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Abstract—Automated driving requires increasing networking
of vehicles, which in turn broadens their attack surface. In this
paper, we describe several security design patterns that target
critical steps in automotive attack chains and mitigate their con-
sequences. These patterns enable the detection of anomalies in the
firmware when booting, detect anomalies in the communication in
the vehicle, prevent unauthorized control units from successfully
transmitting messages, offer a way of transmitting security-
related events within a vehicle network and reporting them to
units external to the vehicle, and ensure that communication in
the vehicle is secure. Using the example of a future high-level
Electrical / Electronic (E / E) architecture, we also describe how
these security design patterns can be used to become aware of
the current attack situation and how to react to it.

Index Terms—automotive threat mitigation and resilience, au-
tomotive security, cybersecurity engineering, intrusion detection,
connected car, AUTOSAR, Trusted Platform Module (TPM),
Device Identifier Composition Engine (DICE)

I. INTRODUCTION

Automated driving makes traffic safer, but requires vehicles

to be increasingly connected. However, this networking ex-

pands the possibilities for attacks on a vehicle. Trend Micro

Research [1] analyzed four prominent attacks, namely the Jeep

hack of 2015, the TESLA hacks of 2016 and 2017, and the

BMW hack of 2018. The generic chain of attacks from this

analysis shows that these attacks initially attack the vehicle’s

head unit via WiFi or the mobile network, then exploit a weak

point there, for example in the webkit, and then carry out

a root exploit on the operating system. The Controller Area

Network (CAN) gateway is then attacked and new firmware

is uploaded there, whereupon the gateway is reprogrammed

in order to finally take over other Electronic Control Units

(ECUs). Fake messages can be sent over the CAN bus now

or in a previous step. Some steps in this chain have also been

demonstrated by a hack on the headunit of a KIA Cee’d in

2020 [2] and the TBONE Tesla hack with entry over WiFi in

2021 [3].
For new Electrical / Electronic (E / E) vehicle architectures,

we assume that there is at least one additional entry point

for attackers through the communication during electrical

charging and since the internal vehicle communication is

expanded to include Automotive Ethernet, there will also be

further possible steps in the vehicle-internal attack chain.
In this paper, we describe several security design patterns

with the aim of targeting critical steps in such attack chains

and mitigating their consequences. We also describe, using an

example of a future high-level E / E vehicle architecture, how

these security design patterns can be used to become aware of

the current attack situation and to react to it.

The paper is structured as follows. We describe necessary

background and related work in Section II. In Section III we

introduce our approach and detail about our patterns consisting

of a host-based integrity verification pattern (Section III-A),

an Intrusion Detection System (IDS) pattern (Section III-B),

a challenge-based intrusion prevention pattern (Section III-C),

an alert reporting pattern (Section III-D), and a pattern for

securing the in-vehicle communication (Section III-E). In

Section IV we map the patterns capabilities to typical design

principles of systems security engineering and in Section V we

show how the proposed patterns can be applied to a reference

automotive E / E architecture. Section VI concludes our paper.

II. BACKGROUND AND RELATED WORK

The related work for this paper is manifold. Existing work

on generic security design patterns has been adopted for

many application domains. However, work on this approach

for specific pattern to be applied in automotive systems is

rare. In [4], Martin et al. propose a pattern-based approach

that interlinks safety and security patterns. The application is

demonstrated by an automotive case study but describes only

very few examples. In [5], Cheng et al. describe a collection

of security design patterns targeted to the automotive domain.

They leverage an earlier security pattern template from [6]

that is tailored to secure systems development. Cheng et al.

extend this template to include fields specific to the automotive

domain and SAE J3061 [7] cybersecurity guidelines which is

now superseded by ISO/SAE FDIS 21434 [8]. They exem-

plified the usability of their approach by a collection of ten

security design patterns for the automotive domain.

In our work, we leverage the pattern template from Cheng

et al. to specify several security patterns for use in new

E / E vehicle architectures. In particular, these patterns address

the areas of in-vehicle intrusion detection and prevention as

well as intrusion reporting and deployment of models. With

respect to these areas we take into account recent work on

standardization as well as best practice, such as the ENISA

report on good practices for security of smart cars [9]. We

also aim at compatibility with the Automotive Open Systems
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Architecture (AUTOSAR) standard. AUTOSAR specifies an

in-vehicle IDS protocol [10] for the transmission of qualified

security events from an IDS manager instance to an IDS re-

porter instance, and an IDS manager for adaptive platform [11]

as well as a specification of Secure Onboard Communication

(SecOC) [12].

III. DESIGN PATTERNS

As described above, for the description of our patterns

we leverage the automotive security pattern template defined

in [5] with the following elements: a) Pattern Name, b) Intent
describing the underlying security problem addressed by the

pattern, c) Motivation, d) Properties in terms of STRIDE,

e) Applicability, f) Structure given by a Unified Modeling

Language (UML) class diagram, g) Behavior defined by a

UML sequence diagram, h) Constraints, i) Consequences
expressed by security properties, performance, cost, manage-

ability, usability, j) Known Uses, and k) Related Patterns.

In the following, we describe the new security patterns for

use in resilient attack detection and mitigation concepts for

future E / E architectures.

Host-based Integrity Verification System (HIVS): This

pattern provides a mechanism to detect anomalies (unautho-

rized modifications) in ECU software and firmware at boot

time. The pattern has two variants using the Trusted Platform

Module (TPM) as hardware trust anchor or the Device Iden-

tifier Composition Engine (DICE) as lightweight alternative.

Network-based Intrusion Detection System (NIDS): This

pattern provides a mechanism to detect anomalies in (automo-

tive) network communication by using metadata and extracted

payload features from observed ECU messages.

Challenge-based Intrusion Prevention System (CIPS):
This pattern provides a mechanism to prevent anomalies in

the (automotive) network communication by using a challenge

based on the knowledge of the payload to authenticate an ECU.

Security Event Reporting (SER): This pattern provides a

way to aggregate security relevant events, such as software

anomalies or unexpected network traffic, within a vehicle

network and report it to an outside Security Operation Center

(SOC).

Secure CAN Communication (SCC): This pattern pro-

vides a mechanism to secure the in-vehicle communication. It

guarantees confidentiality, integrity, and authentication.

A. Host-based Integrity Verification System (HIVS)

Intent: This pattern provides a mechanism to detect

anomalies (unauthorized modifications) in ECU software and

firmware at boot time. Starting from an initial Root of Trust

for Measurement (RoTM) (e.g., in the bootloader), the later

going-to-be-executed parts of the software are measured (by

calculating a hash value of the software component) before

handing control to them. This creates a measurement chain

covering the whole software state during boot time that

could then be reported to a remote entities like a SOC, an

Original Equipment Manufacturer (OEM) backend or other

Vehicle to Everything (V2X) participants. In this pattern, two

instantiations with different security guarantees for a HIVS

are proposed that respect the heterogeneous capabilities of

ECUs within the vehicle: a TPM-based [13] approach where

the TPM as additional hardware security chip secures the

integrity verification and a software-based solution utilizing

DICE [14] as a lightweight RoTM. Both options are applicable

to the automotive domain since TPMs are already utilized in

vehicles [15] and DICE is easy and cost-effective to integrate

since it has minimal silicon requirements. The differences of

both options are explained throughout the section.

Motivation: Vehicle networks are complex and their

compromise of high revenue to attackers. However, trusted

relationships within the vehicle and to its environment are

crucial, e.g., trust in authentic messages may be safety-critical.

Properties: The HIVS pattern can be used to satisfy the

integrity properties of ECUs for remote verifiers.

Applicability: The HIVS pattern is applicable to attack

detection and can be enhanced to be applicable to attack

prevention and mitigation, e.g., by sealing decryption or au-

thentication keys to the software state.

Structure: The pattern structure is depicted in Fig. 1 for

the TPM-based and in Fig. 3 for the DICE-based instantiation

of the HIVS pattern. Both pattern instantiations consist roughly

of two main components: the host sensor and the Reporting

Manager (RM). The RM is part of the SER pattern (cf.,

Section III-D) and thus links the two patterns. In both cases,

the host-based sensor is assigned to a specific ECU. For

the TPM-based HIVS pattern, the host sensor is subdivided

into: Root of Trust for Measurement (RoTM), Root of Trust

for Storage (RoTS), Root of Trust for Reporting (RoTR),

log database, and the Software Component (SWC). RoTS

and RoTR are implemented by the TPM. The DICE-based

alternative of the host-based sensor is simpler and only consists

of RoTM and SWC.

Behavior: In both HIVS pattern instantiations, the initial

RoTM, typically the CPU, is responsible for the initial mea-

surement of the first SWC (SWC1). After the measurement

is done, it hands control to SWC1 that will continue the

measurement process with the next component (SWC2). This

will create a measurement chain that covers the whole boot

process and represents the system state at boot time. The

system state can then be used to seal data or can be reported

to a remote verifier that than can verify the trustworthiness of

the system (remote attestation).

In the TPM-based instantiation depicted in Fig. 2, the single

measurement will be extended as binary hash values into the

RoTS and, enriched with some meta data, in the log database.

In case of remote attestation, the measurement values are au-

thenticated by the RoTR using authentication mechanisms like

signatures or Message Authentication Codes (MACs) before

leaving the RoTS. The DICE-based instantiation depicted in

Fig. 4 is simpler and also its concept is a bit different. Instead

of storing integrity measurements of the SWCs throughout the

boot sequence in a RoTS, the measurements are used as inputs

for key derivation functions to create the so-called Compound

Device Identifier (CDI) keys. A Unique Device Secret (UDS)

256

Authorized licensed use limited to: CNR Area Ricerca Pisa. Downloaded on November 25,2022 at 13:40:52 UTC from IEEE Xplore.  Restrictions apply. 



serves as initial input to derive device specific keys. Thus, the

integrity of the system can be verified if the correct keys were

derived, e.g., by the RM starting a challenge-response scheme.

Either actively or upon request by a remote verifier, the

authentic events (answered challenges or measurements with

event logs) are collected by the RM and send back via the

Reporter. They can then be used to verify the software state

and decide if the component is trustworthy.

Constraints: For both pattern instantiations, crypto-

graphic algorithms during boot time are quite lightweight

(hash operations) in terms of storage and performance. How-

ever, for the TPM-based instantiation, the creation of log

data base may be quite heavy depending on the complexity

and granularity of the measured component. However, this

could be outsourced to the remote party that preventively

stores the entries. During reporting, the measurements are

authenticated in both variants. Depending on the reporting

frequency and cryptographic algorihm, this may have some

performance overhead. A solution to make the reporting for

the TPM instantiation more lightweight is presented in [16].

Consequences: Table I describes the consequences.

TABLE I
CONSEQUENCES FOR THE HIVS PATTERN.

Accountability Accountability is improved as a system can trust in a
measurement chain covering the software state during
boot time.

Confidentiality Not directly addressed.
Integrity Integrity of the system is improved since also remote

parties can verify the integrity of the vehicle.
Availability Not directly addressed.
Performance Lightweight symmetric cryptographic operations

(hashes) during boot time, more resource-intensive (a-)
symmetric cryptography (signature/mac generation)
during runtime.

Cost Additional hardware cost for the TPM instantiation.
Manageability Not directly addressed.
Usability Some overhead regarding performance and cost (TPM

chip) may be introduced to the system.

Known Uses: Both Trusted Computing Group (TCG) and

Internet Engineering Task Force (IETF) standardize attestation

schemes for both HIVS variants, e.g., in [17], [18], while ben-

efiting automotive security solutions are for example described

in [19] for secure updates and in [20] for feature activation.

Related Patterns: The Security Event Reporting pattern

is directly related and can be used to collect the reports

and send them to remote parties. The Tamper Resistance and

Third-party Validation patterns in [5] partially address similar

security goals.

B. Network-based Intrusion Detection System (NIDS)

Intent: This pattern provides a mechanism to detect

anomalies in (automotive) network communication by using

metadata and extracted payload features from ECU messages.

Motivation: Communication within a modern vehicle is

more and more connected to the outside world, which provides

attackers with a multitude of new approaches to interfere

and manipulate the internal communication within the vehicle

HostSensor

TPM
RoTM

measure()

extend()

storeLog()

handover()

SWC

measure()

extend()

storeLog()

handover()

getMeasurements()

getLog()

LogDatabase
entries

Placeholder

RM

requestReport()

forwardSighting()

RoTS
entries

RoTR

auth()

1 1

1

1..*

1

1 1..*

1

1..*

1..*

1..*
1

*

1

1

1

1..*

1

Fig. 1. Structure of the HIVS pattern with TPM

RoTM SWC1 SWC... SWCN DB RoTS RoTR RM R Verifier

measure()

DataSWC1

extend(data)

storeLog(data)

handover()

Step 1Step 1

. . .

measure()

DataSWCN

extend(data)

storeLog(data)

handover()

Step NStep N

requestReport(nonce)

getMeasurements(nonce)

getLog()

log

authData, log

measurements

σ := auth(KeyAuth; measurements, nonce)

authData := {measurements, σ}

σ
?
= auth(KeyAuth; measurements, nonce

ok

compare(measurements, log, reference)

ok

TPM

Fig. 2. Behavior of the HIVS pattern with TPM

network. To detect known intrusion signatures, as well as

unknown anomalies in data traffic, a dedicated system is

required that can classify and verify the integrity of messages

and adapt to new situations.

Properties: The NIDS can influence the integrity as well

as the authentication property for observed components.

Applicability: The NIDS is applicable to attack detection.

When integrated with an appropriate system, it can also be
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HostSensor

RoTM

measure()

deriveCDI()

unsealData()
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Fig. 3. Structure of the HIVS pattern with DICE

RoTM SWC 1 SWC ... SWC N RM R Verifier

measure()

DataSWC1

deriveCDI(UDS, DataSWC1)

CDIRoTM

handover()

Step 1Step 1

. . .

measure()

DataSWCN

deriveCDI(CDIRoTM, DataSWCN)

CDISWN

handover()

unsealData(CDISWN)

KeyAuth

Step NStep N

requestReport(nonce)

data

auth(KeyAuth; nonce)

data

data
?
= auth(KeyAuth; data

ok

Fig. 4. Behavior of the HIVS pattern with DICE

used for attack prevention and mitigation.

Structure: A Network Sensor, as depicted in Fig. 5, is

assigned to a specific subnet or component on a network.

The Classifier Database provides a set of Classifier models

used in classification of anomalies on the relevant system.

The Classifier may be any type of either machine learning

model [21], [22] or rule-based model [23] depending on the

specific requirements of the current subsystem, such as the

complexity of the expected data or the computation capabili-

ties [24]. Classifiers are selected by the Network Sensor and

may be used in any combination with one another with the

sensor being able to determine the necessary models for the

current situation. The Network Sensor can be set to listen for

all available network traffic and forward detection events. The

RM accumulates detection events from an arbitrary number of

assigned Network Sensors and forwards sightings to a central

reporting unit within the same network or an external SOC.

Behavior: As shown in Fig. 6, the Network Sensor is

observing the network for new messages. As a new message

is received, the respective classifiers are retrieved from the

Classifier Database and used to classify the message. Depend-

ing on the classifier result an Event is raised to the RM.

Constraints: In a real time environment, such as an

automotive network, the classification of messages is required

NetworkSensor
id

startListen()
stopListen()
detectAnomaly()
createSighting()

ClassifierDatabase

add()
remove()
getClassifier()

Classifier
id

evaluate(msg)
*

ReportingManager
id

forwardSighting()

1*

1

Fig. 5. Structure of the NIDS pattern

Network NetworkSensor ClassifierDatabase RM

sendMessage

getClassifier()

classifierList

evaluate(msg)

messageClass

createSighting()

listen

Fig. 6. Behavior of the NIDS pattern.

to be fast and efficient. Complex machine learning evaluations

of every observed package are often not possible to perform

within real time constrains. This is especially the case using

neural network models without dedicated hardware accelera-

tion components, such as a Tensor Processing Unit (TPU),

that may increase the cost of the component significantly.

The available resources are therefore a limiting factor to the

complexity of the classification process.
Consequences: Table II describes the consequences.

TABLE II
CONSEQUENCES FOR THE NIDS PATTERN.

Accountability Depends on type of IDS.
Confidentiality Not addressed.
Integrity Can be improved if ECU impersonation is detected.
Availability Might be improved if e.g., DoS messages can be deleted

early but is reduced by overhead of classification.
Performance Classification cost is depending on specific algorithms

and hardware.
Cost Additional hardware to classify traffic may incur a cost.
Manageability RM controls sensors and accumulates all intrusion

information.
Usability General safety requirements such as hard real time

requirements and encryption might influence usability
of the pattern.

Known Uses: This pattern can be used in a similar way

as the AUTOSAR specifications in [10], [11].
Related Patterns: The Security Event Reporting pattern

is directly related and can be directly integrated. This pattern

is also related to the Signature-based IDS pattern proposed by

Cheng et al. [5] and can be integrated alongside to increase

the detection rate of anomalies.
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C. Challenge-based Intrusion Prevention System (CIPS)

Intent: This pattern provides a mechanism to prevent

unauthorized ECUs to deliver messages by using knowledge

challenges on how to generate valid messages.

Motivation: Modern vehicles are computers on wheels

connected to the Internet. Thus, they may be vulnerable to

local and remote cyberattacks aiming at altering information

and communication among the ECUs. This pattern aims at

preventing that an attacker sends malicious CAN frames

among different partitions of the intravehicle network.

Properties: CIPS can be used to satisfy both integrity of

messages and authentication of the sender.

Applicability: CIPS is applicable to attack prevention and

mitigation. It is able to detect attacks, such as fuzzing and

replay attacks. It may also be used for attack detection.

Structure: The structure is depicted in Fig. 7. The in-

volved participants are the ECUs of the intravehicle network.

We consider a sender ECU, aka the Resolver, and a partition

Gateway (GW), i.e., the Challenger, that enforces the preven-

tion mechanism. To successfully send a frame via Challenger

to the destination partition, the Resolver must first successfully

answer a challenge of the Challenger.

Challenger

forwardCANFrame()

selectingFrameChallenge()

forwardCrossPartitionFrame()

blockCrossPartitionFrame()

forwardFailedChallengeInfo()

Resolver
id

forwardCrossPartitionFrame()

selectingFrameChallenge()

forwardResultChallenge()

DifferentPartition
id

ReportingManager

ReceiveFailedChallengeInfo()

StoreFailedChallengeInfo()

1 1..*

1

1..*

1..*

1

11..*

Fig. 7. Structure of Challenge-based Intrusion Prevention System (CIPS)
pattern.

Challenger Resolver ReportingManager DifferentPartition

forwardCrossPartitionFrame()

forwardCANFrame()

selectingFrameChallenge()

forwardResultChallenge()

selectingFrameChallenge()

forwardCrossPartitionFrame()

ChallengeCheckChallengeCheck OK

blockCrossPartitionFrame()

forwardFailedChallengeInfo()

ChallengeCheckChallengeCheck NOK

Fig. 8. Behavior Challenge-based Intrusion Prevention System (CIPS) pattern.

Behavior: In the CIPS pattern, the Challenger intercepts

all cross-partition CAN frames that are generated from Re-

solvers in his partition, e.g., untrusted partition, and addressed

to one or more ECUs in another partition, e.g., trusted par-

tition. The pattern aims to mitigate attacks by verifying the

authenticity of the Resolver by means of a preceding challenge

method. Thus, each Resolver has to know 1) the Database
of CAN messages (DBC), which is proprietary to a particular

OEM and can be considered as a long-term secret only known

by the Challenger and legitimate Resolvers, 2) the challenge
set that represents the type of challenges that the Challenger

will ask the Resolver to authenticate, and 3) the encoding
generation method that defines how frames, needed for the

challenge, must be generated by the Resolver that sent a

cross-partition frame.

The Challenger challenges the Resolver asking for a chal-

lenge, sending a CAN frame, as part of the handshake protocol

(Fig. 8). In case the Resolver correctly answers the challenge,

i.e., by sending the correct frame of the DBC asked by

the Challenger, the Challenger has authenticated the Resolver

ECU. In fact, only legitimate Resolvers know the full DBC,

the set of challenges, and the encoding method. Hence, only

legitimate Resolvers are able to provide the correct answer.

In this case, the message of the Resolver is authorized to

be forwarded to the original cross-partition frame. In case

of an incorrect answer, the frame is discarded. Note that, a

Resolver with a partial knowledge of the DBC is not able to

properly answer to the challenge since the pattern requires full

knowledge of the DBC. The answer of the challenge is also

sent to the RM to take trace of the possible attacks.

Constraints: In a real in-vehicle network, challenging the

ECU has to be made in a fast and efficient way.

Consequences: see Table III.

TABLE III
CONSEQUENCES OF THE CIPS PATTERN.

Accountability Depends on type of CIPS.
Confidentiality Not addressed.
Integrity Can be improved if ECU impersonation is detected.
Availability Might be improved if one or more challenges fail in

case of an attack, e.g., DoS attack. Once identified the
involved frames are not forwarded to the destination
partition.

Performance CIPS can be run on low-power ECUs, however, more
powerful ECUs can improve the challenge performance.

Cost Additional hardware with improved performances may
incur a cost.

Manageability RM controls frames sent by ECUs and stores all failed
challenge information.

Usability General safety requirements, such as hard real time re-
quirements, might influence the usability of the pattern.

Known Uses: A possible implementation and application

of CIPS is given in [25].

Related Patterns: Both Reporting Manager and NIDS
patterns are related to CIPS. Moreover, CIPS is related to the

Firewall and the Multi-Factor Authentication pattern in [5].

D. Security Event Reporting (SER)

Intent: This pattern provides a way to aggregate security

relevant events, such as software anomalies or unexpected

network traffic, within the vehicle network and to report it

to an outside SOC.
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Motivation: A solely autonomous anomaly detection

software is in most cases not feasible within an automotive

network. This is especially the case when mitigation operations

are set to occur as a response to critical security events. An

external SOC is required to oversee mitigation actions and

adapt classifiers to new situations. For this, security events

from multiple vehicles have to be accumulated and verified

by human operators.
Properties: The Security Event Reporting (SER) pattern

can influence the integrity and non-repudiation properties.
Applicability: The SER pattern is applicable to detection,

prevention and mitigation.
Structure: The structure is depicted in Fig. 9. The Re-

porter component should be located on the primary compo-

nent responsible for outside connection, e.g., the Telematic

Control Unit (TCU). It would also be possible to update the

detection models and rules of each intrusion sensor through

this component. Security components are systems capable of

reporting security events, such as observed anomalies, in a

structured form called Security Event. A Security Event is

a uniquely identifiable report on a singular security relevant

observation with a meaningful description and an exact time

of occurrence. These Security Events can then be accumulated

into uniquely identifiable Security Reports, which can then be

used to forward information compressed to Remote Receiver,

e.g., SOC or OEM backend.

SecurityReport
id
events[]

Reporter

subscribe(oc)
unsubscribe(oc)
update(oc)
getReport()
publishReport()
requestReport()

ReportingManager
id

forwardSighting()

<<abstract>>
SecurityEvent

id
timestamp
description

1..*

Fig. 9. Structure of the SER pattern.

Behavior: The specific behavior is described by Fig. 10.

Whenever the Reporter component receives a sighting from

any Reporting Manager within the network, either as a direct

response or as a timed event, a report of accumulated sightings

is created. When such a report is created, all known SOCs are

notified and may then request the sighting report. It is also

possible for every SOC to actively request the latest report

from a vehicle Reporter component.
Constraints: The Reporter component provides intruders

with a potential centralized point of attack. For the Security

Events send from a RM to the Reporter additional verification

steps may be required to ensure integrity.
Consequences: See Table IV.
Known Uses: In particular, Metzker et al. presented their

ideas, concepts and software architecture proposals concerning

IDS and intrusion reporting in [26], while AUTOSAR provides

a specification of an in-vehicle IDS protocol in [10] with a use

case which covers event reporting.

Reporter OperationCenter A OperationCenter B ReportingManager

forwardSighting()

publishReport()

update(A)

getReport()

update(B)

getReport()

Fig. 10. Behavior of the SER pattern.

TABLE IV
CONSEQUENCES OF THE SER PATTERN.

Accountability The reporting component allows for the system to be
accountable for the non-repudiation of traffic events
inside the vehicle.

Confidentiality Security event reporting shares vehicle internal traffic
including potential personal data with external entities,
which may prevent confidentiality without appropriate
data security measures.

Integrity By reporting detected anomalies, the security event
reporting may enable appropriate mitigation measures
to be taken.

Availability The security event reporting may prevent availability
in the vehicle network depending on the number of
security events raised.

Performance Depending on the urgency of detected anomaly sight-
ings there is an additional load on the vehicle network,
while the reporter itself requires low computational
power.

Cost The system itself requires low computational perfor-
mance and can be integrated into an existing system
with required outside connections and connection to
reporting components.

Manageability Allows for possible mitigation actions to be more
manageable and better directed.

Usability Not addressed.

Related Patterns: This pattern relates to all intrusion

detection patterns, such as the HIVS, NIDS, and CIPS pattern

by providing a way to accumulate the data of all sensors. The

Signature-based IDS pattern proposed by Cheng et al. [5] can

also be integrated similarly with minimal modification.

E. Secure CAN Communication (SCC)

Intent: Communication among the in-vehicle ECUs en-

able the functionalities of a vehicle. The goal of this pattern

is to guarantee communications are secure.

Motivation: In-vehicle protocols may lack of security

mechanisms. The most famous one is the CAN bus protocol

that allows an ECU to broadcast messages in clear among all

ECUs in (a partition of) the in-vehicle network. This lack of

security mechanisms may lead to several well-known attacks

such as man in the middle, replay, or sniffing attacks.

Properties: Several mechanisms can be put on top of

in-vehicle protocols with the aim to guarantee authentication,

data integrity, and confidentiality.
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Applicability: The SCC pattern enables ECUs to generate

secure communication frames to prevent that they may be re-

used, sniffed, generated without proper authorization.
Structure: The structure of the SCC pattern is depicted in

Fig. 11. All ECUs belonging to the in-vehicle network are able

to generate a secure frame as well as create vanilla protocol

frames to guarantee backward compatibility. In particular,

the participants are the sender ECU, the receiver ECU, the

Freshness Value Manager (FVM) that manages the freshness

values, and the Crypto Service Manager (CSM) that manages

the encryption and decryption keys. The SCC pattern aims to

produce secured frame by using 1) a MAC for authentication,

2) the FV for integrity, and 3) encryption for confidentiality.

The security algorithms adopted in the SCC pattern are

chosen to not overload the communications timing and perfor-

mances. In particular, this pattern is designed to meet real-time

constraints and do not negatively impact on the safety aspects.

Note that, the SCC security properties may be downgraded,

i.e., removing the confidentiality mechanism, to obtain more

performance. This choice, however, will impact on the pattern

security properties.

SenderECU

ReceiverECU

MAC Generator

needFreshnessValue()

needKeyM()

getPayload FVT MACT()

Fresh Value Manager

getFreshnessValue()

Crypto Service

getKeyM()

getKeyE()

Encryption Manager

needKeyE()

getMessage()

MAC Verifier

needKeyM()

needFreshnessValue()

payloadAccepted()

payloadRejected()

Fresh Value Manager

getFreshnessValue()

Crypto Service

getKeyD()

getKeyM()

Decryption Manager

DecryptPayload FVT MACT()

needKeyD()

11

1
1

1 1

1

1..*

11

1
1

1 1

Fig. 11. Structure of the SCC pattern between two ECUs.

Behavior: The behavior of the SCC pattern is depicted

in Fig. 12. Before sending a payload, the sender generates the

MAC starting from the payload and possibly the Freshness
Value (FV) calculated according to the Monotonic Counter

provided by the Freshness Manager as designed in Fig. 12

(an ECU may decide to ignore the FV). So, the secured CAN

frame is composed by the payload, the truncated MACT and,

optionally, the truncated freshness value (FVT). Then it is

encrypted and sent.

Before accepting the CAN frame, the receiver has to decrypt

the CAN frame and validate its authenticity by verifying the

MAC. The receiver generates a freshness value for verification

(FVV) starting from the Monotonic Counter received by the

FVM. Then, it calculates the MAC by using the received

payload and the FVV. If the outcome equals the received MAC,

then the payload is accepted, otherwise it is discarded.

Despite the fact that generally the Encrypt-then-MAC

scheme is preferred, this specification proposes the MAC-

then-encrypt approach that has the following benefits in the

CAN protocol: 1) the risk of message rebuilding is zeroed

Fig. 12. Behavior of the SCC pattern between two ECUs.

because there is no padding effect due to the fixed length of

the considered messages and the used encryption algorithms

with 64-bit block size, 2) the transmission of an additional

frame to contain the MAC is not needed in case of frames

where the 64 bits are already taken.
Constraints: The SCC pattern works by reducing the

dimension of the payload of the frame in order to introduce

security information such as the MAC and the freshness value.

This may lead to the necessity of introducing extra-traffic in

the network in case of extremely complex frames.
Consequences: See Table V.

TABLE V
CONSEQUENCES OF THE SCC PATTERN.

Accountability SCC is accountable for integrity, confidentiality and
senders authentication in its maximum instantiation.

Confidentiality CAN frames exchanged among the ECUs will be en-
crypted providing data confidentiality on the transmitted
payload in case the encryption algorithm is applied.

Integrity CAN frames exchanged among the ECUs will use an
integrity mechanism to identify payload manipulation
in case the FV is introduced into the secured frame.

Availability SCC does not prevent availability even if it may add
some performance cost.

Performance This will depend on the algorithm used in the security
pattern and on the hardware of the ECU.

Cost The security pattern itself works with low computa-
tional resource but better results can be obtained with
more powerful hardware.

Manageability Not directly addressed.
Usability Low overhead regarding performance may be intro-

duced to the system.

Known Uses: The work in [25] describes a possible

design and deployment of a basic software module called

CINNAMON. It has been designed according to the guidelines

depicted by the AUTOSAR classic platform in such a way that

its integration will result quite straightforward. An example of

a lightweight version of the SCC pattern is the AUTOSAR
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TABLE VI
MAPPING THE PATTERN CAPABILITIES TO THE NIST DESIGN PRINCIPLES [27]

No Title Description HIVS NIDS CIPS SER SCC

1. Security Architecture and Design

1.01 Clear Abstractions Interfaces and functions should be simple and well-defined. � � � � �
1.02 Least Common Mechanism Subsystems should refrain from using the same mechanisms for resource access. - - - � �
1.03 Modularity and Layering System should be designed modular and layered to reduce complexity. � � � � �
1.04 Partially Ordered Dependencies System dependencies should be partially ordered by their dependencies. � � � � �
1.05 Efficiently Mediated Access The shared access to resources should be secured. � - - - �
1.06 Minimized Sharing Resource sharing between components should be avoided. � - - - �
1.07 Reduced Complexity System design should be as simple and small as possible. � � � � �
1.08 Secure Evolvability Security guarantees should adapt as system evolves. � � � � �
1.09 Trusted Components System design should enable to establish trusted components. � - � - �
1.10 Hierarchical Trust The overall system trust should be derivable from the trust of its components. � - � - �
1.11 Inverse Modification Threshold The degree of component protection relates to its trustworthiness. � - � - �
1.12 Hierarchical Protection A component does not need to be protected from more trustworthy components. � - - - �
1.13 Minimized Security Elements Trusted components should be kept as low as possible. � � - � �
1.14 Least Privilege Components should not have more privileges than necessary for its functionality. � � � � �
1.15 Predicate Permission Multiple authorized entities should consent to access or operate on sensitive data. - - - - -
1.16 Self-Reliant Trustworthiness Systems should minimize the reliance on third parties to state their trustworthiness. - � � - �
1.17 Secure Distributed Composition The security of distributed systems should be equal to individual components. - � - � �
1.18 Trusted Communication Channels Communication channels should be secured against unauthorized access. � - - - �

2. Security Capability and Intrinsic Behaviors

2.01 Continuous Protection All components enforcing the security policy should have uninterrupted protection. � � � � �
2.02 Secure Metadata Management The system should protect the metadata necessary for its security guarantees. � - - - -
2.03 Self-Analysis Components should be able to access their internal state and functionality. � � - � -
2.04 Accountability and Traceability System should be able to trace security-relevant actions. - � � � -
2.05 Secure Defaults The default security policy configuration should be restrictive and conservative. � � � � �
2.06 Secure Failure and Recovery A failure or corresponding recovery mechanism should not violate the security. � � � � �
2.07 Economic Security A security mechanism should not be costlier than the potential damage. � � � � �

2.08 Performance Security A security mechanism should not degrade the system performance unnecessarily. �1 �1 � � �
2.09 Human Factored Security The user interface should be intuitive and user friendly. - - - � -
2.10 Acceptable Security System performance & privacy should be compliant with the user expectation. - - - � �

3. Life Cycle Security

3.01 Repeatable & Documented Procedures It should be ensured that a component can be reconstructed at a later time. - � � � �
3.02 Procedural Rigor Life cycle security concepts should be appropriate to intended trustworthiness. - � � � �
3.03 Secure System Modification It should be ensured that system modifications do not decrease security guarantees. � - - - -
3.04 Sufficient Documentation Documentation for personnel to contribute and not detract the system security. - � - � -

4. Approaches to Trustworthy Secure System Development

4.01 Reference Monitor Concept System should be at least tamper-proof, inevitable, and verifiable. � � � � �

4.02 Defense in Depth Security-sensitive components should be secured by a series of security barriers. �2 �2 �2 �2 �2

4.03 Isolation Security-sensitive components should be isolated from the rest of the system. � �3 - - �3

1: Depends on the specific pattern implementation (e.g., DICE vs. TPM for HIVS or Rule-based vs. Neural Networks for NIDS)
2: Defense in depth is achieved by combining the patterns.
3: Depends on implementation and integration into system.

SecOC software module [12]. In fact, SecOC does not encrypt

the frame. Hence, confidentiality is not guaranteed.

Related Patterns: None of the previous security patterns

is related to SCC. Referring to [5], SCC can be considered an

extension of the Symmetric Encryption pattern.

IV. DESIGN PRINCIPLES

We now show how these pattern relate to design princi-

ples for systems security engineering. The ISO/SAE 21434

standard for road vehicles cyber security engineering [8]

recommends in its recommendation RC-10-06 that established

and trusted design and implementation principles should be

applied to avoid or minimize the introduction of weaknesses

and it further refers to the design principles for architectural

design for cybersecurity in NIST Special Publication 800-160

Vol. 1 [27]. In Table VI we map our security pattern to these

generic security design principles which provide the founda-

tion for engineering trustworthy secure systems. Following the

NIST taxonomy, we have structured the table into (1) structural

design principles that affect the fundamental architecture of

the system and interfaces, (2) security capability and intrinsic

behaviors subsuming generic patterns for implementation of

security requirements, (3) life cycle security principles re-

flecting related management considerations, and (4) generic

approaches to trustworthy secure system development.

V. APPLICATION IN AUTOMOTIVE ARCHITECTURE AND

DISCUSSION

In this section, we show an exemplary application of our

proposed security patterns to a reference architecture. Maple

et al. [28] describe a reference architecture for attack surface

analysis of smart cars at an abstract level which hides certain
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Fig. 13. Automotive Reference Architecture with proposed Observation and Mitigation Patterns.

internal interaction possibilities. In our work, we need a higher

level of detail in order to show where the patterns can be

used within the architecture, and thus we base our demon-

stration of pattern use on the reference architecture suggested

in [29]. The reference architecture depicted in Fig. 13 is

based on modern domain-based E / E architectures that are

structured into functional domains. The resource-constraint

domain subnetworks are connected via Gateway ECUs to

a high-throughput backbone network, in this case based on

Automotive Ethernet.

We propose to place the HIVS patterns at highly critical

ECUs with external interfaces. For ECUs that offer the largest

attack surface, e.g., connected to the Internet, the more secure

TPM-based HIVS instantiation is chosen, while for the other

ECUs the DICE-based HIVS instantiation seems sufficient.

The NIDS pattern is strategically placed to cover all com-

munication channels in and to the outside of the vehicle.

The CIPS pattern is deployed on gateways that regulate

possible cross-partition CAN messages and on the ECUs that

have to know the challenge mechanism to answer correctly.

The SCC pattern is mainly placed on the bus since it aims to

secure the communication on the bus by coding and decoding

CAN messages according to the pattern description.

The patterns HIVS, NIDS, and CIPS make use of the SER

pattern to aggregate and distribute their events. Thus, the RM

component that aggregates the events needs to be present on

the respective ECUs. The reporter component that sends the

events to the backend needs to be placed only once within the

vehicle at the TCU since this is the primary interface to the

backend systems.

VI. CONCLUSION

Here, we have described several new patterns for augment-

ing high level E / E architectures to improve attack resilience.

In particular, HIVS provides a mechanism to detect

anomalies (unauthorized modifications) in ECU software and

firmware at boot time, NIDS provides a mechanism to detect

anomalies in the in-vehicle communication, CIPS prevents

unauthorized control units from successfully delivering mes-

sages, while SER provides a way to transfer security relevant

events within a vehicle network to an outside SOC, and, SCC

guarantees that inter ECU communications are made in a

secure way.

We then presented a high-level architecture that captures the

generic E / E architecture concepts currently under discussion

on an abstract level. This architecture has been expanded to

include possible security observation and risk reduction points

as an example. The proposed patterns make it possible to

identify certain steps in typical attack chains and to mitigate

their consequences.
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