
going to the so-called laser reference frame through the unitary transformationU= exp (i�σ z/2),
corresponding to a position and time-dependent rotation in spin space by the angle � = 2k0x −
�ωLt. The new Hamiltonian h →UhspU † + i�U̇U † acquires the form

hRabi = p2

2m
− ��

2
σx + �δ

2
σz, 2.

hSOC = 1
2m

[
(px − �k0σz )2 + p2⊥

]+ ��

2
σx + �δ

2
σz, 3.
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where, for later convenience, we have introduced the Rabi Hamiltonian hRabi for k0 = 0 and
the spin–orbit Hamiltonian hSOC for k0 �= 0, and the detuning δ = �ωL − �ωhf is due to the
additional time dependence of the unitary transformation. The spin–orbit term in Equation 3
results from the noncommutativity between the kinetic energy and the position-dependent
rotation. The spin–orbit Hamiltonian of Equation 3 is characterized by equal Rashba (6) and
Dresselhaus (7) strengths. It is worth noticing that the canonical momentum px = −i��x entering
the spin–orbit Hamiltonian does not coincide with the physical momentum of particles, because
of the presence of the spin term �k0σ z. It is also useful to remark that the unitary transformation
U affects neither the density n(r) = n↑(r) + n↓(r) nor the z component sz(r) = n↑(r) − n↓(r) of
the spin density. These quantities can be consequently safely calculated in the spin rotated frame,
using the Hamiltonian (Equation 3).

In the following, we consider bosonic species that naturally undergo Bose–Einstein condensa-
tion at sufficiently low temperature and can reveal peculiar coherence effects associated with the
Hamiltonians discussed above. In the weakly interacting regime, a three-dimensional (3D) quan-
tummixture of bosonic atoms interacting with short-range interactions is well described bymean-
field (MF) theory, where the state of the system is conveniently described by a two-component
spinor wave function �(r, t) = [�↑(r, t), �↓(r, t)]T, normalized to the total number of particles
�dr�†� = N, while the total energy of the system, including both single-particle and interaction
terms, can be expressed in terms of the relevant coupling constants as

E =
∫

drεMF =
∫

dr
[
�†hsp� + gdd

2
n2 + gss

2
s2z
]
, 4.

where n = �†� and sz = �†σ z� are the total and spin density, respectively. The density–density
and spin–spin coupling constants are given by gdd = (g+ g↑↓)/2 and gss = (g− g↑↓)/2, respectively
and, for simplicity, we have assumed that the intraspecies couplings are equal, i.e., g↑↑ = g↓↓ �

g > 0 and gdd > 0, to assure MF stability against collapse. The most general case would include
different intraspecies couplings. In this case, one should replace g with (g↑↑ + g↓↓)/2 and add a
third term gdsnsz, with gds = (g↑↑ − g↓↓)/4 inside the integral of Equation 4. The couplings in each
channel are related to the corresponding s-wave scattering lengths via gσσ ′ = 4π�2aσσ ′/m.

Starting from the energy functional (Equation 4), one can derive coupled Gross–Pitaevskii
equations for the separate components of the spinor wave function, whose predictions are
discussed in the next sections.

For reasons of space, we are unable to discuss here important results concerning coherently
coupled mixtures in which the MF description is not appropriate, like, for example, the case of
large enough attractive interspecies interaction, beyond which MF Lee–Huang–Yang corrections
become crucially important (8) and even yield self-bound droplet states (9–12), and the case of
cold gases trapped in a deep optical lattice in which the system is properly described by Bose-
Hubbard-like Hamiltonians allowing for strongly correlated configurations (see, e.g., 13–18).

2. DISCRETE AND CONTINUOUS SYMMETRIES

The Hamiltonians discussed in the previous section exhibit important symmetries that are worth
discussing because they permit us to better understand the nature of the new equilibrium phases
as well as the novel dynamic and superfluid features caused by Rabi and SOC.

Let us first consider the relevant discrete symmetries exhibited by our mixtures. Z2 is an im-
portant symmetry reflecting, for vanishing detuning, the symmetry of the Hamiltonian with re-
spect to the exchange of the coordinates of the two components. This symmetry is preserved in
the presence of the most relevant term proportional to �σ x. The spontaneous breaking of the
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Z2 symmetry is at the origin of the ferromagnetic phases exhibited in the presence of both Rabi
and SOC, although the underlying mechanisms are different in the two cases (see Sections 3.1 and
4.2). Another important case of discrete symmetries concerns time reversal and parity. They are
both violated by the spin–orbit Hamiltonian (Equation 3) with crucial consequences on the break-
ing of the symmetry property ω(q) = ω(− q) usually exhibited by the spectrum of the elementary
excitations (see Section 4.3).

An important consequence of the term proportional to� in the Hamiltonian is the violation of
the continuous symmetry with respect to the relative phase φr = φ↑ − φ↓ of the order parameters
of the two spin states. This is well understood by writing the two order parameters in the form
�↑ = √n↑ exp(iφ↑ ) and �↓ = √n↓ exp(iφ↓ ). The expectation value E� = 〈H�〉 of the operator
H� = −(��/2)σx then takes the form

E� = −��

2

∫
dr(�∗

↑�↓ + �∗
↑�↓ ) = −��

∫
dr

√
n↑n↓ cosφr , 5.

which depends explicitly on the relative phase φr. The breaking of this symmetry, which in the
absence of Rabi or Raman coupling would add to the U(1) symmetry associated with the total
phase of the two order parameters, has deep consequences on the dispersion of the spin excitations,
causing the appearance of a gap (see Sections 3.2 and 4.3). The dependence of E� on the relative
phase also implies that the relative number N↑ − N↓ = 〈∑jσ zj〉 of atoms in the two spin states is
not conserved and obeys the following equation:

d(N↑ −N↓ )
dt

= 1
i�

〈[∑
j

σz j ,H�

]〉
= �

∫
dr

√
n↑n↓sinφr. 6.

The ground state of the mixture corresponds to the condition of equal phases (φ↑ = φ↓) and,
hence, to a stationary value of N↑ − N↓. Out of equilibrium, the relative number of atoms can
instead exhibit time-dependent oscillations (19), corresponding to the so-called internal Josephson
effect (see Section 3.3). The new topology imposed by the relative phase dependence of E� also
has important consequences on the nature of the solitonic solutions as well as on the rotational
properties of the system and, in particular, on the behavior of the vortex lines (see Section 3.4).

Both the Rabi and the spin–orbit Hamiltonians (Equations 2 and 3) are translational invariant
and commute with the canonical momentum px = −i��x. In the case of SOC the translational
invariance can be spontaneously broken, giving rise to a peculiar stripe (ST) phase, with charac-
teristic supersolid features (see Section 4.2). Translational invariance is not, however, equivalent to
Galilean invariance, which is explicitly violated by the spin–orbit Hamiltonian. This is best under-
stood by calculating how the spin–orbit Hamiltonian (Equation 3) is transformed by the unitary
Galilean transformation G = exp (imvx/�), which provides a Galilean boost, corresponding to
the displacement mv of the wave function in momentum space, along the x direction. Only the x
component of the kinetic energy term is modified by the Galilean transformation and takes the
form G−1( px − �k0σ z)2G/2m = ( px − �k0σ z + mv)2/2m so that, in the new frame, the spin–orbit
Hamiltonian h′

SOC = G−1hSOCG is given by

h′
SOC = hSOC + m

2
v2 +mv(px − �k0σz ). 7.

The operator ( px − �k0σ z), which represents the physical momentum of the particle, is not a
constant of motion, because of the presence of the Raman coupling �σ x in the spin–orbit Hamil-
tonian. As a consequence, the two Hamiltonians h′

SOC and hSOC are physically different, yielding a
violation of Galilean invariance with important consequences on the superfluid properties of the
system, as discussed in Section 4.4.

410 Recati • Stringari

A
nn

u.
 R

ev
. C

on
de

ns
. M

at
te

r 
Ph

ys
. 2

02
2.

13
:4

07
-4

32
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

C
on

si
gl

io
 N

az
io

na
le

 d
el

le
 R

ic
er

ch
e 

(C
N

R
) 

on
 1

1/
24

/2
2.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



3. EQUILIBRIUM AND NONEQUILIBRIUM PROPERTIES
OF RABI COUPLED GASES

In this section, we describe the phase diagram, the elementary excitations, and some topological
configurations, as well as far-from-equilibrium properties of a spinor condensate in the presence
of Rabi coupling.The system has been thoroughly studied theoretically at theMF level (see 20 and
references therein), with the first studies dating back to the 1990s (21, 22). The first experimental
realization was obtained in the group of Eric Cornell (23, 24) with the aim of studying superfluidity
in the presence of spinor configurations.

3.1. Ground State Properties

In the following, we mainly consider the case δ = 0, ensuring Z2 symmetry. In this case, the MF
energy density of a homogeneous gas reads

εMF = gdd
2
n2 + gss

2
s2z − �

2

√
n2 − s2z cos(φr ), 8.

with n = N/V. The stationary states are found by minimizing the grand canonical energy density
εMF − μn with respect to n, sz, and φr, where μ is the chemical potential. The ground state is
characterized by the vanishing of the relative phase (φr = 0) and obeys the coupled equations

μ= gddn− �n
2
√
n2 − s2z

, 9.

0= gsssz + �sz
2
√
n2 − s2z

, 10.

exhibiting a bifurcation (see Figure 1) as a function of �. Although for � > −2gssn the ground
state solution has vanishing spin polarization, for smaller values of �, requiring the condition
gss < 0, the lowest energy solution corresponds to a typical ferromagnetic configuration with spin
polarization,

sz = ±n
√
1 −

(
�

2gssn

)2

. 11.

The transition between the two regimes is reminiscent of the quantum phase transition of the
Ising model in transverse field (see, e.g., 25), and for this reason the two states are referred to as
paramagnetic and ferromagnetic phases, respectively. The condition � + 2gssn = 0 identifies the
critical transition point. In the ferromagnetic phase, the system selects one of the two polarizations,
spontaneously breaking the Z2 symmetry, and the polarization, close to the critical point, grows
like sz ∝ [−(2gssn + �)]β , with the typical MF critical exponent β = 1/2. Also, the magnetic
susceptibility χ = (∂2εMF/∂s2z )

−1 exhibits the ferromagnetic behavior, diverging near the critical
point at � + 2gssn = 0. In the paramagnetic (P) and ferromagnetic (F) phases one finds

χP = 2n
2gssn+ ��

, 12.

χF = (��)2

|gss|
1

(2gssn)2 − (��)2
, 13.

respectively. In the absence of Rabi coupling the situation is very different because the total
polarization Sz = N↑ − N↓ is a conserved quantity, leading to a further U(1) symmetry of the
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Initial condition

Initial condition

z

x

y

z

x

y

z

x

y

1

0.5

–0.5

–1
0 1 2

Λ
3

0〈z
〉

a b c

Figure 1

First experimental evidence of ferromagnetic-like bifurcation in a Rabi coupled gas of 87Rb atoms. The total
relative magnetization Z = (N↑ − N↓)/(N↑ + N↓) is plotted as a function of the ratio �, between the
magnetic interaction energy and the Rabi coupling (see Section 3.3). The Bloch spheres represent the
dynamics around the fixed points of the Bose–Josephson junction (Equation 28). In the experiment, the gas
was initially prepared with a positive (red dashed line) or negative (blue dashed line) polarization. In the Rabi
regime (shaded region a), both initial states share the same trajectory around the stable fixed point, and the
temporal mean imbalance vanishes. By increasing � to exceed the critical value, a separatrix is formed and
the chosen initial preparations lead to two distinct trajectories (shaded regions b and c) separated by this
separatrix. The dynamical modes are characterized by a nonvanishing mean population imbalance.
For � < 2, the phase oscillates around π , whose dynamics is reported in the Bloch sphere corresponding to
the points in shaded region b. For � > 2, the separatrix encloses the poles and the dynamics can show a
running phase behavior (Bloch sphere for the points in shaded region c). Figure adapted with permission
from 26; copyright 2010 American Physical Society.

Hamiltonian. In this case, the two ground states correspond to the miscible phase if gss > 0 (all
the atoms occupy the same volume) and exhibit immiscibility if gss < 0, in which case the two
atomic species occupy distinct regions in space. At zero temperature, an abrupt transition occurs
as soon as the coupling constant gss becomes negative.

The first experimental measurement of the transition between a para- and a ferromagnetic
phase in Rabi coupled gases was reported by the group of Markus Oberthaler (26, 27; see
Figure 1).

3.2. Elementary Excitations of a Rabi Coupled Bose–Einstein
Condensed Mixture

Once the ground state is known, the excitations of the system are determined by Bogoliubov the-
ory.The Bogoliubov approach is known to be equivalent to the solution of the linearized equations
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Figure 2

Spectrum of a Rabi coupled gas in the (a) paramagnetic and (c) ferromagnetic phases, and at the (b) critical point � + 2gssn = 0.

of time-dependent Gross–Pitaevskii theory (see, e.g., 28). In a quantummixture, the equations for
the elementary excitations are more involved than in the single-component case, and for a more
complete discussion we refer the interested reader to, e.g., References 20 and 29.

In Figure 2, we report the typical form of the spectrum across the ferromagnetic transition.
The spectrum has two branches, which are usually referred to as density [Ed(k)] and spin [Es(k)]
branches. The branch Ed(k) is gapless, and its low-energy behavior is dictated by the existence
of the Goldstone mode due to the spontaneous breaking of the U(1) symmetry related to the
conservation of the total number of particles. At low momenta it has a phonon-like behavior
Ed = cdk, with cd being the speed of density sound. The branch Es(k) is instead gapped, as a conse-
quence of the cost associated with the change of the relative phase φr. This cost is enforced by the
Rabi coupling that explicitly breaks the symmetry U(1) relative to the conservation of the relative
atomic population, which is different from what happens in standard Bose–Bose mixtures (i.e., in
the absence of Rabi coupling), where the spin branch is also gapless (30). According to the theory
of second-order phase transitions, the gap closes at the critical point and has a different behavior
in the two phases (25). We find

�P =
√
2n��χ−1

P → [
��(2gssn+ ��)

]1/2 for 2gssn+ �� → 0+, 14.

�F =
√
2(��)2

|gss| χ−1
F → [

(2��|2gssn+ ��|)]1/2 for 2gssn+ �� → 0−, 15.

where we can identify the critical exponent for the gap that, within the present MF theory, coin-
cides with the exponent β = 1/2 for the magnetization close to the critical point (see Equation 11).
At the critical point the dispersion relation becomes linear with the speed of spin sound, given by
cs = √|gss|n/m. Notice that the spin spectrum for a standard Bose–Bose mixture becomes instead
quadratic at the transition point to the immiscible regime, whereas in the phase separated regime
the concept of spin sound does not make sense anymore.

Although the spin spectrum is gapless both for � = 0 and at the critical point �� = −2gssn,
the quantum fluctuations associated with the corresponding long wavelength modes behave very
differently in the two cases. For � = 0, the linear low-k energy mode is dominated by the fluc-
tuations of the relative phase. However, at the critical point the low-energy mode is dominated
by the fluctuations of the relative population (polarization), reflecting the critical nature of the
ferromagnetic transition, as we discuss below.
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In the unbroken Z2 paramagnetic phase, the Bogoliubov predictions for the dispersion law and
for the corresponding quantum fluctuations take a particularly simple and instructive form. In this
phase, the fluctuations of the total density (�d) and spin density (�s) operators as well as of the total
phase (φd) and relative phase (φr) operators can be explicitly written in terms of the annihilation
(creation) operators dk (d†k) and sk (s

†
k) for the density and spin excitations, respectively, as

�α (r)=
√
n
2

∑
k

(Uα,k +Vα,k )(αkeik·r + α†
ke

−ik·r ) 16.

and

φα (r)= i

√
1
2n

∑
k

(Uα,k +Vα,k )−1(αkeik·r − α†
ke

−ik·r ), 17.

where α = d and s, and k is themomentumof the corresponding excitations. In the above equations,
we have introduced the so-called Bogoliubov amplitudes,Us and Vs, whose combination provides
the contribution of each mode to the static structure factor according to Sα ∝ |Uα, k + Vα, k|2.
The proper diagonalization of the Bogoliubov Hamiltonian yields the following results for the
Bogoliubov amplitudes of the density and spin excitations:1

Ud,k +Vd,k =
(

k2

k2 + 8mgdn

) 1
4

, Us,k +Vs,k =
[

k2 + 2m��
k2 + 4m(2gssn+ ��)

] 1
4

. 18.

Analogously, one finds the following expressions for the dispersion laws:

Ed (k)=
√
�2k2

2m

(
�2k2

2m
+ 2gddn

)
, 19.

Es(k)=
√(

�2k2

2m
+ ��

)(
�2k2

2m
+ 2gssn+ ��

)
, 20.

allowing, in the k→ 0 limit, for the identification of the density sound velocity cd = √
gddn/m and

of the spin gap
√
��(2gssn+ ��).

When � = 0 and gss > 0 the Bogoliubov amplitudes in both the density and spin channels have
the same structure as that for the single-component Bose gas and, as k→ 0, the fluctuations of the
phase diverge while the static structure factors vanish linearly due to atom number conservation
in each component.

If � > 0, the spin channel instead reveals a very different behavior. The phase and ampli-
tude mode are generally comparable also in the long wavelength limit, corresponding to a finite
value of the spin static structure factor at low momenta. More importantly, at the critical point
the fluctuations of the spin density become critically large, providing the k−1 divergent behavior
of the spin structure factor, which is consistent with the divergent behavior of the magnetic polar-
izability (Equation 12). Such critical behavior of the spin fluctuations has been predicted to lead
to a strong damping of the (density) Goldstone phonons. Indeed, while the Bogoliubov approach
predicts an infinite lifetime for the elementary excitations, the phonon modes can decay into two

1See Reference 29 for the most general case, gsd �= 0.
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lower-energy phonons leading to the so-called Belyaev damping, which scales as �ddd(k) → k5 at
small momenta. By contrast, the closing of the gap opens a new decay channel, in which a density
mode can decay into two spin modes, yielding an enhanced damping that scales as �dss(k) → k
(31).

3.3. Hydrodynamic Formulation and Internal Josephson Effect

In the previous sections, we have discussed the ground state properties of Rabi coupled gases and
the small amplitude oscillations around equilibrium. We provide a more general description of
the MF dynamics of the spinor gas by developing the hydrodynamic formulation of the Gross–
Pitaevskii equations. This formulation emphasizes in an explicit way the role of the spin density.
In s = 1/2 spinors, the spin density components are defined by si(r) = (�∗

↑,�
∗
↓ )σi(�↑,�↓ )T , with

σ i (i= x, y, z) being the Pauli matrices. In particular, sx = √
n2 − s2z cosφr and sy = √

n2 − s2z sinφr ,
and the relation |s(r)| = n(r) holds. The velocity field, defined as the total current divided by the
density, takes the simple form

v(r) = j(r)
n

= �

2mni

∑
σ=↑,↓

(�∗
σ ∇�σ − �σ ∇�∗

σ ) = �

2m
(∇φd + sz/n∇φr ), 21.

where φd(r) = φ↑ ± φ↓ is the total (relative) phase.Due to the spinor nature of the wave function, the
velocity field v(r) is not in general irrotational, but satisfies the relation � × v = �/(2m)�(sz/n) ×
�φr, corresponding to the analog of the Mermin–Ho relation (32), originally introduced for de-
scribing the superfluid A phase of 3He. Eventually the hydrodynamics equations can be written as
(see, e.g., 33)

ṅ+ div(nv) = 0, 22.

mv̇ + ∇
(
mv2

2
+ μ + sz

n
h+V − �

2∇2√n
2m

√
n

+ �
2|∇s|2
8mn2

)
= 0, 23.

ṡ +
∑

α=x,y,z
∂α (js,α ) = H(s) × s, 24.

where, for completeness, we have included a possible external trapping potential V.
The first equation is the standard continuity equation for the particle number conservation,

and the second equation is the Euler equation, with the chemical potential μ and the internal
magnetic field h given by

μ = gddn− ��

2
n

n2 − s2z
sx,

h = gsssz + ��

2
sz

n2 − s2z
sx.

25.

Notice that there is no problem with the limiting case sz → ±n, i.e., a fully polarized mixture
since the term μ + hsz/n = gddn + gsssz + ��sx/(2n) entering in the second Euler equation is well
defined for any sz. In the lower-energy states, where sx = √

n2 − s2z and h = 0, the above equations
reduce to Equations 9 and 10, and the corresponding susceptibilities are given by χ−1 = �h/�sz.
As pointed out in Reference 33, despite the possible presence of rotational components in the
velocity field v, the time derivative v̇ turns out to be irrotational.

The last equation (Equation 24) is the most interesting one, because it determines the spin
dynamics. The left-hand side is the continuity equation, due to the Noether theorem for the
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SU(2) symmetry. The spin current contains two contributions:

js,α = vαs − �

2m

( s
n

× ∂αs
)
, α = x, y, z, 26.

the first term being the classical spin advection and the second one corresponding to the spin–
twist, whose contribution to the equation of motion is called quantum torque. In our system, the
SU(2) symmetry is reduced to the Z2 symmetry by the effective field H(s) = (−�, 0, 2gsssz/�),
which enters the right-hand side of Equation 24.

If the dynamics involves neither the density nor the velocity, the system is described only
by the spin (Equation 24). In this case, the equation of motion for a coherently coupled Bose–
Einstein condensate (BEC) is formally equivalent to a dissipationless version of the so-called
Landau–Lifshitz equation (LLE) for the magnetization dynamics in ferromagnets (see, e.g., 34
and references therein). For uniform configurations, in which the divergence of the spin-current
is negligible, the equations take the form ṡ = (−�, 0, 2gsssz/�)×s, which are also called Bose–
Josephson junction (BJJ) equations (35). In terms of the relative magnetization Z = sz/n and of
the relative phase φr, they can be written in the following form:

Ż=−�
√
1 − Z2 sinφr , 27.

φ̇r =�Z
(

� + 1√
1 − Z2

cosφr
)
, 28.

where � = 2gssn
��

. Depending on the initial condition and on the value of �, the BJJ equations
exhibit a number of different dynamical regimes (we refer the reader to original theory in Ref-
erences 35 and 36 for a more comprehensive discussion). In the present context, it is useful to
remember that the stationary points are characterized by φ0 = 0 orπ and by the value Z0 of the
spin polarization. The value of Z0 is different from 0 only for |�| > 1, with Z0 = ±√

1 − �−2. In
the limit of small amplitude oscillations around equilibrium, the system is characterized by the
frequency,

ω2
J = �2

(
�

√
1 − Z2

0 cosφ0 + 1
1 − Z2

0

)
, 29.

which, in the absence of interactions (� = 0), reduces to ωJ = �.
The paramagnetic and ferromagnetic phases described in the previous sections correspond to

the stationary solutions φ0 = 0, Z0 = 0 and φ0 = 0,Z0 = ±√
1 − �−2 , respectively. In both cases,

the value �ωJ coincides with the gaps of the spin elementary excitation for k → 0. The stationary
point φ0 = π instead corresponds to a maximum of the Rabi energy (Equation 5) and gives rise to
a dynamically unstable configuration, the excitation spectrum, which is derivable from the linear
solutions (Equations 22–24) and becomes imaginary for some values of the momentum.

The existence of stationary points with Z0 �= 0 is at the origin of the celebrated self-trapping
regime (35, 36). In such a regime, the polarization cannot change sign; i.e., if the majority of
atoms is initially in one of the two spin states, this will be true during all the time evolution. The
self-trapping configuration in which both the phase and the polarization oscillate is called 0 or
π-mode, depending on the value of φ0. More interesting are the so-called running phase modes,
in which the phase keeps increasing. Running phase solutions exist only for |�| > 2, and in this
case the phase space Z − φ is reminiscent of the angle–angular velocity phase space of a classical
pendulum. In particular, there exists a separatrix, between the ( Josephson) oscillating regimes—
with zero time-average polarization—and the self-trapped regimes. The period of the oscillations
diverges approaching the separatrix, and the effect is also named critical slowing down.
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The various BJJ regimes have been experimentally investigated in detail both in the originally
proposed (35) double-well potential geometry (37–41)—where the imbalance Z corresponds to
the difference in the number of atoms in the right and in the left well—as well as in the internal
Josephson configuration (26, 42), using Rabi coupled BECs.

It is worth mentioning that the dynamic instability of the φ0 = π configuration is not relevant
for most of the present-day experimental realizations of the BJJ equations. Indeed the atoms are
usually trapped by tight confinements, so that the orbital degrees of freedom are frozen out and
the BJJ equations properly describe the dynamics of the system.2

The instabilities occurring in extended systems, in which one should rather use the full
Equations 22–24, are of the Cross–Hohenberg type (43) and are characterized by complex ele-
mentary excitations at rather well-defined momenta and whose energies have a vanishing or finite
real part; for this reason they are called Is (static) and Io (oscillatory) instabilities, respectively (43).

In cold gases mixtures, pattern formation due to an Is-type instability has been already observed
in spin-1 mixtures by Sengstock’s group (44, 45). A proposal to observe the instability Io in coher-
ently coupled gas has been put forward in Reference 46 by means of a sudden quench from the
stable (φr = 0) to the unstable (φr = π ) configuration.

Let us conclude this section by mentioning that though Rabi coupled gases have been used
to simulate the BJJ equations, at the moment the simulation of the full LLE (Equation 24), in
which one takes into account both the time and the position dependence of the spin density, has
not been explored. One of the main reasons for this is the experimental difficulty in maintaining
a low and stable Rabi coupling in large systems in order to reveal the interplay between the x and
z components of the effective magnetic fieldH together with the position dependence of the spin
density. However, very recently, the possibility of describing Rabi coupled gases with the LLE
has been experimentally verified and used to study the effect of the critical slowing down of the
Josephson dynamics at the separatrix between a region in the self-trapped regime and a region in
the Josephson oscillation regime (47).

3.4. Topological Excitations: Relative Phase Domain Walls
and Half-Quantum-Vortices

Further peculiar features exhibited by Rabi coupled mixtures concern the phenomena related to
topological defects, like solitons and vortices, involving the relative phase of the two components.
A remarkable example is the relative phase domain wall, which was originally identified by Son
& Stephanov (48).3 As we discuss later the existence of this soliton solution is deeply connected
with the novel features exhibited by quantized vortices in the mixture. A simple description can be
obtained in the paramagnetic phase of uniform matter, under the assumption that �� � gssn �

gddn (50). In this limit, both densities n↑ and n↓ can be regarded as uniform and equal, with the
only important degrees of freedom being the phases of the two order parameters, or, even better,
the total φd = φ↑ + φ↓ and the relative phase φr = φ↑ − φ↓. The energy of the system, apart from
a constant term, then takes the form

E(φd ,φr ) = n
2

∫
dr
[
�
2

4m
(∇φd )2 + �

2

4m
(∇φr )2 − �� cos(φr )

]
, 30.

2In the case of coherently coupled BECs the only change in Equation 28 is Z = (N↑ − N↓)/N and
� = 2gssNα/(��) (with Nσ being the total atom in the state σ ), N = N↑ + N↓, and α being a constant
that takes into account the shape of the wave function of the tightly trapped gas (see, e.g., 26).
3The same kind of solution also has been described in the context of two-band superconductors byTanaka (49).
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Figure 3

Relative phase domain wall obtained by solving coupled Gross–Pitaevskii equations as a function of the coupling �: (a) density profile,
(b) effective mass, and (c) nonzero imaginary part of the spectrum yielding dynamic instability for � > �c. The red dashed line in
panel b corresponds to the analytical expression m∗ = mξsn

√
3��cπ2

4(�−�c )
(50), whereas the black points correspond to the effective mass

extracted from the excitation spectrum ω(q) for the transverse mode of the domain wall and its ground state energy EDW using the

relation limq→0
ω(q)
q =

√
EDW
m∗ (see 53). In all the panels, gss/gdd = 0.035: typical value for 23Na. Figure adapted with permission from

Reference 53; copyright 2019 American Physical Society.

yielding the differential sine-Gordon equation ��2φr = 2m�sinφr (48, 49). For the domain wall
solution, φr is a function of only one coordinate, say x, with the boundary condition that φr ap-
proaches a constant value as x → ±∞. The trivial solution φ↑ = φ↓ + 2πm = constant, with m
integer, corresponds to the ground state solution of the Gross–Pitaevskii equations. A nontrivial
solution, corresponding to an infinite domain wall located at x = 0, is given by (see, e.g., 51)

φr (x) = 4 arctan
[
exp(x/ξ� )], 31.

whose spatial variation is characterized by the Rabi healing ξ� = √
�/m�. This stationary

solution—which is a local minimum of the energy—connects two asymptotic ground states as
x goes from −∞ to +∞ with relative phase equal to 0 and 2π in the two limits, respectively.

The solution (Equation 31) generates a counterflow current and accumulates the relative phase
gradient in a small region of size ξ�. The tension of the domain wall, i.e., its energy per unit area,
is equal to σ = (2�)3/2

√
�/m, revealing that the creation of a relative phase domain wall of infinite

length would cost an infinite energy amount.
As already mentioned, Equation 31 is an approximation. However, the solution of the more

general Gross–Pitaevskii equations for the stationary solitonic solution exhibits a similar equiva-
lent phase pattern, but with a density dip near the wall as a consequence of the compressible nature
of the gas. The dip increases with the increase of the Rabi coupling (52; as shown in Figure 3a),
and for large values of � the central density vanishes, in close analogy with dark solitons.

An important question to discuss concerns the stability of the domain wall, which exhibits a
deep difference with respect to the solitonic solution of a single-component BEC. In the latter
case, the soliton is well known to suffer dynamic snake instability, unless one strictly works in
one dimension (28). As pointed out by Son & Stephanov (48), for values of � below a critical
value �c, the domain wall solution is instead dynamically stable even in 3D configurations. Under
the assumption ��, gssn � gddn the critical value takes the simple expression �c = ngss/3 (48).
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The stability of the domain wall is the consequence of the positiveness of its effective mass (53,
54) whose dependence on the Rabi coupling is shown in Figure 3b. Close to �c the effective mass
exhibits a divergent behavior, whereas for larger values it becomes negative and the domain wall
undergoes dynamical snake instability as a consequence of the appearance of an imaginary part in
the excitation spectrum (see Figure 3c).

Let us now discuss the consequences of the relative phase domain wall on the structure of vortex
lines and let us consider a hypothetical domain wall of finite length. Around its end points the
relative phase must change by 2π , corresponding to the presence, at the end point of the domain
wall, of a vortex line in one of the two components, which is usually called a half-quantum vortex
(HQV). This reveals that HQVs cannot exist as isolated objects (55), but they are always linked
to a domain wall, eventually ending with a second HQV of the same atomic species with opposite
circulation or with an HQV of the other species with the same circulation, thereby forming a
sort of vortex molecule. This situation—as already pointed out in Reference 48—has intriguing
analogies with the quark confinement in the theory of strong interactions (56).

It is remarkable that the classical field theory presented here can give rise not only to the
confinement of HQVs but also to the pair creation phenomenology typical of quantum chro-
modynamics. An HQV pair is indeed stable only if its size is smaller than a critical value (56). If
the pair size is larger than this critical value, it decays into two (or more) composite objects (53,
56, 57). The actual decay mechanism depends on a number of parameters, in particular on the
value of the Rabi coupling �. In Figure 4, we report the case of a domain wall created across
a cloud trapped by a harmonic potential in which the density becomes smaller and smaller as
one approaches the surface region. The figure reports the case of both a dynamically stable
(� < �c) and a dynamically unstable (� > �c) configuration. In the former case, the decay
mechanism is very slow, whereas in the latter one the snake instability proceeds in a very fast way.
In both cases, the formation of the vortex pairs, after fragmentation of the domain wall, preserves
the initial vanishing value of angular momentum (53).

To our knowledge there exists at the moment only a single experiment (58) reporting the ob-
servation of a vortex–domain wall composite object in cold atomic gases. Although it has been
obtained in spin-1 mixtures, the observed configuration exhibits important analogies with the
scenario described above for a spin-1/2 Rabi mixture.

4. SPIN–ORBIT COUPLED CONFIGURATIONS

In this section, we describe the quantum phases, the elementary excitations, and the superfluid
properties of spin–orbit coupled BECs, emphasizing analogies and differences with respect to the
Rabi coupled mixtures discussed in the previous section. Spin–orbit coupled BECs were first ex-
perimentally investigated in the pioneering papers by the Spielman team (59, 60), motivated by
the possibility of generating synthetic gauge fields (see also 61–63). Experimental results for de-
generate spin–orbit Fermi gases have also become available (64, 65). Theoretically, the study of
SOC gases has been the object of extensive investigations in the past several years. For previous
review papers, see References 66 and 67. From the many-body point of view particularly challeng-
ing features are exhibited by the so-called ST phase, where first important supersolid effects have
already been identified experimentally (68, 69).

4.1. Single-Particle Excitation Spectrum

A discussion of SOC in BEC systems naturally starts from the study of the excitation spectrum
of the single-particle Hamiltonian (Equation 3). The deep modifications induced by SOC on the
single-particle properties are in fact crucial to understanding the novel many-body features.
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Decay due to
energetic instability

Decay due to
dynamic instability

Figure 4

Phase profile of a long domain wall created at t = 0 (upper panel) across a two-dimensional Rabi coupled gas
trapped by a harmonic potential V (x, y) = 1/2mω2

ho(x
2 + y2). The circle contour corresponds to the radius

of the cloud, where the Thomas–Fermi density is zero. The domain wall decays (left) via energetic instability,
after bending, into three composite objects or (right) via snake dynamic instability into four composite
objects. The pairs consist of either vortices with the same circulation in both components (1±, 2±), or
vortices with opposite circulation in one of the two component (2±, 2∓). For more details see References 53
and 56.

In uniform matter, where the canonical momentum p is a good quantum number, the
eigenvalues of Equation 3 are given by

ε±(p) = p2x + p2⊥
2m

+ Er ± �

√(
k0px
m

− δ

2

)2

+ �2

4
, 32.

where Er = (�k0)2/2m is the recoil energy and p2⊥ ≡ p2y + p2z. The dispersion exhibits a typical
double-band structure, reflecting the spinor nature of the configuration. Most interestingly, the
dispersion is characterized by the occurrence of a double minimum for small � and δ, with the
possibility of hosting BEC in single-particle states with px �= 0. For large values of � (much larger
than the recoil energy Er), the lower branch exhibits a single-minimum structure of the form

ε(p) → p2⊥
2m

+ 1
2m

(px + �k0δ/�)2 + constant. 33.

By introducing a space dependence in the detuning δ of the form δ = αy, the new gauge field in
Equation 33 is responsible for an effective uniform magnetic field B = α�k0/�, oriented along
the z-direction. This possibility was implemented experimentally in the pioneering work (59)
to generate an effective Lorentz force, which was responsible for the appearance of quantized
vortices in BEC gases (see Figure 5).
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Figure 5

Appearance of vortices in a trapped spin-orbit-coupled Bose–Einstein condensate containing N = 1.4 ×
105 Rb atoms, at different detuning gradients. Figure adapted with permission from Reference 59; copyright
2009 Nature (https://www.nature.com). Abbreviation: TOF, time of flight.

In the case of vanishing detuning δ, which the single-particle dispersion (Equation 32) exhibits,
for � < 4Er, two symmetric minima at quasi-momentum px = ±�k1 with k1 = k0

√
1 − (��/4Er )2.

For larger values of �, the dispersion instead exhibits a single minimum at px = 0. It is also worth
discussing the behavior of the effective mass 1/m∗ = d2ε/d p2x of particles moving along the x di-
rection. Near the minima one finds (70)

m
m∗ = 1 −

(
��

4Er

)2

for �� < 4Er and
m
m∗ = 1 − 4Er

��
for �� > 4Er. 34.

The effective mass exhibits a divergent behavior at �� = 4Er, when the double-well structure
disappears and the dispersion takes a p4x law near the minimum. It is also worth noticing that for
�� < 4Er the effective mass can have negative values when one moves away from the minimum,
because of the change in the curvature of the function ε( px). This effect is responsible for impor-
tant nonlinear instabilities that were observed in the center of mass oscillation (71) as well as in
the expansion of the gas, following the release of the trap (72).

4.2. Quantum Phases and the Role of Interactions

The role of SOC in weakly interacting BECs can be properly described employing theMF energy
functional (Equation 4), providing a natural generalization of Gross–Pitaevskii theory for two
coupled Bose–Einstein condensed gases. In the previous subsection, we discussed how the value
of the Raman coupling � changes in a deep way the structure of the single-particle states. More
importantly, interactions are responsible for the emergence of a new quantum phase, the so-called
ST or supersolid phase, which has attracted much interest in the recent literature. Interactions
modify the conditions for the values of � to make the various phases energetically favorable.
Choosing a vanishing detuning δ = 0, one identifies the following quantum phases (see, e.g., 67).

www.annualreviews.org • Coherently Coupled Atomic Mixtures 421

A
nn

u.
 R

ev
. C

on
de

ns
. M

at
te

r 
Ph

ys
. 2

02
2.

13
:4

07
-4

32
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

C
on

si
gl

io
 N

az
io

na
le

 d
el

le
 R

ic
er

ch
e 

(C
N

R
) 

on
 1

1/
24

/2
2.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 

https://www.nature.com


4.2.1. Zero momentum (ZM) phase. For �� > 4Er − 2gssn the system occupies the px = 0
single-particle state.This phase is analogous to the paramagnetic phase discussed for Rabi coupled
BEC. It exhibits nontrivial features concerning the magnetic, dynamic, and superfluid properties.
For example, the magnetic susceptibility can be expressed as (73)

χZM = 2
�� − (4Er − 2gssn)

, 35.

and it exhibits a divergent behavior as one approaches the transition to the plane wave phase at
�� = 4Er − 2gssn and reduces to Equation 12 for Er = �

2k20/2m = 0.

4.2.2. Plane wave phase. As the value of the coupling � is lowered below 4Er − 2gssn, the
system enters the so-called plane wave (PW) phase, in which the gas no longer occupies the
px = 0 single-particle state but rather states with nonvanishing canonical momentum px = ±�k1
that can be written in the form

�+ ≡ √
n

(
cos�

− sin�

)
eik1x, �− ≡ √

n

(
sin�

− cos�

)
e−ik1x. 36.

Minimization of the energy with respect to k1 yields the value k1 = k0
√
1 − �2/(4Er − 2gssn)2

for the wave vector, which renormalizes the noninteracting value k0. The value of the spin po-
larization is fixed by k1 through the relation sz = ncos (2�) = k1/k0. Notice that k1, and hence
sz, vanishes as one approaches the transition to the ZM phase, corresponding to a second-order
phase transition. Because for δ = 0 the energy associated with the macroscopic occupation of the
two states (Equation 36) is the same, the choice between the two configurations is determined by a
mechanism of spontaneous symmetry breaking, which is typical of ferromagnetic configurations.
The typical bifurcation exhibited by the canonical momentum �k1 has been explicitly measured
by the Spielman team (60). The magnetic polarizability can be easily calculated also in the PW
phase, where one finds the result (73)

χPW = (��)2

(2Er − gssn)[4(2Er − gssn)2 − (��)2]
, 37.

which diverges as one approaches the transition to the ZM phase. As discussed in the Rabi coupled
case, when one approaches the transition from above or below, the values of χ differ by a factor
of two, reflecting its second-order nature. If one sets gss = 0 in Equations 35 and 37, the magnetic
polarizability turns out to be fixed by the effective mass introduced in Section 4.1 through the
relation 4ErχM =m/m∗ − 1.Themagnetic susceptibility has been experimentally extracted (74) in
the ZM and PW phases, through the analysis of the relative amplitude of the spin and momentum
variables measured after exciting the dipole oscillation (73). The extracted values agree well with
the theoretical predictions given by Equations 35 and 37 (see Figure 6). Again, if k0 = 0, the
polarization sz and Equation 37 reduce to the Rabi coupled ferromagnetic case, in which case the
condition gss < 0 is required.

4.2.3. Stripe phase. In the absence of two-body interactions, the occupation of any combina-
tion of the two single-particle states (Equation 36) discussed above is energetically equivalent.
The situation changes in the presence of interactions, and depending on the balance between
the density and spin density components of the interaction terms entering the energy functional
(4), the system prefers to occupy either the above single-particle states separately, corresponding
to the PW configuration, or the linear combination � = (�+ + eiφ�− )/

√
2. This latter configu-

ration, often called stripe (ST) or supersolid configuration, becomes energetically advantageous
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Figure 6

Magnetic susceptibility in the plane wave and zero momentum phases. Experimental data are extracted from
spin and momentum amplitudes of the dipole oscillation (71). The inset is a blowup of the small ��/Er
region. Theory is from Reference 73. The arrow indicates the transition to the ST phase. Figure adapted
from Reference 67.

if the Raman coupling is smaller than the critical value (75),

��cr = 4Er

√
2γ

1 + 2γ
, 38.

where the relevant parameter γ = gss/gdd is fixed by the ratio between the spin and density
interaction coupling constants. This result (Equation 38) holds for positive values of gss and under
the condition gddn, gssn � Er. The ST phase has vanishing spin polarization (sz = 0) and is char-
acterized by peculiar interference effects between the two components �+ and �−, giving rise,
for small values of �, to density modulations of the form n(r) = n̄

[
1 + (��)/4Er ) cos(2k1x+ φ)

]
,

with the actual position of the interference fringes being fixed by the value of the phase φ, which
results from a mechanism of spontaneous breaking of translational symmetry. For this reason,
this phase is also called the supersolid phase. Notice also that the space modulation of the density
fringes is not uniquely fixed by k0 because the value of k1 = k0

√
1 − �2/(4Er + gddn)2 differs

from k0, except in the � → 0 limit. The ST phase is also characterized by the peculiar behavior

χST = 4(16E2
r − (��)2)

32E2
r gssn− (��)2(gdd + 2gss )n

39.

of the magnetic polarizability, which exhibits a divergent behavior at the critical point
(Equation 38). The result (Equation 39), similar to Equation 38, holds only if gddn, gssn � Er.

In order to increase the contrast of fringes and to strongly reveal the peculiar effects exhibited
by the ST phase it would be useful to increase the value of �. However, one should keep in mind
that the value of � cannot exceed the critical value (Equation 38) above which the system enters
the PW phase. This value is usually small because in the most familiar case of alkali atoms the
coupling constants relative to the various hyperfine states are very close to each other, causing
the small value of γ . However, it has been recently shown (69) that a rapid jump in the value of
the Raman coupling can provide a way to effectively increase the value of the contrast. In this
experiment, the jump was in fact slow compared to the gap between the two branches of the
SOC dispersion but fast compared to many-body dynamics, which would bring the system into
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equilibrium. As a result, this process simply magnifies the amplitude of the SOC stripes, making
them visible.

The direct experimental observation of stripes in SOC gases using Bragg spectroscopy (68, 69)
has provided some of the first evidence of the long-sought phenomenon of supersolidity, where
the spontaneous breaking of gauge symmetry, yielding superfluidity, and of translational invari-
ance, yielding crystallization, coexist simultaneously. In Reference 76, a method was proposed to
increase the value of the critical Raman coupling in conditions of thermodynamic equilibrium,
making the supersolid features of the ST phase more visible. The proposal is based on the ef-
fective reduction of the interspecies coupling constant g↑↓, with the consequent increase of �cr.
It could be achieved by reducing the spatial overlap between the wave functions of the two spin
components, for instance, with the help of a spin-dependent trapping potential separating the two
components.

4.3. Elementary Excitations and Goldstone Modes

The elementary excitations of an SOC BEC can be obtained by solving the Bogoliubov equa-
tions, corresponding to the linearized version of the coupled Gross–Pitaevskii equation. In
uniform matter, they are classified in terms of the wave vector k of the excitation. Similar to
the case of the eigenvalues (Equation 32) of the single-particle Hamiltonian, the solutions of
the Bogoliubov equations also exhibit a double band structure, reflecting the spinor nature of the
wave function.A typical example of the low branch dispersion is shown inFigure 7, obtained in the
PW phase, where the excitation spectrum measured using Bragg spectroscopy techniques (74) is
reported. Some comments are in order here: (a) The lower branch exhibits a linear phonon regime
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Figure 7

Lower branch of excitations in the plane wave phase of a spin–orbit coupled Bose–Einstein condensate
revealing the phonon and roton excitations. Experimental data are from Reference 74. Theory is from
Reference 76. Figure adapted with permission from Reference 74; copyright 2015 American Physical Society.
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for small values of qx, whose main features can be discussed using the hydrodynamic formalism;
(b) the excitation spectrum violates the symmetry property ω(kx) = ω(−kx) as a consequence of the
simultaneous violation of parity and time-reversal symmetry exhibited by the spin–orbit Hamil-
tonian; and (c) the lower branch in the PW phase exhibits a typical rotonic structure for positive
values of kx (qx in the figure). Most interestingly, the roton gap becomes smaller and smaller as
one lowers the Raman coupling strength �, approaching the transition to the ST phase. Because
the value of �cr is very small, the transition to the ST phase is not visible in the figure. The agree-
ment between experiments and theory is excellent, confirming the validity of the Gross–Pitaevskii
MF approach in the study of the elementary excitations.

The region of small wave vectors and excitation frequencies can be appropriately described
using the hydrodynamic representation in analogy with the description presented in Section 3.3
for Rabi coupled BECs. The hydrodynamic behavior of the system actually exhibits very peculiar
features (77) in the PW and ZM phases. In uniform (or quasi-uniform) matter, where in the large
wave-length limit one can neglect quantum pressure effects, the low-frequency oscillations satisfy-
ing the condition ω � � are characterized by the locking of the relative phase: φr = φ↑ − φ↓ = 0,
which reduces the study of the Gross–Pitaevskii equation to the equations for the total density
and phase φd = φ↑ + φ↓ and the spin density. These equations, in the linearized limit, take the
following form:

∂tδn+ 1
2m

∇ · (n∇φd ) − k0
m

∂xδsz = 0, 40.

∂t∇φd + 2∇ (gδn)= 0, 41.

and

− k0
2m

n∂xφd + �

2
δsz = 0, 42.

where δn and δsz are the fluctuations in the total density and in the spin density, respectively,
taking place during the oscillation. For the sake of simplicity, we have assumed here that gss = 0
and considered the ZM phase characterized, at equilibrium, by the vanishing of the phase φ of the
order parameter and of the spin density sz. The first equation is the equation of continuity, which
is deeply affected by SOC, reflecting the fact that the physical current is not simply given by the
gradient of the phase as happens in usual superfluids, but contains a crucial spin-dependent term.
This implies that even in the density channel the f-sum rule is not exhausted by the gapless phonon
excitation but can be significantly affected by the higher-energy gapped states, which is caused by
the Raman coupling. The second equation corresponds to the Euler equation and fixes the time
dependence of the phase gradient of the order parameter. Finally, the third equation follows from
the variation of the energy with respect to the spin density and is responsible for the hybridization
between the density and spin density degrees of freedom in the propagation of sound (77). Notice
that if one takes the k0 = √

2mEr → 0 limit, corresponding to the Rabi coupled configurations
discussed in Section 3.2, the hybridization disappears and the phononmode is a pure density wave.
With respect to the hydrodynamic formulation presented in Section 3.3 for Rabi coupledmixtures,
the hydrodynamic equations (Equations 40–42) cannot describe the dynamics of the relative phase,
being applicable only to the regime of low-excitation frequencies, where φr is locked.

The linearized equations (Equations 40–42) can be rewritten in the following useful form:

∂2
t δn = g

m
[∇⊥ · (n∇⊥δn) + m

m∗ ∇x(n∇xδn)], 43.
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where n is the equilibrium density, and we have introduced the effective mass m/m∗ = 1 − �c/�.
One can show that Equation 43 holds also in the PW phase, taking place for � < �c. In this case,
the effective mass is given bym/m∗ = 1 − (�/�c)2. In uniformmatter, i.e., in the absence of exter-
nal trapping, Equation 43 provides the phonon dispersion law ω = ckx along the x direction, with
c2 = gn/m∗, revealing a strong reduction of the sound velocity in the vicinity of the second-order
phase transition between the PWand the single-minimum phase,where the effective mass is much
larger than the bare mass. If one includes the spin term proportional to gss in the hydrodynamic
formalism, one finds that, in the PW phase, the sound velocity differs if sound propagates parallel
or antiparallel to the direction fixed by the momentum transfer �k0 (67). The corresponding ve-
locities c+ and c− satisfy the nontrivial relation mκc+c− = (1 + 2Erχ )−1, with 1/κ = �μ/�n being
the inverse compressibility. This relation reflects the crucial interplay between magnetic effects
and the propagation of sound in spin–orbit coupled BECs.

The hydrodynamic Equation 43 allows for analytic solutions also in the presence of harmonic
trapping V (r) = m(ω2

xx
2 + ω2

y y
2 + ω2

zz
2), where the Thomas–Fermi density profile, consistent

with the choice gss = 0, has the spin–orbit independent form neq = n0(1 − x2/R2
x − y2/R2

y − z2/R2
z )

and ω2
xR

2
x = ω2

y R
2
y = ω2

zR
2
z for positive values of neq and 0 otherwise. In this case, the solution of the

hydrodynamic equations represents an immediate generalization of the results derived in Equa-
tion 78 in the absence of SOC, with the simple replacement of the trapping frequency ωx with
ωx

√
m/m∗. For example, the frequency of the center of mass oscillation along the x direction is

expected to be strongly reduced in the vicinity of the transition between the PW and the ZM
phases. This effect has been experimentally observed in Reference 71.

The dynamic behavior in the ST phase is particularly interesting because of the novel
Goldstone branch introduced by the spontaneous breaking of translational invariance. In uni-
form matter, this branch approaches, as � → 0, the spin branch of standard quantum mixtures
and is characterized, in the long wave vector limit, by the dispersion ω = √

gssn/mk. The veloc-
ity of the novel gapless mode becomes smaller and smaller as one approaches the transition to
the PW phase and eventually vanishes at the spinodal point. Both the density and spin density
branches propagating along the x direction exhibit a typical band structure characterized by the
Brillouin wave vector k1 (see Figure 8) and exhibit an important spin density hybridization effect
for finite values of kx. Remarkably, two gapless modes are also predicted to propagate along the
direction parallel to the stripes, where the signal is classified in terms of the transverse wave vec-
tor k�. Above the transition, only the density phonon branch survives, reflecting the fact that only
the U(1) symmetry—associated with the total phase φd of the order parameter—is spontaneously
broken.

The Goldstone modes in the ST phase have been recently theoretically investigated also in the
presence of harmonic trapping (80, 81). In this case, one finds that, whereas in the PW and ZM
phases the density and spin modes are fully hybridized, corresponding to the existence of a single
gapless branch, in the ST phase one finds the emergence of a novel low-frequency excitation of
spin nature (see Figure 9), whose experimental observation would represent further crucial evi-

dence of supersolidity. The figure also shows the result ωx/

√
1 + k20χM , which provides a rigorous

upper bound to the lowest mode excited by the dipole operator x (73). The bound is fixed by
the magnetic susceptibility and accurately matches the center of mass frequency both in the PW
and in the ZM phases. In the ST phase, the upper bound is instead significantly smaller than the
frequency of the collective mode calculated by solving the time-dependent Gross–Pitaevskii equa-
tion after the sudden excitation of the center of mass oscillation. This suggests the existence of an
excitation at lower frequency that is naturally interpreted as the analog of the ω = 0 Goldstone
mode of uniform matter, corresponding to the translational motion of the stripes.
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Figure 8

Lowest four excitation bands propagating along the x direction in the ST phase of a spin–orbit coupling
Bose gas (� = m = 1). The lowest gapless branch is the novel Goldstone mode caused by the breaking of
translational invariance. Figure adapted with permission from Reference 79; copyright 2013 American
Physical Society.

4.4. Superfluidity and Moment of Inertia

Superfluidity is a key feature attracting considerable attention in the theoretical and experimental
studies of transport phenomena of quantum many-body systems at low temperature. It reflects
the property that only part (the normal component ρn) of a system is dragged by the wall of a
moving container, the superfluid component ρ s = ρ − ρn being able to move without friction.
Superfluidity exhibits novel features in spin–orbit coupled Bose gases, as a consequence of the
violation of Galilean invariance, which affects the usual Landau’s criterion for superfluidity and
the stability conditions of the superfluid flow (70, 82, 83).

A useful definition of the normal density is obtained in terms of the response function of the
system to a transverse current perturbation. At zero temperature, one can write (84)

ρn

ρ
= 1
N

lim
k→0

⎡
⎣∑

n �=0

|〈0|JTx (k)|n〉|2
En − E0

+ (k → −k)

⎤
⎦, 44.

where JTx (k) is the transverse current operator along the x direction (in the following, we choose
the wave vector k oriented along the y direction). As already pointed out in the previous sections,
a peculiarity of SOC is that the physical current is not simply given by the canonical contribution,
proportional to px, but it contains an additional spin component. As a consequence, the transverse
current operator takes the form JTx (ky ) = ∑

k(pk,x − k0σk,z ) exp(ikyyk ). Because the transverse cur-
rent operator does not excite the gapless phonon mode, which is of longitudinal nature, the only
contribution to Equation 44 arises from the gapped part of the spectrum. In both the PW and
ZM phases, a single gapped branch is expected to occur. However, as k → 0 limit, the transverse
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Figure 9

Goldstone modes of a spin–orbit coupling gas in an axially deformed harmonic trap. Below the transition
between the ST and plane wave phases, one identifies, from top down: axial breathing mode, center of mass
oscillation, and the novel spin dipole oscillation caused by the spontaneous breaking of translational

symmetry. The black curve corresponds to the upper bound ωx/
√
1 + k20χM to the lowest dipole oscillation,

proving the occurrence of a lower frequency mode in the ST phase. Above the transition, the spin dipole
mode is fully hybridized to the axial breathing mode. Figure adapted with permission from Reference 80;
copyright 2021 American Physical Society.

contribution |〈0|JTx (ky )|n〉|2 to the sum (Equation 44), arising from the gapped state, coincides
with the corresponding longitudinal one, which is simply obtained by replacing exp (ikyy) with
exp (ikxx) in the definition of the current. Using sum rule arguments applied to the longitudi-
nal channel, it is then possible to show (75) that the normal density fraction ρn/ρ is fixed by the
contribution of the gapped branch to the f-sum rule and that the superfluid density satisfies the
important relationship,

ρs

ρ
= mc+cnκ = 1

1 + k20χM
, 45.

where c+ and c− are, respectively, the velocities of sound propagating parallel and antiparallel to
the x direction of SOC,whereas κ is the compressibility of the gas. In the last equality, we have also
used the relationship, derived in Reference 77, among the compressibility κ , the sound velocities
c±, and the magnetic susceptibility that was already discussed in Section 4.3. The effects of SOC
near the transition between the PW and the ZM phases are striking, because of the divergent be-
havior exhibited by χ (see also Figure 6) showing that, even in configurations of uniform density,
the superfluid density of a Bose–Einstein condensed gas at zero temperature is deeply modified
as a consequence of the violation of the Galilean invariance of the Hamiltonian. It is also impor-
tant to point out that quantum fluctuations have a negligible consequence on the depletion of the
condensate (70), thereby revealing that the superfluid density crucially differs from Bose–Einstein
condensation in these systems. The behavior of the superfluid density has also been the object of
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theoretical calculations in the ST phase (85, 86), where the occurrence of density modulations and
the consequent emergence of crystal-like effects is a further source of reduction of the ratio ρ s/ρ.

A closely related quantity emphasizing the effects of superfluidity is the moment of inertia of
a trapped gas. In atomic quantum gases, the moment of inertia has been the object of theoretical
(87, 88) and experimental (89–91) works confirming the superfluid behavior of such systems. It
is consequently interesting to discuss the consequences of SOC. The moment of inertia �inertia

around the z axis is defined as the linear response of the system to an external perturbation of
the formHpert = −�rotLz, according to the definition �inertia = lim� → 0〈Lz〉/�rot, which explicitly
reveals the transverse nature of the response, in analogy with the definition (84) for the normal
component of the density. Deviations of �inertia from the classical rigid value �rig = m�drn(r)
(x2 + y2) then point out the consequences of superfluidity. The case of isotropic trapping in the
plane of rotation is particularly interesting because in this case the constraint of irrotationality
on the velocity field imposed by Bose–Einstein condensation in single-component configurations
implies the vanishing of �inertia (28). In SOC gases the situation is different because the angular
momentum contains an additional crucial spin contribution: Lz = r × p + �k0yσ z, thereby sug-
gesting that even in the presence of isotropic density configurations in the x-y plane, causing the
vanishing effect of the canonical contribution r × p, the spin term can provide an important ef-
fect. The calculation of �inertia can be carried out by either solving the coupled Gross–Pitaevskii
equation in the presence of the constraint−�rotLz or using the hydrodynamic equations discussed
in the previous section, with the addition of the term −��rotk0y to Equation 42 for the spin den-
sity. The equation of continuity (Equation 40) is also modified by the new constraint, but with
vanishing consequences in the isotropic case. Making the further simplifying assumption gss = 0,
the solution of the hydrodynamic equations is analytic (92), and in the ZM phase the velocity field
takes the rigid-body-like form v = (�rot × r)�cr/(2� − �cr), yielding the value

�inertia = �rig
�cr

2� − �cr
46.

for the moment of inertia. In the PW phase, one should simply replace the quantity �/(2� −
�cr) with �2/(2�2

cr − �2). Remarkably, at the transition between the two phases (� = �cr), the
moment of inertia takes the rigid value, consistent with the result (45) discussed above for the
superfluid density, which exactly vanishes at the transition. The above results are confirmed by
the numerical solution of the Gross–Pitaevskii equation (93) and suggest that the inclusion of
the detuning yσ z could be employed to provide the experimental measurement of the moment of
inertia in configurations characterized by isotropic confinement in the x-y plane.

For values of �rot greater than a critical value, the Gross–Pitaevskii equation reveals the exis-
tence of an energetic instability, resulting in the formation of quantized vortices.This confirms the
efficient role played by the inclusion of the y dependence of the detuning to generate nontrivial
rotational effects, as experimentally proven in the seminal paper, Reference 59, and theoretically
discussed in References 93 and 94.

5. CONCLUSIONS AND PERSPECTIVES

In this paper, we have reviewed some key features exhibited by coherently coupled quantum mix-
tures of BECs, providing a combined discussion of Rabi and spin–orbit configurations in S = 1/2
spinor mixtures. The emerging scenario emphasizes the rich variety of phenomena exhibited by
these systems, including new quantum phases and intriguing features of the elementary excitations
and the Goldstone modes, as well as challenging phenomena, like the internal Josephson effect,
novel solitonic configurations, and supersolidity.The discussion of these phenomena has explicitly
pointed out the crucial role played by the symmetries of the underlying Hamiltonians. It has also
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shown that the theoretical predictions and the comparison with the available experiments, carried
out in mixtures of ultracold atomic gases, confirm that MF formalism, based on the use of Gross–
Pitaevskii theory, is a useful starting point for the understanding of the main features exhibited by
these systems. At the same time, a series of important questions still remain to be explored and
understood from both theoretical and experimental points of view. Several specific questions have
been discussed in various sections of the paper.More general open issues, not discussed in this re-
view, include, among others, the study of thermal effects and the interplay between quantum and
thermodynamic phase transitions, the crucial role of quantum fluctuations in lower dimensions,
and the novel features exhibited by spinor quantum mixtures with S ≥ 1.
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94. Radić J, Sedrakyan TA, Spielman IB, Galitski V. 2011. Phys. Rev. A 84(6):063604

432 Recati • Stringari

A
nn

u.
 R

ev
. C

on
de

ns
. M

at
te

r 
Ph

ys
. 2

02
2.

13
:4

07
-4

32
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

C
on

si
gl

io
 N

az
io

na
le

 d
el

le
 R

ic
er

ch
e 

(C
N

R
) 

on
 1

1/
24

/2
2.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 

https://doi.org/10.1103/PhysRevLett.114.105301
https://doi.org/10.1103/PhysRevLett.110.235302
https://doi.org/10.1103/PhysRevLett.127.115301


Annual Review of
Condensed Matter
Physics

Volume 13, 2022

Contents

Reflections on 65 Years of Helium Research
John D. Reppy � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 1

My Life and Science
Valery L. Pokrovsky � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �15

Russell Donnelly and His Leaks
J.J. Niemela and K.R. Sreenivasan � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �33

Director Deformations, Geometric Frustration, and Modulated Phases
in Liquid Crystals
Jonathan V. Selinger � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �49

Thin Film Skyrmionics
Takaaki Dohi, Robert M. Reeve, and Mathias Kläui � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �73

The Physics of Dense Suspensions
Christopher Ness, Ryohei Seto, and Romain Mari � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �97

Topological Magnets: Functions Based on Berry Phase and Multipoles
Satoru Nakatsuji and Ryotaro Arita � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 119

Active Turbulence
Ricard Alert, Jaume Casademunt, and Jean-François Joanny � � � � � � � � � � � � � � � � � � � � � � � � � � � � 143

Topological Magnons: A Review
Paul A. McClarty � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 171

Olfactory Sensing and Navigation in Turbulent Environments
Gautam Reddy, Venkatesh N. Murthy, and Massimo Vergassola � � � � � � � � � � � � � � � � � � � � � � � � � 191

Irreversibility and Biased Ensembles in Active Matter: Insights from
Stochastic Thermodynamics
Étienne Fodor, Robert L. Jack, and Michael E. Cates � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 215

The Hubbard Model
Daniel P. Arovas, Erez Berg, Steven A. Kivelson, and Srinivas Raghu � � � � � � � � � � � � � � � � � � 239

The Hubbard Model: A Computational Perspective
Mingpu Qin, Thomas Schäfer, Sabine Andergassen, Philippe Corboz,
and Emanuel Gull � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 275

A
nn

u.
 R

ev
. C

on
de

ns
. M

at
te

r 
Ph

ys
. 2

02
2.

13
:4

07
-4

32
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

C
on

si
gl

io
 N

az
io

na
le

 d
el

le
 R

ic
er

ch
e 

(C
N

R
) 

on
 1

1/
24

/2
2.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



Understanding Hydrophobic Effects: Insights from Water
Density Fluctuations
Nicholas B. Rego and Amish J. Patel � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 303

Modeling of Ferroelectric Oxide Perovskites: From First
to Second Principles
Philippe Ghosez and Javier Junquera � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 325

How Cross-Link Numbers Shape the Large-Scale Physics of
Cytoskeletal Materials
Sebastian Fürthauer and Michael J. Shelley � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 365

Studying Quantum Materials with Scanning SQUID Microscopy
Eylon Persky, Ilya Sochnikov, and Beena Kalisky � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 385

Coherently Coupled Mixtures of Ultracold Atomic Gases
Alessio Recati and Sandro Stringari � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 407

Errata

An online log of corrections to Annual Review of Condensed Matter Physics articles may
be found at http://www.annualreviews.org/errata/conmatphys

A
nn

u.
 R

ev
. C

on
de

ns
. M

at
te

r 
Ph

ys
. 2

02
2.

13
:4

07
-4

32
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

C
on

si
gl

io
 N

az
io

na
le

 d
el

le
 R

ic
er

ch
e 

(C
N

R
) 

on
 1

1/
24

/2
2.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 


