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Abstract

In this paper we present DC{ (Direct Count & Intersect), a new data mining algorithm for frequent
set counting. We also discuss the parallelization strategies used in the design of ParDCl, a distributed and
multi-threaded version of DCI. DCl adopts a classical level-wise approach based on candidate generation
to extract frequent sets, but uses a hybrid method to determine the supports of candidate itemsets.
According to this method, an effective counting-based method is exploited during the first iterations, and
a fully optimized intersection-based technique for the remaining ones. Multiple heuristics strategies are
employed by DC, which is able to adapt its behavior not only to the features of the specific computing
platform (e.g. available memory), but also to the features of the dataset being processed. Our approach
turned out to be highly scalable and very efficient for mining both short and long patterns from sparse and
dense datasets. The experimental results showed that DCI sengibly outperforms FP-growth, a well-known
fast algorithm that extracts frequent patterns without candidate generation, and the classical Apriori
algorithm. We obtained good results for both synthetic and real-world datesets. The large amount of
tests conducted permit us to state that the design of DCI is not much focused on specific datasets, and
that our optimizations are not over-fitted only to the features of these datasets. ParDCl, the parallel
version of DCl, is explicitly devised for targeting clusters of SMP nodes, so that shared tmemory and
message passing paradigms are used a$ the inbra- and inter-node levels, respectively in order to exploit
effactive parallelization strategies previously proposed for Apriori. As a result, ParDC| reaches near
optimal speedups.

1 Introduction

Association Rule Mining (ARM), one of the most popular topic in the KDD field {3, 10, 1t, 17], regards the
extractions of association rules from a database of transactions D. Each rule has the form X = ¥, where
X and Y are sets of items (itemsets), such that {X{NY)=w. Arule X = Y holds in D with 4 minimum
confidence ¢ and a minimum support s, if at feast the ¢% of all the transactions containing X also contains
Y, and X UY is present in at least the s% of all the transactions of the database. In this paper we are
interested in the most computationally expensive phase of ARM, i.e the Frequent Set Counting (FSC) one.
During this phase, the set of all the Jrequent itemsets is built. An itemset of % items (k-itemset) is frequent
if its support is greater than a fixed threshold s, i.e. the itemset occurs in at least minsup transactions
(minsup = s/100 - n, where n is the number of transaction in D).

The computational complexity of the FSC problem derives from the exponential size of its search space
P(M), i.e. the power set of M, where M is the set of items contained in the various transactions of D, A way
to prune P(M) is to restrict the search to itemsets whose subsets are all frequent. The Apriori algorithm (6]
exactly exploits this pruning technique, thus visiting breadth-first P(M) for counting itemset supports.
At each iteration k, Apriori generates Cr, the set of candidate k-itetnsets, and counts the occurrences of
these candidates in the dataset transactions. The candidates in C% for which the the minimum support
constraint holds are then inserted into Fy, ie. the set of frequent k-itemsets, and the next iteration is
started. Other algorithms [8, 2] adopt instead a depth-first visit of P(A). In this case the goal is to discover
long frequent itemsets first, thus saving the work needed for discovering frequent itemsets included in long




ones. Unfortunately, while it is simple to derive all the frequent itemsets from the maximal ones, the same
does not hold for their supports, which require a further counting step. Remember that the exact knowledge
of the supports of the frequent itemsets is needed to derive association rule confidences and other measures
of interest.

Several variations to the original Apriori algorithm, as well as many parallel implementations, have
been proposed in the last years. We can recoghize two main methods for determining the supports of the
various itemsets present in P(M): a counting-based approach [4, 6, 12, 16, 8, 1], and an intersection-based
one [18, 9, 20]. The former one, also adopted in Apriori, exploits a horizantol dataset and counts how many
times each candidate k-itemset occurs in every transaction. The latter method, on the other hand, exploits
a vertical dataset, where a tidlist, i.e. a list of transaction ids, is associated with each item, and itemset
supports are determined through tidlist intersections. The counfing-based approach is, in most cases, quite
efficient from the point of view of memory occupation, since only requires to maintain Cg, into the main
memory, along with data structures used to quickly access candidates {e.g. hash-trees or prefix-trees). On
the other hand, the intersection-based method may be much more computational effective than its counting-
based counterpart [18]. Unfortunately, efficient implementations of intersection-based algorithms requires
huge amounts of memory to butfer tidlists associated with previously computed frequent (k — 1)-itemsets.

FP-growth, a completely different algorithm to solve the FSC problem, has recently been proposed by
7. Han et al, It is not based on candidate generation, and is currently considered one of the fastest FsC
algorithm. It builds in memory a compact representation of the dataset, where repeated patterns are
represented once along with the associated repetition counters. The data structure used to store the dataset
is called frequent pattern tree, or FP-tree for short. The algorithm recursively identifying tree paths which
share a common prefix. These paths are intersected by considering the associated counters.

In this paper we discuss in depth DCI (Direct Count & Intersect), a new algorithm to solve the FSC
problem. We also discuss a paraliel version of DCI, called ParDCl, which is explicitly targeted for clusters
of SMPs. As Apriori, DCI builds at each iteration the set F}, of the frequent k-itemsets on the basis of Cj.
However, DC| adopts a hybrid approach to determine the support of the candidates. In particular, during
its first iterations, DC! exploits a novel counting-based technique, accompanied by a carefully pruning of
the dataset, stored to disk in horizontal form. During the following iterations, DCI adopts a very efficient
intersection—based technique. DCI starts using this technique as soon as the pruned dataset, whose layout
has to be transformed from horizontal into vertical, fits into the main memory of the specific host machine.
Tidlists are represented as bit-vectors.

DCl is able o adapt its behavior not only to the features of the specific computing platform, but also
to the features of the datasets processed. This ability of DCl is very important, since in the past many
novel algorithms were devised, but often they outperformed others only for specific datasets. DCl deals
with dataset peculiarities by dynamically choosing among distinct heuristic strategies. For example, when
a dataset is dense, identical sections appearing in several tidlists are aggregated and clustered, in order to
reduce the number of intersections actually performed. Conversely, when a dataset is sparse, the runs of
zero bits in the intersected tidlists are promptly identified and skipped.

We will show how the sequential implementation of DCI significantly outperforms previously proposed
algorithms. In particular, under a number of different tests and independently of the dataset peculiarities,
DCl results to be faster than FP-growth [14]. Moreover, DCI performs very weil on both synthetic and
real-world datasets characterized by different density features, i.e. datasets from which, due to the different
correlations among items, either short or long frequent patterns can be mined.

ParDCI, the parallel version of DCI, adopts different parallelization strategies during the two phases of DCI,
i.e. the counting-based and the intersection-based ones. Moreover, these strategies are slightly differentiated
with respect to the two levels of parallelism exploited: intra-node level within each SMP to exploit shared-
memory cooperation, and inter-node level among distinct SMPs, where message-passing cooperation is used.
Basically, at the inter-node level (coarse grain, message-passing) ParDCl uses a Count Distribution technique
during the counting-based phase, and a Candidate Distribution one during the intersection-based one |5, 13,
19]. The former technique requires the partitioning of the dataset, and the replication of candidates and
associated counters. The final values of the counters are derived by all-reducing the various local counters.
The latter technique is instead used during the intersection-based phase. It requires an intelligent partitioning
of ), based on the prefixes of itemsets, but a partial/complete replication of the dataset.




This paper is organized as follow. Section 2 discusses the DCI algorithm, while Section 3 sketches the
solutions adopted to design ParDCI. In Section 4 we report our experimental results. Finally in Section 5 we
present some conclusions and future works.

2 The DCl algorithm

During its initial counting-based phase, DCl exploits a horizontal layout database with variable length records.
DCI, by exploiting effective pruning techniques inspired by DHP [16], trims the transaction database as
execution progresses. In particular, a pruned dataset D41 is written to the disk at each iteration k, and
employed at the next iteration. Let my and ny be the number of items and transactions that are included in
the pruned dataset Dy, where my, > my,; and ny > figt1. Pruning the dataset may thus entail a reduction
in 1/O activity as the algorithm progresses, but the main benefits come from the reduced computation
required for subset counting at each iteration %, due to the reduced number and size of transactions. As
soon as the pruned dataset becomes small enough to fit into the main memory, DCI adaptively changes its
behavior, builds a vertical layout database in-core, and starts adopting an intersection-based approach to
determine frequent sets. Note, however, that DCI continues to have a level-wise behavior,

At each iteration, DCI generates the candidate set C}, by finding all the pairs of (k — 1 )-itemsets included
in Fy_; that share a common (k—2)-prefix. Since Fj,_; is lexicographically ordered, the various pairs occur in
close positions, and candidate generation is performed with high spatial and temporal locality. Only during
the DCI counting-phase, Cy, is further pruned by checking whether also all the other subsets of a candidate
are included in Fy_;. Conversely, during the intersection-hased phase, since our intersection method is able
to quickly determine the support of a candidate itemsets, we found more profitable to avoid this check.

While during its counting-based phase DCl has to maintain Cy in main memory to search candidates
and increment associated counters, this is no longer needed during the intersection-based phase. As soon
a candidate k-itemset is generated, DC| determines on-the-fly its support by intersecting the corresponding
tidlists. This is an important improvement over other Apriori-like algorithms, which suffer from the possible
huge memory requirements due to the explosion of the Cj, size {14].

DCI makes use of a large body of out-of-core techniques, so that it is able to adapt its behavier also
to machines with limited main memory. Datasets are read/written in blocks, to take advantage of 1/0
prefetching and system pipelining {7]. The oulputs of the algorithms, e.g. the various frequent sets Fy, are
written to files. These same files are then mmap-ped into memory in order to access them during the next
iteration for candidate generation.

2.1 Counting-based phase

The techniques used in the counting-based phase of DCI are detailed in [15], where the same authors proposed
an effective algorithm for miming short patterns. Since the counting-based approach is used only for few
iterations (in all the experiments conducted DC| starts using intersections at the third or fourth iteration),
in the following we only sketeh the main features of the counting method adopted.

In the first iteration, as all FSC algorithms, DCI exploits a vector of counters, which are directly addressed
through item identifiers. For k > 2, instead of using complex data structures like hash-trees or prefix-trees,
DCl uses a novel Direct Count technique that can be thought as a generalization of the technique used for
k= 1. The technique uses a prefiz table, PREFIXy] |, of size (";'“) In particular, each entry of PREFIX,] ]
is associated with a distinct ordered prefiz of two items. For k = 2, PREFIX,| | can directly contain
the counters associated with the various candidate 2.itemsets, while, for & > 2, each entry of PREFIX,| ]
contains the pointer to the contiguous section of ordered candidates in C, sharing the same prefix. To
permit the various entries of PREFIX,] ] to be directly accessed, we devised an order preserving, minimal
perfect hash function. This prefix table is thus used to count the support of candidates in Cy as follows,
For each transaction ¢ = {#,. .. e}, we select all the possible 2-prefixes of all k-subsets included in ¢, We
then exploit PREFIX,[ | to find the sections of €, which must be visited in order to check set-inclusion of
candidates in transaction .




2.2 Intersection-based phase

Since the counting-based approach becomes less efficient as k increases [18], DCI starts its intersection-based
phase as soon as possible. Unfortunately, the intersection-based method needs to maintain in memory the
vertical representation of the pruned dataset. So, at iteration k, k > 2, DC! checks whether the pruned
dataset D), may fit into the main memory. When the dataset becomes small enough, its vertical in-core
representation is built on the fly, while the transactions are read and counted against Cy. The intersection-
based method thus starts at the next iteration.

The vertical layout of the dataset is based on fixed length records (tidlists), stored as bit-vectors. The
whole vertical dataset can thus be seen as a bidimensional bit-array VD[ ]; 1, whose rows correspond to the
bit-vectors associated with not pruned items. Therefore, the amount of memory required to store VD[ ][] is
my X my, bits.

At each iteration of its intersection-based phase, DCl computes Fy, as follows. For each candidate itemset
¢ € C), we and-intersect the k bit-vectors associated with the items included in ¢ (k-way intersection),
and count the 1’s present in the resulting bit-vector . If this number is > minsup, we insert ¢ into Fi.
Consider that a bit-vector intersection can be carried out very efficiently and with high spatial locality by
using primitive Boolean and instructions with word operands. As previously stated, this method does not
require C, to be kept in memory: we can compute the support of each candidate ¢ on-the-fly, as soon as it
is generated.

The strategy above is, in principle, highly inefficient, because it always needs a k-way intersection to
determine the support of each candidate ¢. Conversely, if we had enough memory to maintain the tidlists (bit-
vectors) associated with all the frequent (k — 1)-itemsets in Fy_1, we could carry out the same computation
through a single 2-way intersection. Unfortunately, a pure 2-way intersection approach does not scale, due
to the huge amount of memory required. Nevertheless, a caching policy could be exploited in order to save
work and speed up our k-way intersection method. To this end, DCl uses a small “cache” buffer to store
+he results of all the k — 2 intermediate intersections that have been computed to determine the support of
the last candidate that has been evaluated. Since candidate itemsets are generated in lexicographic order,
with high probability two consecutive candidates, e.g. ¢ and ¢, share a common prefix. Suppose that ¢ and
& share a prefix of length b > 2, When we process ¢, we can avoid to perform the first k — 1 intersections
since their result can be found in the cache.

To evaluate the effectiveness of our caching policy, we counted the actual number of intersections carried
out by DCl on a synthetic dataset. We compared this number with the best and the worst case. The former
corresponds to the adoption of a 2-way intersection approach, which is only possible if we can fully cache
the tidlists associated with all the frequent (k — 1)-itemsets in Fy—_1. The latter case regards the adoption
of a pure k-way intersection method, i.e. a method that does not exploit caching at ail. Figure 1.(a) plots
the results of this analysis for support threshold s = 0.25%. The caching policy of DCl turns out to be
very effective, since the actual number of intersections performed results to be very close to the best case.
Moreover, memory requirements for the three approaches are plotted in Figure 1.(b). As expected, DCl
requires orders of magnitude less memory than a pure 9-way intersection approach, thus better exploiting
memory hierarchies.

Others heuristics are used within DCI to further reduce intersection costs. Mote specifically, two different
optimization techniques are exploited for sparse and dense datasets. In order to apply the right oplimization,
+he vertical dataset is tested for checking its density as soon as it is built. To this end we compare the bit
vectors associated with the most frequent items, i.e., the vectors which need to be intersected several times
since the associated items oceur in many candidates. If large sections of these bit-vectors turns out to be
identical, we deduce that the dataset is dense and we adopt a specific heuristics which exploits similarities
between these vectors. Otherwise the technique for sparse datasets is adopted.

¢ Sparse datasets. Sparse or moderately dense datasets originate bit-vectors containing long runs of
0’s. To speedup computation, while we compute the intersection of the bit vectors relative to the first
two items ¢; and cg of a generic candidate itemset ¢ = {ei,¢0,. .- 0k} € Ck, we also identify and
maintain information about the the runs of 0's appearing in the resulting bit vector stored in cache.
Then, further intersections that are needed to determine the support of ¢ (as well as intersections
needed to process other k-itemsets sharing the same 2-item prefix) will skip these runs of 0’s, so that
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Figure 1: Per iteration number of tidiist intersections performed (a}, and memory requirements (b), for DCI,
and the pure 2-way and k-way intersection-based approaches.

only vector segments which may contain 1’s are actually intersected. Since information about the runs
of 0's are computed once, and the same information is reused many times, this optimization results to
be very effective.

Moreover, sparse and moderately dense datasets offer the possibility of further pruning vertical datasets
as computation progresses. The benefits of pruning regard the reduction in the length of the bit vectors
and thus in the cost of intersections. Note that a transaction, i.e. a column of VD, can be removed
from the vertical dataset when it does not contain any of the itemsets included in F,. This check
can simply be done by or-ing the intersection bit-vectors computed for all the frequent k-itemsets.
However, we observed that dataset pruning is expensive, since vectors must be compacted at the level
of single bits. Hence DC! prunes the dataset only if turns out to be profitable, i.e. if we can obtain a
large reduction in the vector length, and the number of vectors to be compacted is small with respect
to the cardinality of (.

¢ Dense datasets, If the dataset turns out to be dense, we expect to deal with a dataset characterized
hy strong correlations among the most frequent items. This not only means that the bit-vectors
associated with the most frequent items contain long runs of 1’s, but also that they turn out to be very
similar. The heuristic technique adopted by DCI for dense dataset thus works as follows:

— reorder the columns of the vertical dataset, in order to move identical segments of the bit vectors
associated with the most frequent items to the first consecutive positions;

— since each candidate likely includes several of these most frequent items, avoid repeatedly in-
tersecting the identical segments of the corresponding vectors. This technique may save a lot
of work because (1) the intersection of identical vector segments is done once, (2) the identical
segments are usually very large, and (3) long candidate itemsets likely contains several of these
most frequent,

3 ParDCI

In the following we describe the different parallelization techniques exploited for the co unting- and intersection-
based phases of ParDCI, the parallel version of DCl. Since our target architecture is a cluster of SMP nodes,
in both phases we distinguish between intra-node and inter-node levels of parallelism, At the inter-node
level we used the message-passing paradigm through the MPI communication library, while at the intra-
node level we exploited multi-threading through the Posiz Thread library. A Count Distribution approach is
adopted to parallelize the counting-based phase, while the infersection-based phase exploits a very effective
Candidate Distribution approach [5).



3.1 The counting-based phase

At the inter-node level, the dataset is statically split in a number of partitions equal to the number of sSMP
nodes available. The sizes of partitions depend on the relative powers of nodes. At each iteration %, a
identical copy of Cy, is generated independently by each node. Then each node p reads blocks of transactions
from its own dataset partition Dj , performs subset counting, and writes pruned transactions to Do kt1-
At the end of the iteration, an all-reduce operation is performed to update the counters associated to all
candidates of C, and all the nodes produce an identical set .

At the intra-node level each node uses a pool of threads. They have the task of checking in parallel
each of the candidate itemset against chunks of transactions read from Dpx. The task of subdividing the
local dataset into disjoint chunks is assigned to a particular thread, the Master Thread. It loops reading
blocks of transactions and forwarding them to the Worker Threads executing the counting task. To overlap
computation with 1/O, minimize synchronization, and avoid unnecessary data copying overheads, we used an
optimized producer/consumer schema for the cooperation among the Master and Worker threads. Through
two shared queues, the Master and Worker threads cooperate by exchanging pointers to empty and full
buffers storing block of transactions to be processed.

When all transactions in D, have been processed by a node p, the corresponding Master thread per-
forms & local reduction operation over the thread-private counters {reduction at the intra-node level), before
performing via MPI the global counter reduction operation with all the other Master threads running on
the other nodes (reduction at the inter-node level). Finally, to complete the iteration of the algorithm, each
Master thread generates and writes F. to the local disk.

3.2 The intersection-based phase

During the intersection-based phase, a Candidate Distribution approach is adopted at both the inter- and
intra-node levels. This parallelization schema makes the parallel nodes completely independent: inter-node
communications are no longer needed for all the following iterations of ParDCl. Let us first consider the
inter-node level, and suppose that the intersection-based phase is started at iteration % + 1. Therefore, at
iteration % the various nodes build on-the-fly the bit-vectors representing their own in-core portions of the
vertical dataset. Before starting the intersection-base phase, the partial vertical datasets are broadcast to
obtain a complete replication of the whole vertical dataset on sach node.

The frequent set Fr (i.e., the set computed in the last counting-based iteration) is then statically parti-
tioned by exploiting problem-domain knowledge. A disjoint partition I ¢ of Fy is assigned to each node p,
where Up For= F-. 1t is worth remarking that this partitioning entaﬁs a Candidate Distribution schema
for all the following iterations, according to which each node p will be able to generate a unique C7 (k > %)
independently of all the other nodes, where C N Cﬁf =Qifp#p, and |, CP = Cy.

P is partitioned as follows. First, it is split into I sections on the basis of the prefixes of the lexico-
graphically ordered frequent itemsets included. All the frequent k-itemsets that share the same % — 1 prefix
are assigned to the same section. Since ParDCI builds each candidate (E+ 1)-itemsets as the wnion of two
frequent k-itemsets sharing the first % — 1 items, we are sure that each candidafe can independently be
generated starting [rom one of the | disjoint sections of Fi. Then the various partitions F - are created by
assigning round-robin the ! sections to the np processing nodes. Since I >> np, this roundri’robin policy well
balances the workload at the inter-node level. Once completed the partitioning of F, the nodes indepen-
dently generate the associated candidates and determine their supports by intersecting the corresponding
tidlists of the replicated vertical dataset. Nodes continue to work according to the schema above also for the
following iterations, without any communication exchange.

At the intra-node level, a similar Candidate Distribution approach is employed, but at a finer granularity
by using dynamic scheduling to ensure load balancing. In particular, at each iteration k the Master thread of
a node p initially splits the local partition of Fp ;-1 into » disjoint partitions S;,1=1,...,%, where z >> £,
and # is the number of active threads. The boundaries of these o partitions are then inserted in a shared
queus. Once the shared queue is initialized, also the Master thread becomes a Worker. Thereinafter, each
Worker thread loops and self-schedules its work by performing the following steps:




Table 1: Datasots used in the experiments,

[ Dataset Description

1K items and 10K transactions. The average size of transactions is 25, and the aver-
T25110D10K age size of the maximal potentiaily frequent itemsets is 10. Synthetic dataset available at

http://ww.cs.sfu.ca/wpeijian/personalfpublicationsITQEI10D10k.dat.gz

10K items and 100K transactions. The average size of transactions is 25, and the aver-
T25120D100K age size of the maximal potentially frequent itemsets is 20, Synthetic dataset available at

bttp:/fwew. gs.afu. ca/~peijian/personat/publications/T26120D100k. dat . gz

400k _t10.pB_m1i0k

10K items and 400K transactions. The average size of transactions is 10, and the average size of the
maximal potentially frequent itemsets is 8. Synthetic dataset created with the IBM dataset generator [6],

400k _t30.p16_m1k

1K items and 400K transactions, The average size of transactions is 30, and the average size of the maximal
potentially frequent itomsets is 16, Synthetic dataset created with the IBM datasct generator {4].

t20_p8.m1lk

With this notation we identify a series of synthetic datasets characterized by 1K items. The average
transaction size is 20, and the average size of maximal potentially frequent itcmsets is 8, The number of
transactions is varied for scaling measurements,

£50.p32.mlk

A series of three synthetic detasets with the same number of items {1K), average transaction size of 50,
and average size of maximal patentially frequent itemsets equal to 32. We used three datasets of this series
with 1000k, 2000k and 3000k transactions.

connect-4

Dense dataset with 130 items and about 60K transactions. The maximal trensaction size is 45. Available
at http://ww.cs.s:Eu.ca.waangk/unidata/dataaet/cunne:t-4/connect—4.data

BMS-W&bView—l

497 items and 59K transactions containing click-stream data from an e-commerce web site. Each trans-
action is a web session consisting of all the preduct detail pages viewed in that session. Available at
http://ww. ecn. purdue . edn/KDDCUP/ data/BMS-WebViey-1. dat \EZ

1. access in mutual exclusion the queue and extract information to get S;, i.e. a partition of the local

By k1. If the queue is emnply, write F, ;. to disk and start a new iteration,

2. generate a new candidate k-itemset ¢ from S;.

to step 1.

3. compute on-the-fly the support of ¢ by intersecting the vectors associated to the k items of ¢. In order
to reuse effectively previous work, each thread exploits & private cache for storing the partial results of

intersections (see Section 2.2). If ¢ turns out to he frequent, put ¢ into E, 1. Go to step 2.

4 Experimental Results

The DCI algorithm is current}
which exploits the MPICH M

Figure 2: Theoretical and measured com
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on dataset 400k t10_p8_m1k (s = 0.25%). Times Tipzersenr and Toount are measured in seconds according to
the scale on the right hand y axis. Millions of operations are instead reported on the left hand Y axis.

If it is not possible to generate further candidates, go

y available in two versions, a MS-Windows one, and a Linux one. ParDCI,
PI and the pthread libraries, is currently available only for the Linux platform.




We used the MS-Windows version of DC| to compare its performance with other FSC algorithms. For test
comparisons we used the FP-growth algorithm, currently considered one of the fastest algorithm for FSCH,
and the Christian Borgelt’s implementation of Apriori®. For the sequential tests we used a Windows-NT
workstation equipped with a Pentium I1 350 MHz processor, 256 MB of RAM memory and a SCSI-2 disk.
For testing ParDCl performance, we employed a small cluster of three Pentium II 233MHz two-way SMPs,
for a total of six processors. Each SMP is equipped with 256 MBytes of main memory and a SCSI disk.
For the tests, we used both synthetic and real datasets by varying the minimutn support threshold s. The
characteristics of the datasets used are reported in Table 1.
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Figure 3: Total execution times for DCI, Apriori, and FP-growth on various datasets as a function of the
support threshold.

Computational cost of intersection-based phase, We analyzed the advantages of adopting the inter-
section-based approach, over the exploitation of the counting-based approach for all the iterations of the
algorithm. The computational costs of each DCI counting-based iteration is dominated by subset counting,
Due to our 2-item prefix table, which allows us to directly select a section of ', with a common prefix, at most
k — 2 comparisons are necessary in order to check whether a given candidate k-itemset is included within a

1We acknowledge Prof. Jiawei Han for kindly providing us the latest binary version of FP-growth. This version of FP-growth
was sensible optimized with respect to the one used for the tests reported in [14].
2http: //fuzzy.cs.uni~magdeburg.de/~borgelt
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Figure 4: Relative execution times on datasets in the series t20_p8_m1k (s = 1%) when varying the number
of transactions (from 100K to 2M),

transaction £. Hence, the number of operations performed at iteration k is approximately Toount = O(Ngg-k),
where Ng¢g is the total number of candidates actually visited for counting the supports of all the transactions
in Dy,

On the other hand, the computational cost of each DCI intersection-based iteration is proportional to the
number of end operations needed to determine the supports of all candidate itemsets. The number of and
depends on both the average length of tidlists and the number of candidate itemsets. Therefore, the number
of operations actually performed by DCl at iteration k is approximatively Tiniersec = O(Nanp - Nvp),
where Nanp is the total number of tidlist pairs actually intersected, while Ny p is the average number of
operations needed for and-ing a pair of tidlists. In principle we can say that Nyp depends on the average
length of tidlists, but we have to consider that DCl exploits several optimizations aimed to reducing the
number of operations actually performed (see Section 2.2).

This simple analysis is confirmed by our experimental evaluation. In Figure 2 the measured per-iteration
execution timnes, i.e. T.ouns and Tintersect, are plotted against their analytic estimates as a function of the
iteration index k. The dataset considered was 400k _t10_p8_m1k, mined with a support threshold equal to
g = 0.25%. The actual values of Nes, Nayp and Ny p were determined by profiling execution,

DCl performances and comparisons. Figure 3 reports the total execution times obtained running Apri-
ort, FP-growth, and DCI on the datasets described in Table 1 as a fanction of the support threshold s. In
all the tests conducted, DCI outperforms FP-growth with speedups up to 8. Of course, DCI also remarkably
outperforms Apriori, in some cases for more than one order of magnitude. For connect-4, the dense dataset,
the curve of Apriori is not shown, due to the relatively too long execution times. Note that, accordingly
to {21], on the real-world dataset BMS, Apriori turned out to be slightly faster than FP-growth.

The encouraging results obtained with DCl are due to both the efficiency of the counting method exploited
during early iterations, and the effectiveness of the intersection-based approach used when the pruned vertical
dataset fits into the main memory. For only a dataset, namely T25110D10K, FP-growth turns out to be
slightly faster than DCl for s = 0,1%. The cause of this behavior is the size of (3, which in this specific case
results much larger than the actual size of F3. Hence, DCl has to carry out a lot of useless work to determine
the support of many candidate itemsets, which will eventually result to be not frequent. In this case the
FP-growth is faster than DCI since it does not require candidates generation.

We also tested the scale-up behavior of DCI when the size of the dataset is increased. The various
dataset samples employed for the tests belong to the series t20_p8_mik. Figure 4 plots the execution times
of FP-growth and DCl as a function of the number of transactions contained in the dataset processed, by
keeping constant s = 1%. The times reported are normalized with respect to the execution time of DC|
on the smallest dataset sample of 100k transactions. DCl scales much better than FP-growth: its execution
time is a liner function of dataset size. For example, to process the dataset with 2 millions of transactions,
DCl requires about 22 times the execution time spent on 100k transactions, while for FP-growth this ratio is
about 65.
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Figure 5: Sequential and multithreaded execution times for dataset 1000K as a function of s

Performance evaluation of ParDCl. For these tests we used the synthetic dataset series identified as
50_p32.m1k in Table 1. We varied the total number of transactions from 1000k to 3000k. In the following
we will identify the various synthetic datasets on the basis of their number of transactions, i.e. 1000k, 2000k,
and 3000k,

First we measured execution times of ParDCl on dataset 1000k. In this test we only used a single 2-way
SMP node, in order to compare DCl with ParDCl, which in this case only exploits multi-threading. Figure 5
plots the total execution times as a function of the support thresholds s. The reduction in the total execution
time is quasi optimal (nearly optimal speedup) for support thresholds that involve expensive computations.
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8 Mook —B—
2000k -l
5 | 3000k —&—
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Figure 6: Speedup for datasets 1000K, 2000K and 3000K with s = 1.5% (a) and s = 5%(b).

Figure 6 plots the speedups obtained on the three synthetic datasets for two fixed support thresholds
(s = 1.5% and s = 5%), as a function of the number of processors used. Consider that, since our cluster
is composed of three 2-way SMPs, we mapped tasks on processors always using the minimum number of
nodes (e.g., when we used 4 processors, we actually employed 2 SMP nodes). This implies that experiments
performed on either 1 or 2 processors actually have identical memory and disk resources available, whereas
the execution on 4 processors benefit from a double amount of such resources.

According to our tests, ParDCl showed a speedup close to the optimal one. Considering the results
obtained with one or two processors, one can note that the slope of the speedup curve is relatively worse
than its theoretical limit, due to resource sharing and thread implementation overheads at the inter-node
level, Nevertheless, when additional nodes are employed, the slope of the curve improves. For all the
three datasets, when s = 5%, a very small number of frequent itemsets is obtained. As a consequence, the
CPU-time decreases, and becomes relatively smaller than I/O and also interprocess communication times.

Finally, Figure 7 plots the scaleup, i.e. the relative execution times measured by varying, at the same
time, the number of processors and the dataset size. We can observe that the scaling behavior remains
constant, although slightly worse than the theoretical limit.

The strategies adopted for partitioning dataset and candidates on our homogeneous cluster of SMPs
gufficed for balancing the workload. In out tests we observed very limited imbalance, below 0.5%. For
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Figure 7: Scaling behavior obtained varying the dataset size along with the processor number for s = 1.5%
(a) and s = 5%(b).

targeting heterogeneous or non-dedicated clusters we plan to introduce in ParDCI adaptive partitioning
strategies at the inter-node level,

5 Conclusions and Future Works

DCl and ParDCI use different approaches for extracting frequent patterns: counting-based during the first
iterations and intersection-based for the following iterations. One of the main innovative features of the two
algorithms regards the ability to apply different heuristic strategies on the basis of the characteristics of a
specific dataset. Different techniques are thus used for dense and sparse datasets during the intersection-
based phase. These techniques are able to strongly reduce the complexity of intersections. Unlike other
algorithms, such as maximal frequent set ones, even for dense datasets, from which very long patterns can
be extracted, we are able to determine the exact support of frequent itemsets. Another important feature
of DCI and ParDCl is the ability to adapt their behaviors to the characteristics of the specific computing
platform. For example, the intersection-based phase is started only if the vertical layout representation of
the dataset can be stored into the main memory. Since our pruning technique strongly reduce dataset size as
counting-based iterations progress, in our tests, performed on machines with only 256MB of main mermory,
the optimized intersection-based phase always started at the third or fourth iteration.

In order to analyze the scalability of our algorithms, we have to consider their memory requirements.
When DCI builds the in-core vertical representation of the pruned dataset, say at iteration k, it needs enough
memory to store both the dataset and Cr. Conversely, since ParDCl uses a Count Distribution approach for
parallelization, the per-node memory requirement at iterations k is lower. In fact each SMP node has only to
build a vertical representation of its own partition of the pruned dataset. ParDCI will create s complete in-
core vertical dataset at the next iteration & 4 1, by joining the various partitions. Moreover, during a generic
intersection-based iteration %, both algoriths do not keep candidates in-core. DCI generates candidates by
accessing with high locality the mmap-ped file containing Fi_1, while their supports are computed on-the-fly.
In ParDCl, since a Candidate Distribution technique is adopted, each node need to access only a partition
of I} k—1.

As a result of its optimized design, DCI significantly outperformed Apriori and FP-growth, For many
datasets the performance improvements were impressive. The results were very good, independently of the
support threshold, not only for synthetic datasets, but also for real-world datasets. The variety of datasets
used and the large amount of tests conducted permit us to state that the design of DCl is not focused on
specific datasets, and that our optimizations are not aver-fitted only to the features of these datasets 21].

ParDCl, the multi-threaded and distributed version of DCl, is able to effectively exploit our cluster of
SMPs, thus exhibiting excellent scaleups and speedups. Our implementation of the Count and Candidate
Distribution strategies for parallelization, used at both inter and intra-node levels, resulted to be very
effective with respect to load balancing and communication overhead minimization. In the near future we
plan to extend ParDCl with adaptive work stealing policies aimed to efficiently exploit heterogeneous/grid
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environments. To share our efforts with the data mining community, we made DCI and ParDCl binary codes
available for research purposes at http://www.miles.cnuce.car.it/~palmeri/datam/DCI.
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