
Reasoning and Experimenting within Zadeh’s Fuzzy

Propositional Logic

Umberto Straccia
I.E.I. - C.N.R., Pisa (Italy)

straccia@iei.pi.cnr.it

July 6, 2000

Abstract

We present several decision algorithms within the fuzzy propositional logic based on
Zadeh’s implication operator p → q = max{1 − p, q}, deciding both the fuzzy SAT prob-
lem as well as the best truth value bound problem, i.e. compute the best truth value bounds
of a proposition with respect to a theory. Further, we evaluate all the algorithms by adapting
and extending the well know methods for evaluating SAT decision algorithms. We show that
both problems present the typical easy-hard-easy pattern.

ACM Categories and Subject Descriptors: F.4.1 [Mathematical Logic and Formal Lan-
guages]: Mathematical Logic - Model theory; I.2.3 [Artificial Intelligence]: Deduction
and Theorem Proving - Deduction; I.2.4 [Artificial Intelligence]: Knowledge Representa-
tion Formalisms and Methods - Representations

1 Introduction

Since the introduction of fuzzy sets by Zadeh [17], an impressive work has been carried out
around them, not least the numerous studies on fuzzy logics. In fuzzy logics, the notion of grade
of membership of an element x in an universe U with respect to a fuzzy subset A over U is
regarded as the truth value of the statement “x is A”. In this paper we (re) consider fuzzy logic
with truth values in the interval [0, 1] and limit our presentation to the propositional case. This
work is originate by [1] where a correct and complete inference system has been presented for
fuzzy propositional logic using Zadeh’s implication operator. Initially, Pavelka [12] presented its
formalisation of fuzzy logic based on Lukasiewicz’s implication operator [10, 7], where the logical
system allows one to infer the lower-bound for the truth values of a formula. In [6], a formalisation
of fuzzy logic using Zadeh’s implication was presented, which allows one to infer the upper-bound
of a formula. In [6] several inference rules have been identified which were not complete in the
sense that they may not always to infer the bets possible upper-bound. Finally, in [1] the ideas
of [12] and [6] have been combined to define the notions of both the lower and upper bounds of a
formula. In [6] a correct and complete set of inference rules has been presented based on Zadeh’s
implication which allows us to decide the entailment problem.

In this paper we will continue the work presented in [1] along three directions: (i) we present
an alternative, correct and complete decision procedure for the satisfiability problem and, thus,
for the entailment problem. The decision algorithm is a variant of the classical DPLL (Davis-
Putnam-Longemann-Loveland) procedure [3, 4] for classical propositional logic not in conjunctive
normal form; (ii) we present two new decision algorithms for the Best Truth Value Bound (BTVB)
problem, i.e. the problem of determining the greatest lower bound and the least upper bound of the
truth value of a proposition with respect to a theory (not addressed in [1]); (iii) we implemented

1

and evaluated all our algorithms by adapting and extending the well know methods for evaluating
SAT decision algorithms (see, e.g. [11]) and show that both the fuzzy SAT problem as well as the
BTVB bound problem present a typical easy-hard-easy pattern [15].

We proceed as follows. In the next section we introduce syntax, semantics of the fuzzy propo-
sitional logic considered and main definitions. In Section 3 we recall some basic properties of the
logic, while in Section 4 we present our decision algorithms for the SAT problem and the BTVB
problem. In Section 5 we evaluate the algorithms, while Section 6 concludes and presents future
research directions.

2 Syntax and semantics

Our logical language has two parts. At the objective level, let L be the language of propositional
logic, with connectives ∧,∨, ¬, → and the logical constants ⊥ (false) and � (true). We will use
metavariables A, B, C, . . . and p, q, r, . . . for propositions and propositional letters, respectively1.
⊥,�, letters and their negations are called literal (denoted l). As we will see below, propositions
will have a truth value in [0, 1].

At the meta level, let LM be the language of meta propositions (denoted by ψ). LM consists
of meta atoms, i.e. expressions of type (A≥n) and (A≤n), where A is a proposition in L and
n ∈ [0, 1], the connectives ∧,∨, ¬, → and the logical constants ⊥ and �. Essentially, a meta-atom
(A≤n) constrains the truth value of A to be less or equal to n (similarly for ≥). But, unlike [12]
where the truth value of (A≤n) can be any number in [0, 1], in our case (A≤n) will have the truth
value 0 or 1.

A meta letter is a meta atom the form (p≥n) and (p≤n), where p is a propositional letter.
⊥,�, meta letters and their negations are called meta literal. A meta proposition is then any ∧,∨,
¬, → combination of meta-literal. For instance, (¬(r ∧ s≤0.6) ∨ (p ∨ q≥0.2)) → (r ∧ s≤0.6) is a
meta proposition, while (p →0.2) and ((p≤0.3) ≥ 0.4) are not. We will use (A<n) as a short form
of ¬(A≥n) and similarly for (A>n); likewise, (A=n) is a short form for (A≤n)∧(A≥n). The meta
letter (p≥n) is non-trivial if n > 0, and similarly for (p≤n). The meta letter (p≥1) corresponds
to the classical letter p (p is true), and (p≤0) corresponds to the classical literal ¬p (p is false).
Therefore, LM contains L.

The classical definitions of Negation Normal Form (NNF), Conjunctive Normal Form (CNF)
and Disjunctive Normal Form (DNF) are easily extended to our context. For instance, a meta
proposition ψ in negation normal form is an ∧,∨ combination of meta literal (note that no →
occurs in ψ); a meta proposition ψ in conjunctive normal form is a conjunction of disjunction of
meta literal. Similarly for the DNF case.

From a semantics point of view, an interpretation I is a mapping (·)I from propositional letters
into [0, 1]. We extend I to propositions via

�I = 1 (1)
⊥I = 0 (2)

(¬A)I = 1 − AI (3)

(A ∧ B)I = min{AI , BI} (4)

(A ∨ B)I = max{AI , BI} (5)

(A → B)I = max{1 − AI , BI} (Zadeh’s implication operator) (6)

Given an interpretation I we will assign a boolean truth value in {0, 1} to each meta atom in the
obvious way: namely,

(A≥n)I = 1, iff AI ≥ n (7)
1In the following, all metavariables could have an optional subscript and superscript.

2

(A≤n)I = 1, iff AI ≤ n (8)

It is worth noting that neither the relations “≥”, and “≤” nor the number n is interpreted as
fuzzy. Finally, we assign a boolean truth value to each meta proposition like (A≥n1) ∨ (B≤n2)
using the classical method of combining truth values. We say that an interpretation I satisfies a
meta proposition ψ if I(ψ) = 1; in that case, we will say that I is a model of ψ.

A meta theory (denoted by Σ) is a finite set of meta propositions. Given an interpretation I
and a meta theory Σ, we say that I satisfies Σ if I satisfies each ψ ∈ Σ; in that case we say that I
is a model of Σ. We say that a meta theory Σ entails a meta proposition ψ if every model of Σ is
a model of ψ; this is denoted by Σ|≈ψ. A meta proposition ψ is valid if it is entailed by the empty
meta theory, i.e. ∅|≈ψ. An example of valid meta proposition is (A ∧ ¬A≤0.5). Two propositions
A and B are said to be equivalent (denoted by A ≡ B) if AI = BI , for each interpretation I.
For example, ¬(A ∧ ¬B) is equivalent to (¬A) ∨ B. The equivalence of two meta propositions is
defined in the same way.

Given a meta theory Σ and a proposition A, it is of interest to compute A’s best lower and
upper truth value bounds. To this end we define the least upper bound and the greatest lower
bound of A with respect to Σ (written lub(Σ, A) and glb(Σ, A), respectively) as

lub(Σ, A) = inf{n : Σ|≈(A≤n) or Σ|≈(A<n)} (9)
glb(Σ, A) = sup{n : Σ|≈(A≥n) or Σ|≈(A>n)} (10)

Notice that, e.g. Σ |≈ (A≥n) iff glb(Σ, A) ≥ n and Σ |≈ (A≤n) iff lub(Σ, A) ≥ n. Furthermore,
since Σ|≈(A<n) implies Σ|≈(A≤n) and Σ|≈(A>n) implies Σ|≈(A≥n), it follows that the definitions
of lub(Σ, A) and glb(Σ, A) can be simplified to lub(Σ, A) = inf{n : Σ|≈(A≤n)} and glb(Σ, A) =
sup{n : Σ|≈(A≥n)}, respectively.

3 Some basic properties

We recall some salient properties of the logic LM . For any proposition A, B and C, it is easy to
verify that

¬� ≡ ⊥ (11)
A ∧ � ≡ A (12)
A ∨ � ≡ � (13)
A∧ ⊥ ≡ ⊥ (14)
A∨ ⊥ ≡ A (15)
¬¬A ≡ A (16)

¬(A ∧ B) ≡ ¬A ∨ ¬B (17)
¬(A ∨ B) ≡ ¬A ∧ ¬B (18)

A → B ≡ ¬A ∨ B (19)
(A ∧ (B ∨ C)) ≡ (A ∧ B) ∨ (A ∧ C) (20)
(A ∨ (B ∧ C)) ≡ (A ∨ B) ∧ (a ∨ C) (21)

It can be verified that each proposition may easily be transformed, by preserving equivalence, into
either �, ⊥ or a proposition in NNF, CNF and DNF in which neither � nor ⊥ occur. Please
note, we do not have A ∧ ¬A ≡⊥. In general we can only say that (A ∧ ¬A)I ≤ 0.5, for any
interpretation I and similarly (A ∨ ¬A)I ≥ 0.5.

Concerning, meta propositions we have the equivalencies of classical propositional logic as meta
propositions have a boolean truth value, e.g. ψ ∧ � ≡ ψ, ¬ψ ∧ ψ ≡⊥, as well as

3

(�≥n) ≡ � (22)

(�≤n) ≡
{

� if n = 1
⊥ otherwise (23)

(¬A≥n) ≡ (A≤1 − n) (24)
(A ∧ B≥n) ≡ (A≥n) ∧ (B≥n) (25)
(A ∨ B≥n) ≡ (A≥n) ∨ (B≥n) (26)

and likewise for the cases ≤, < and >. Therefore, each meta proposition may easily be transformed
by, preserving equivalence, into �, ⊥ or into a meta proposition in NNF, CNF and DNF in which
neither � nor ⊥ occur.

Since Σ|≈�,Σ |≈ ⊥, glb(Σ,�) = 1, glb(Σ,⊥) = 0, lub(Σ,�) = 1, lub(Σ,⊥) = 0, Σ ∪ {�} and Σ
share the same set of models, and that Σ ∪ {⊥} is unsatisfiable, for the rest of the paper, if not
stated otherwise, we will always assume that meta propositions are always in NNF, non-trivial
and neither � nor ⊥ occur in them.

There is a strict relation between meta propositions and classical propositions. Let us consider
the following transformation c(·) of meta propositions into propositions, where c(·) takes the “crisp”
propositional part of meta propositions:

c(p≥n) �→ p (27)
c(p≤n) �→ ¬p (28)

c(¬ψ) �→ ¬cψ (29)
c(ψ1 ∧ ψ2) �→ cψ1 ∧ cψ2 (30)
c(ψ1 ∨ ψ2) �→ cψ1 ∨ cψ2 (31)

ψ1 → ψ2 is handled via ¬ψ1 ∨ ψ2 and, for a meta theory Σ, cΣ = {cψ : ψ ∈ Σ}.

Proposition 1 For a meta theory Σ, if Σ is unsatisfiable then cΣ is classically unsatisfiable. �

Proof: Assume Σ unsatisfiable. Now, suppose to the contrary that cΣ is satisfiable. Therefore
there is a classical propositional model cI of cΣ. Let I be the following interpretation. For all
propositional letters p,

pI =
{

1 if cI satisfies p
0 otherwise

Now, we will show that I is an interpretation satisfying Σ which is contrary to our assumption.
At first, we show on induction on the number of connectives of ψ that cI satisfies cψ iff I satisfies
ψ.

ψ is a meta letter:

1. Suppose ψ is a meta letter (p≥n). Therefore, cψ = p. If cI satisfies p then, by definition,
pI = 1 and, thus, I satisfies (p≥n). If cI does not satisfy p then, by definition, pI = 0
and, thus, I does not satisfy (p≥n) (note that n > 0).

2. Suppose ψ is a meta letter (p≤n). Therefore, cψ = ¬p. If cI satisfies ¬p then, by
definition, pI = 0 and, thus, I satisfies (p≤n). If cI does not satisfy ¬p then, by
definition, pI = 1 and, thus, I does not satisfy (p≤n) (note that n < 1).

Induction step:

1. Suppose ψ is a meta proposition ¬ψ′. Therefore, cψ = ¬cψ′. If cI satisfies ¬cψ′ then,
by induction on cψ′, I does not satisfy ψ′ and, thus, I satisfies ψ. If cI does not satisfy
¬cψ′ then, by induction on cψ′, I satisfies ψ′ and, thus, I does not satisfy ψ.

4

2. Suppose ψ is a meta proposition ψ1 ∧ ψ2. Therefore, cψ = cψ1 ∧ cψ2. If cI satisfies cψ
then, cI satisfies both cψ1 and cψ2. By induction on cψ1 and cψ2, I satisfies ψ1 and
ψ2 and, thus, I satisfies ψ. If cI does not satisfy cψ then, cI either does not satisfy
cψ1 or does not satisfy cψ2. By induction on cψ1 and cψ2, I either does not satisfy ψ1

or does not satisfy ψ2 and, thus, I does not satisfy ψ.

3. The cases ∨ is similar.

Therefore, for any ψ ∈ Σ, since both cψ ∈ cΣ and cI satisfies cψ, it follows that I satisfies any
ψ ∈ Σ and, thus, I satisfies Σ which is contrary to our assumption. Q.E.D.

Corollary 1 Let Σ be a meta theory and let ψ be a meta proposition. If Σ|≈ψ then cΣ |= cψ,
where |= is classical entailment. �

Proof: If Σ|≈ψ then Σ ∪ {¬ψ} is not satisfiable and, thus, by Proposition 1, cΣ ∪ {¬cψ} is not
classically satisfiable. Therefore, cΣ |= cψ holds. Q.E.D.

Proposition 1 states that there cannot be entailment without classical entailment. In this sense |≈
is correct with respect to |=.

Example 1 Let Σ be the set Σ = {(p≥0.6)∨ (q≤0.3), (p≤0.3)}. Let ψ be (q≤0.8). It follows that
cΣ = {p ∨ ¬q,¬p}. It is easily verified that Σ|≈(q≤0.8) and that cΣ |= ¬q, thereby confirming
Proposition 1.

The converse of Corollary 1 does not hold in the general case.

Example 2 Let Σ be the set Σ = {(p≤0.6) ∨ (q≥0.7), (p≥0.3)}. It follows that cΣ = {¬p ∨ q, p}.
It is easily verified that cΣ |= q, but Σ |≈(q≥n), for all n > 0.

In Section 4.1 we will present a result which establishes the converse of Corollary 1.
As it happens for classical entailment, entailment in LM can be reduced to satisfiability check-

ing: indeed, for a meta theory Σ and a meta proposition ψ

Σ|≈ψ iff Σ ∪ {¬ψ} is not satisfiable (32)

holds.
We conclude this section by showing that the computation of the least upper bound can be

reduced to the computation of the greatest lower bound. Let Σ be a meta theory and let A be a
proposition. By (24), (A≤n) ≡ (¬A≥1 − n) holds and, thus,

Σ|≈(A≤n) iff Σ|≈(¬A≥1 − n) (33)

Therefore,

1 − lub(Σ, A) = 1 − inf{n : Σ|≈(A≤n)}
= sup{1 − n : Σ|≈(A≤n)}
= sup{n : Σ|≈(A≤1 − n)}
= sup{n : Σ|≈(¬A≥n)}
= glb(Σ,¬A).

and, thus,

lub(Σ, A) = 1 − glb(Σ,¬A), (34)

i.e. the lub can be determined through the glb (and vice-versa).

5

4 Decision algorithms in LM

In the following two sections we will present algorithms for deciding the two main problems within
LM : (i) first we describe a decision algorithm for deciding the satisfiability problem in LM , i.e.
deciding whether a meta theory Σ is satisfiable or not (by (32), the entailment problem is solved
too). We call it the fuzzy SAT problem in order to distinguish it from the classical SAT problem;
and (ii) we present two algorithms for deciding the BTVB problem, i.e. we provide two algorithms
which determine the greatest lower bound of a proposition A with respect to a meta theory Σ
(thus, by (34), the least upper bound can be determined, too).

4.1 A decision algorithm for the fuzzy SAT problem

In [1] both an axiom system for deciding entailment as well as a resolution based method for the
fuzzy SAT problem have been defined. In this latter case, the transformation of meta propositions
into an equivalent CNFs is required. We propose a simple alternative (a semantic tableaux, see e.g.
[2, 5]) which is a variant of the classical DPLL (Davis-Putnam-Longemann-Loveland) procedure
[3, 4] for classical propositional logic not in conjunctive normal form (no CNF conversions is
needed, which may require exponential time).

Given two meta propositions ψ1 and ψ2 we say that (i) ψ1 subsumes ψ2 (denoted by subs(ψ1, ψ2))
iff ψ1|≈ψ2; and that (ii) ψ1 and ψ2 are pairwise contradictory (denoted by ctd(ψ1, ψ2)) iff ψ1|≈¬ψ2.
For instance, (p≥0.3)∨(q≤0.6) subsumes (p≥0.4)∨(q≤0.9), while (p≥0.3)∨(q≤0.6) and (p≤0.2)∧
(q≥0.7) are pairwise contradictory. Since ψ1|≈¬ψ2 iff ψ2|≈¬ψ1 it follows that ctd(·, ·) is symmetric.
By definition,

ctd(ψ1, ψ2) iff subs(ψ1,¬ψ2) (35)

holds which relates ctd(·, ·) to subs(·, ·). If ψ1 and ψ2 are two meta literal, it is quite easy to check
whether subs(ψ1, ψ2) holds, as shown in Table 1, on the left. Each entry in the table specifies the
condition under which ψ1 subsumes ψ2.

ψ1 ψ2

(p≥m) (p>m) (p≤m) (p<m)
(p≥n) n ≥ m n > m × ×
(p>n) n ≥ m n ≥ m × ×
(p≤n) × × n ≤ m n < m
(p<n) × × n ≤ m n ≤ m

ψ1 ψ2

(p≥m) (p>m)
(p≤n) n < m n ≤ m
(p<n) n ≤ m n ≤ m

Table 1: On the left: ψ1 subsumes ψ2. On the right: ψ1 and ψ2 pairwise contradictory.

We are now ready to specify the calculus. Let Σ be a meta theory. The calculus is based on the
following rules described in Table 2.
In order to prevent infinite application of the above rules, we assume that each instantiation of
the rules is applied only once.

We define RDPLL = {(up), (∧), (∨)}. Note that the rule in RDPLL form a variant of the
classical DPLL (Davis-Putnam-Longemann-Loveland) procedure [3, 4] for classical propositional
logic not in conjunctive normal form: the (up) rule is the usual unit propagation rule, whereas the
(∨) rule (the only branching rule) is also called Principle of Bivalence [2] and extends the usual
tableaux (∨) rule

(∨s)
ψ1 ∨ ψ2

ψ1 ψ2
(36)

6

(up)
ψ, ψl

ψ′
where ψl is a literal and ψ′ is obtained from ψ by replacing each
occurrence of a literal ψ′′ in ψ by (i) �, if subs(ψl, ψ

′′); and (ii)
⊥, if ctd(ψl, ψ

′′), followed by boolean simplification

(∧)
ψ1 ∧ ψ2

ψ1, ψ2

(∨)
ψ1 ∨ ψ2

ψ1 ψ′, ψ2 where ψ′ is a NNF of ¬ψ1

Table 2: Semantic tableaux inference rules with unit propagation.

Further, it is worth mentioning that the resolution rule for meta propositions in CNF presented
in [1] can be defined as2

(res)
ψl1 ∨ ψ, ψl2 ∨ ψ′

ψ ∨ ψ′ where ψl1 ψl2 are two meta literal and ctd(ψl1 , ψl2)
(37)

As usual, a deduction is represented as a tree, called deduction tree. A branch φ in a deduction
tree is closed iff it contains ⊥. A deduction tree is closed iff each branch in it is closed. With φM

we indicate the set of meta propositions occurring in φ. A meta theory Σ has a refutation iff each
deduction tree is closed. A branch φ is completed iff it is not closed and no rule can be further
applied to it. A branch φ is open iff it is not closed and not completed.

The algorithm SAT(Σ) described in Table 3 determines whether Σ is satisfiable or not. SAT(Σ)
starts from the root labelled Σ and applies the rules until the resulting tree is either closed or
there is a completed branch. If the tree is closed, SAT(Σ) returns false, otherwise true and from
the completed branch a model of Σ can be build. The set of not closed branches φ which may be
expanded during the deduction is hold by Φ. If Φ is managed as a stack then we have a depth first
search strategy, while if Φ is managed as a queue then a breath first search strategy is applied.

Example 3 Let Σ be the set

Σ = {(p≥0.5) ∨ ((q≥0.4) ∧ (u≥0.6)), (p≤0.2) ∨ (q≥0.6),
(q≤0.5) ∨ (r≥0.4) ∨ (s≥0.5), (r≤0.3) ∨ (t≥0.6),
(r≤0.2) ∨ (t≤0.5), (r≥0.7) ∨ (s≤0.3), (u≤0.5) ∨ (r≤0.1)}

Figure 1 shows a deduction tree produced by SAT(Σ). The two branches on the left are closed,
while the branch φ on the right is completed. Consider φ′M ⊆ φM where φ′M contains all the
meta literal occurring in φM , i.e.

φ′M = {(p<0.5), (p≤0.2), (q≤0.4),
(u≥0.6), (s≤0.3), (r≤0.1)}

From φ′M a model I of Σ can easily be build as follows: pI = 0.2, qI = 0.4, uI = 0.6, sI =
0.3, rI = 0.1 and tI = 0.

The above example directly suggests us how to prove the following proposition which establishes
correctness and completeness of the SAT algorithm.

Proposition 2 Let Σ be a meta theory. Then SAT(Σ) iff Σ is satisfiable. �
2∨ is a symmetric relation.

7

Algorithm SAT(Σ):
SAT(Σ) starts from the root labelled Σ. So, we initialise Φ with Φ = {φ}, where φM = Σ. Φ is
managed as a multiset, i.e. there could be elements in Φ which are replicated.

1. if Φ = ∅ then return false and exit;

/* all branches are closed, thus, Σ is unsatisfiable */

2. otherwise, select a branch φ ∈ Φ and remove it from Φ, i.e. Φ ← Φ \ {φ};

3. try to apply a rule to φ with the following priority among the rules: (up) � (∧) � (∨):

(a) if the (up) rule is applicable to φ then expand φ by repeated application of the (up)
rule until (up) is no more applicable. Let φ′ be the resulting branch. If φ′ is not closed
then add it to Φ, i.e. Φ ← Φ ∪ {φ′}. Go to step 1.

(b) if the (∧) rule is applicable to φ then expand φ by repeated application of the (∧) rule
until (∧) is no more applicable. Let φ′ be the resulting branch. If φ′ is not closed then
add it to Φ, i.e. Φ ← Φ ∪ {φ′}; Go to step 1.

(c) if the (∨) rule is applicable to φ then expand φ by one application of the (∨) rule. Let
φ1 and φ2 be the resulting branches. For each φi, i = 1, 2, if φi is not closed then add
it to Φ, i.e. Φ ← Φ ∪ {φi}. Go to step 1.

(d) otherwise, if no rule is applicable to φ, then return true and exit.
/* φ is completed, thus, Σ is satisfiable */

Table 3: The SAT procedure.

Proof: It can be easily verified that the rules in RDPLL are correct, i.e. for a branch φ, φM is
satisfiable iff there is a branch φ′ as the result of the application of a rule to φ such that φ′M

satisfiable.
⇒ .) Suppose SAT(Σ). Let T be the generated deduction tree and let φ be a completed branch
from Σ to a leaf in T . Such a branch has to exist, otherwise SAT(Σ) = false. For any letter p,
let (max ∅ = 0,min ∅ = 1):

glb≥p = max{n : (p≥n) ∈ φM} (38)

glb>
p = max{n : (p>n) ∈ φM} (39)

lub≤p = min{n : (p≤n) ∈ φM} (40)

lub<
p = min{n : (p<n) ∈ φM} (41)

For any p, glb≥p , glb>
p and lub≤p , lub<

p , determine the greatest lower bound and the least upper
bound which p’s truth value has to satisfy. Since φ is not closed, it follows that for each letter p,
there is εp ≥ 0 such that

glbp = max{glb≥p , glb>
p + εp} ≤ min{lub≤p , lub<

p − εp} = lubp (42)

i.e., for each p, its greatest lower bound constraint is less or equal than its least upper bound
constraint. Now, let I be an interpretation such that

1. �I = 1 and ⊥I = 0;

2. pI = glbp, for all letters p.

8

Σ
������

������
(p≥0.5)

(q≥0.6), (r≥0.4) ∨ (s≥0.5)
�

�
�

�
�

�
(r≥0.4)

(t≥0.6),
(t≤0.5),⊥

×

(r<0.4),
(s≥0.5)

(s≤0.3),⊥

×

(p<0.5), (q≤0.4) ∧ (u≥0.6)

(q≤0.4), (u≥0.6),
(p≤0.2), (s≤0.3), (r≤0.1)

φ

Figure 1: Deduction tree for Σ.

It is easily verified that I satisfies all ψ ∈ φM (by induction on the number of connectives in ψ
and since φ is completed) and, thus, I satisfies φM . As a consequence, Σ ⊆ φM is satisfiable.
⇐ .) Suppose Σ is satisfiable. Let T be the generated deduction tree. From the correctness of the
rules it follows that there is a branch φ in T such that (i) φM is satisfiable; (ii) no rule can be
further applied to φ; and (iii) φ is not closed. Therefore, φ is completed and, thus, SAT(Σ).

Q.E.D.

The following result establishes the converse of Proposition 1 in case we restrict our attention to
meta propositions in NNF involving truth values above 0.5. It directly relates to a similar result
described in [9]. At first, we replace the (up) rule in SAT with a simplified version of it:

(⊥)
ψl1 , ψl2

⊥ where ψl1 ψl2 are two meta literal and ctd(ψl1 , ψl2)
(43)

It is easily verified that RT = {(⊥), (∧), (∨)} forms a correct and complete set of rules for which
Proposition 2 still holds3. Let cRT = {c(⊥), (c(∧), c(∨)} be the classical rules of inference analogue
to the (⊥), (∧) and (∨) and let cSAT be the SAT procedure where the inference rules (⊥), (∧) and
(∨) have been replaced with c(⊥), c(∧) and c(∨). It is well known that cSAT is correct and
complete, i.e. for any set of classical propositions Σ, Σ is classically satisfiable iff cSAT(Σ) returns
true. Finally, we will say that a meta proposition ψ is normalised iff for each meta literal ψ′

occurring in ψ,

1. if ψ′ is (p≥n) then n > 0.5;

2. if ψ′ is (p≤n) then n < 0.5;

3. if ψ′ is (p>n) then n ≥ 0.5;

4. if ψ′ is (p<n) then n ≤ 0.5.

3The same holds by considering the rules RR = {(⊥), (res)} only, if meta propositions are in CNF.

9

The following proposition holds.

Proposition 3 Let Σ be a meta theory such that each ψ ∈ Σ is normalised. Then SAT(Σ) iff
cSAT(cΣ). �

Proof:
⇒ .) Assume SAT(Σ) and let T be the deduction tree build by SAT(Σ). Let φ be a branch in T .
We show by induction on the depth depth(φ) of φ that there is branch cφ in a deduction tree cT
build by cSAT(cΣ) such that c(φM) = (cφ)M .

depth(φ) = 0: Then φM = Σ and c(φM) = cΣ. So, just consider the initial branch cφ of a cSAT(cΣ)
deduction. By definition of cSAT, (cφ)M = cΣ and, thus, c(φM) = (cφ)M .

depth(φ) = n > 0: Suppose that for each branch φ′ such that depth(φ′) < n, the above induction
hypothesis holds. φ is the result of the application of one of the (⊥), (∧) and (∨) rules the
branch φ′ of depth depth(φ′) = n−1. By induction on φ′, let cφ′ be a branch in a deduction
tree cT build by cSAT(cΣ) such that c(φ′M) = (cφ′)M .

(i) If the (⊥) rule has been applied to φ′ then ψl1 , ψl2 ∈ φ′M such that ctd(ψl1 , ψl2) and
⊥∈ φ. Therefore, cψl1 ,

cψl2 ∈ cφ′M , ctd(cψl1 ,
cψl2), the (c⊥) can be applied to cφ′ and, thus,

⊥∈ cφ. Therefore, c(φM) = (cφ)M .

(ii) The cases for the (∧) rule or (∨) rule can be shown similarly.

Since SAT(Σ), there is a completed branch φ and, thus, there is a completed branch cφ in a
deduction tree cT build by cSAT(cΣ). Therefore, cSAT(cΣ) returns true.
⇐ .) Assume cSAT(cΣ) and let cT be the deduction tree build by cSAT(cΣ). Let cφ be a branch
in cT . We show by induction on the depth depth(cφ) of cφ that there is branch φ in a deduction
tree T build by SAT(Σ) such that (cφ)M = c(φM).

depth(cφ) = 0: Similarly as above.

depth(cφ) = n > 0: Suppose that for each branch cφ′ such that depth(cφ′) < n, the above induc-
tion hypothesis holds. cφ is the result of the application of one of the c(⊥), c(∧) and c(∨)
rules the branch cφ′ of depth depth(cφ′) = n− 1. By induction on cφ′, let φ′ be a branch in
a deduction tree T build by SAT(Σ) such that (cφ′)M = c(φ′M).

(i) Suppose the c(⊥) rule has been applied to cφ′ and let p, q ∈ (cφ′)M be the literal to which
the rule has been applied. Therefore, ctd(p, q) and ⊥∈ cφ. Since cφ′M = c(φ′M) holds, there
are two meta literals ψl1 , ψl2 ∈ φ′M such that cψl1 = p and cψl2 = q. Suppose cψl1 is (p≥n)
and cψl2 is (p≤m). Since, by hypothesis, n > 0.5 and m < 0.5, it follows that ctd(ψl1 , ψl2),
the (⊥) can be applied to φ′ and, thus, ⊥∈ φ. Therefore, (cφ)M = c(φM). The other cases
for >,≤ and < are similar.

(ii) The cases for the (c∧) rule or (c∨) rule can be proven similarly.

Since cSAT(cΣ), there is a completed branch cφ and, thus, (cφ)M is satisfiable. Therefore, there
is a branch φ in a deduction tree T build by SAT(Σ) such that (cφ)M = c(φM). If φ is completed,
then SAT(Σ) returns true. Otherwise, φ can be expanded to a completed branch φ′ (else, by
⇒ .) each expanded branch of cφ is closed and, thus, c(φM) is not satisfiable). Therefore, SAT(Σ)
returns true. Q.E.D.

Essentially, the above proposition establishes that once the truth value of a meta letter ψ is
restricted to be above (or below) the threshold 0.5, then the proposition cψ may definitely be
considered as classically true (false, respectively).

Corollary 2 Let Σ be a meta theory and let ψ be a meta proposition. Furthermore, we assume
that each ψ′ ∈ Σ is normalised as well as any equivalent NNF of ¬ψ is normalised. Then

10

1. Σ is satisfiable iff cΣ is classically satisfiable;

2. Σ|≈ψ iff cΣ |= cψ, where |= is classical entailment. �

Example 4 Consider Example 1. An equivalent NNF of ¬ψ is ψ′ = (q>0.8). It is easily verified
that both Σ and ψ are normalised. Indeed, both Σ|≈ψ and cΣ |= cψ hold. On the other hand, in
Example 2, Σ is not normalised, e.g. for (p≥0.3) we have 0.3 < 0.5.

From a computational point of view, the fuzzy SAT problem and the classical (NP-complete) SAT
problem are in the same complexity class.

Proposition 4 Let Σ be a meta theory. Then checking whether Σ is satisfiable is a NP-complete
problem. �

Proof: Consider a crisp propositional theory K in NNF such that neither ⊥ nor � occur in
K. We define ΣK = {ψ : ψ is a NNF of (A≥1) and A ∈ K}. Since cΣK and K have the same
classical models and since ΣK satisfies the conditions of Corollary 2, it follows that K is classically
satisfiable iff ΣK is satisfiable. As a consequence, the NP-hardness of the fuzzy SAT problem
follows. The following NP algorithm determines whether Σ is satisfiable. Non-deterministically
generate a complete branch φ in a deduction tree for Σ: Σ is satisfiable iff such φ exists. The
depth of φ is polynomially bounded by the input. Hence, deciding whether Σ is satisfiable is in
NP. Q.E.D.

From the coNP-completeness of the classical entailment problem, it follows similarly

Corollary 3 Let Σ be a meta theory and let ψ be a meta proposition. Then checking whether
Σ|≈ψ is a coNP-complete problem. �

4.2 A decision algorithm for the BTVB problem

We address now the problem of determining glb(Σ, A) and lub(Σ, A). This is important, as com-
puting, e.g. glb(Σ, A), is in fact the way to answer a query of type “to which degree is A (at
least) true, given the (imprecise) facts in Σ ?”. Since lub(·) can be defined in terms of glb(·) (see
Equation (34)), we will restrict our attention to this latter case only.

In the following let ΦΣ = {φ1, . . . , φk} be the set of all completed branches of a deduction tree
computed by the algorithm COMPL(Σ), where COMPL(Σ) is as SAT(Σ) except that Point 1. and
Point 3d have been replaced with

• “if Φ = ∅ then return ΦΣ and exit”;

• “otherwise, if no rule is applicable to φ, then add φ to ΦΣ. Go to step 1”.

respectively. Of course, if ΦΣ = ∅ then Σ is unsatisfiable and, thus, glb(Σ, A) = 1. Furthermore,
for each branch φ, let

φA = {ψ ∈ φM : ψ is a meta literal and
there is no meta literal ψ′ ∈ φM

such that ψ = ψ′ and subs(ψ′, ψ)}

(44)

It follows that for all letters p, for each completed branch φ ∈ ΦΣ, φA ⊆ φM contains the most
informative truth value constrains for p, i.e. there are at most two expressions of the form (p r n)
and (p r′ m) in φM such that r ∈ {≥, >} and r′ ∈ {≤, <}. For instance, in case of the completed
branch φ in Figure 1 (see Example 3), φA is {(p≤0.2), (q≤0.4), (u≥0.6), (s≤0.3), (r≤0.1)}. For
any letter p and for each branch φ, let us define

11

pos(p, φ) =
{

n if (p≥n) ∈ φA or (p>n) ∈ φA

0 otherwise

neg(p, φ) =
{

1 − n if (p≤n) ∈ φA or (p<n) ∈ φA

0 otherwise

(45)

Essentially, pos(p, φ) and neg(p, φ) express the least truth value constrain of p with respect to φ and
the least truth value constrain of ¬p with respect to φ, respectively. For instance, for Example 3
we have that e.g. pos(p, φ) = 0 and neg(p, φ) = 0.8 while pos(u, φ) = 0.6 and neg(u, φ) = 0 hold.
We extend this notion to an arbitrary proposition A in NNF as follows. The truth value of A with
respect to a branch φ is defined inductively as follows:

val(A, φ) =

⎧⎪⎪⎨
⎪⎪⎩

pos(p, φ) if A is a letter p
neg(p, φ) if A is a literal ¬p
min{val(A1, φ), val(A2, φ) if A is a A1 ∧ A2

max{val(A1, φ), val(A2, φ) if A is a A1 ∨ A2

(46)

For instance, with respect to Example 3 and A = ¬p ∧ u, we have val(A, φ) = 0.6. Further, it is
quite easily verified that for any proposition A, A′ such that A ≡ A′ and branch φ, val(A, φ) =
val(A′, φ) holds. Finally, it is easily verified that for any meta theory Σ and meta proposition ψ,

Σ|≈ψ iff ∀φ ∈ ΦΣ. φA|≈ψ
iff ∀φ ∈ ΦΣ. φA ∪ {¬ψ} unsatisfiable (47)

In the following section we will present the method roughly presented in [1] for determining the
lower bound of a letter p. We then generalise the method to arbitrary propositions (Section 4.2.2),
while in Section 4.2.3 we will present an alternative one.

4.2.1 Determining the greatest lover bound of a literal

For a propositional letter p and meta theory Σ, we first address the problem to compute glb(Σ, p)
and glb(Σ,¬p).

By Equation (47), we know that for any n ∈ [0, 1],

Σ|≈(p≥n) iff ∀φ ∈ ΦΣ. φA ∪ {(p<n)} not satisfiable (48)

In order to compute glb(Σ, p), we are looking for the largest n such that Equation (48) holds.
It is quite easy to see that for any φ ∈ ΦΣ, φA ∪ {(p<pos(p, φ))} is unsatisfiable and there
is no m > n such that φA ∪ {(p<m)} is unsatisfiable too, i.e. for any φ ∈ ΦΣ and letter p,
pos(p, φ) is the largest value n that can be chosen making φA ∪ {(p<n)} unsatisfiable. As a
consequence, glb(Σ, p) = min{val(p, φ) : φ ∈ ΦΣ} holds. In a quite similar way it can be verified
that glb(Σ,¬p) = min{val(¬p, φ) : φ ∈ ΦΣ}. Therefore, for any literal l,

glb(Σ, l) = min{val(l, φ) : φ ∈ ΦΣ} (49)

i.e. glb(Σ, l) can directly be computed from the completed branches φ ∈ ΦΣ.

4.2.2 Determining the greatest lover bound of a proposition

We extend the above idea to the general case. Let us consider a proposition A in CNF, i.e.
A = C1∧ . . .∧Cm, where each Ci is li1 ∨ . . .∨ liki

and lij
literal and lih

= lil
holds for all h = l, i.e.

no literal appears more than once in a clause. By Equation (25), it follows that for any n ∈ [0, 1],

Σ|≈((
∧

i Ci)≥n) iff Σ|≈∧
i(Ci≥n)

iff ANDi Σ|≈(Ci≥n) (50)

12

Therefore,

glb(Σ,
∧

i Ci) = mini{glb(Σ, Ci)} (51)

For any clause Ci and for any n ∈ [0, 1], by Equations (47) and (24)–(26)

Σ|≈(Ci≥n) iff ∀φ ∈ ΦΣ. φA ∪ {(li1<n), . . . , (liki
<n)} unsatisfiable (52)

By defining nφ
i ∈ [0, 1] as the maximal value n for which φA ∪ {(li1<n), . . . , (liki

<n)} is unsatisfi-
able, i.e. nφ

i = max{n : φA ∪ {(li1<n), . . . , (liki
<n)} unsatisfiable}, it follows that

glb(Σ, Ci) = min{nφ
i : φ ∈ ΦΣ} (53)

So, let us find nφ
i . We have to distinguish two cases: (i) for no letter p, both p,¬p ∈ {li1 , . . . , liki

};
and (ii) otherwise, there is some p such that both p,¬p ∈ {li1 , . . . , liki

}. Both cases are an
extension of the simple case discussed in the previous section. With respect to case (i), it is
easily verified that the maximal value nφ

i for which φA ∪ {(li1<ni), . . . , (liki
<ni)} is unsatisfiable

is determined by

nφ
i = max{n : φA ∪ {(li1<n), . . . , (liki

<n)} unsatisfiable}
= max{val(lij , φ) : lij ∈ {li1 , . . . , liki

}}
= val(Ci, φ)

(54)

Case (ii) is complicated by the fact that if for some p, both p,¬p ∈ {li1 , . . . , liki
} then we have to

take into account that

max{n : {(p<n), (¬p<n)} not satisfiable} =
max{n : {(p<n), (p>1 − n)} not satisfiable} = 0.5 (55)

As a consequence, in case (ii)

nφ
i = max{n : φA ∪ {(li1<n), . . . , (liki

<n)} unsatisfiable}
= max{0.5, val(lij , φ) : lij ∈ {li1 , . . . , liki

}}
= max{0.5, val(Ci, φ)}

(56)

We have, thus, a simple method to compute glb(Σ, A), where A =
∧m

i=1 Ci:

1. determine the set of completed branches of Σ, ΦΣ;

2. if ΦΣ = ∅, then glb(Σ, A) = 1;

3. otherwise, for each φ ∈ ΦΣ and for each Ci, compute nφ
i according to Equations (54) and

(56). Let nφ = min{nφ
1 , . . . , nφ

m};
4. then,

glb(Σ, A) = min{nφ : φ ∈ ΦΣ} (57)

It is worth noting that due to Equation (56),

nφ ≥ val(A, φ) (58)

holds and, thus,

glb(Σ, A) ≥ min{val(A, φ) : φ ∈ ΦΣ} (59)

The following example illustrates how the above procedure works.

13

Example 5 Consider the following meta theory

Σ = {(p≥0.3) ∨ (q≤0.2), (r≥0.6) ∨ (s≤0.1), (r≥0.4)}

and the proposition

A = (p ∨ ¬q) ∧ (p ∨ r) ∧ (q ∨ ¬q) ∧ (q ∨ r)

Figure 2 shows a deduction tree produced in order to compute ΦΣ.

Σ
������

������

0

(p≥0.3)
�

�
�

�
�

�
0.3

(r≥0.6)

0.3

φ1

(r<0.6),
(s≥0.1)

0.3

φ2

(p<0.3), (q≤0.2)
�

�
�

�
�

�
0.4

(r≥0.6)

0.6

φ3

(r<0.6),
(s≥0.1)

0.4

φ4

glb(Σ, A) = min{ } = 0.3

Figure 2: Deduction tree for glb(Σ, A) and A in CNF.

Additionally, at each node, we report the value of nφ in bold. It can easily be verified that
glb(Σ, A) = 0.3

In Table 4 the detailed algorithm for computing glb(Σ, A) is presented, which has been generalised
to the case where the proposition A is in NNF. It is based on SAT. With respect to the SAT
algorithm, there are some items which have further to be clarified, namely Step 1, 3, 4d and 4e.

Step 1 expresses the termination condition of the algorithm: either glb = 0 and, thus, for no
n > 0, Σ|≈(A≥n) holds, or Φ = ∅, i.e. there are no branches which can be further be expanded.
In this latter case, glb = 2 means that each branch φ is closed, and, thus Σ is not satisfiable and
consequently glb(Σ, A) = 1.

Step 3 implements a optimisation heuristics: indeed, at each step of the algorithm, we evaluate
the truth value of A with respect of the current branch φ. If this value is already greater than the
current glb, then we can stop the expansion of φ. In fact, we already know that for each complete
expansion φ′ of φ, at Point 4e, we will have that min{glb, val(A, φ′)} = glb4.

Step 4d is more tricky and has to do with the fact that A is not necessarily in CNF. If A is
in CNF then Step 4d is not required, but at Step 3a, the evaluation of A is determined by nφ

according Equations (54) and (56). If A is not in CNF then we have to consider the case (ii)
above (see Equation (56)) where a conjunct of a CNF of A contains both p and ¬p, for a letter
p. To this end we add (the axiom) (p≥0.5) ∨ (p<0.5) to the branch. The conditions (4(d)i)–
(4(d)iv) just limit the application of this rule: conditions (4(d)i) and (4(d)iv) are self explanatory;
concerning condition (4(d)ii), if glb(φ) ≥ 0.5 then by adding (p≥0.5) ∨ (p<0.5) to φM , still
glb(φ) = val(A, φ) = val(A, φ′) = glb(φ′) holds; and condition (4(d)ii) should hold otherwise
(p≥0.5) ∨ (p<0.5) is already entailed by φM , i.e. φM |≈(p≥0.5) ∨ (p<0.5).

Finally, Point 4e manages the case a completed branch φ is reached. In this case the truth
value of A with respect to φ is evaluated and the current glb is updated.

4Something similar has been used in [8].

14

Algorithm minmaxglb(Σ, A):
minmaxglb(Σ, A) starts from the root labelled Σ. Initialise Φ with Φ = {φ}, where φM = Σ. Φ is
managed as a multiset. Let glb ← 2. The variable glb will contain the value of glb(Σ, A).

1. if Φ = ∅ or glb = 0 then

(a) if Φ = ∅ and glb = 2 then let glb ← 1;
/* Σ not satisfiable */

(b) return glb and exit;

2. otherwise, select a branch φ ∈ Φ and remove it from Φ, i.e. Φ ← Φ \ {φ};

3. if glb = 2 then

(a) evaluate A with respect to φ, i.e. let glb(φ) ← val(A, φ);

(b) if glb(φ) ≥ glb then go to step 1. (φ needs not to be expanded anymore);

4. try to apply a rule to φ with the following priority among the rules: (up) � (∧) � (∨):

(a) if the (up) rule is applicable to φ then expand φ by repeated application of the (up)
rule until (up) is no more applicable. Let φ′ be the resulting branch. If φ′ is not closed
then add it to Φ, i.e. Φ ← Φ ∪ {φ′}. Go to step 1.

(b) if the (∧) rule is applicable to φ then expand φ by repeated application of the (∧) rule
until (∧) is no more applicable. Let φ′ be the resulting branch. If φ′ is not closed then
add it to Φ, i.e. Φ ← Φ ∪ {φ′}; Go to step 1.

(c) if the (∨) rule is applicable to φ then expand φ by one application of the (∨) rule. Let
φ1 and φ2 be the resulting branches. For each φi, i = 1, 2, if φi is not closed then add
it to Φ, i.e. Φ ← Φ ∪ {φi}. Go to step 1.

(d) if p is a letter such that the following conditions hold:

i. p and ¬p occur in A;
ii. if glb = 2 then glb(φ) < 0.5;
iii. val(p, φ) < 0.5 and val(¬p, φ) < 0.5;
iv. (p≥0.5) ∨ (p<0.5) ∈ φM ;

then extend branch φ by adding (p≥0.5) ∨ (p<0.5) to φM . Let φ′ be the resulting
branch, i.e. φ′M = φM ∪ {(p≥0.5) ∨ (p<0.5)} and add φ′ to Φ, i.e. Φ ← Φ ∪ {φ′}. Go
to step 1.

(e) otherwise, update glb, i.e. let glb ← min{glb, val(A, φ)}
/* φ is completed */

Table 4: The minmaxglb procedure.

15

The following example shows how minmaxglb works.

Example 6 Consider the meta theory Σ and the proposition A of Example 5. Let B be the
proposition

B = (p ∧ q) ∨ (¬q ∧ r)

B is an equivalent DNF of proposition A. Figure 3 shows a deduction tree generated executing
mimmaxglb(Σ, B). Additionally, at each node, we report the value of glb(φ) in bold. It is worth

Σ
������

������

0

(p≥0.3)
�

�
�

�
�

�
0.3

(r≥0.6)
�

�
�

�
�

�
0.3

(q≥0.5)

(p<0.3), (q≤0.2)

φ1

φ2

φ3

φ4

0.4

n1 n2 n3 n4glb(Σ, B) = min{ } = 0.3

n1 = glb(φM
1 , B) = 0.3

n2 = glb(φM
2 , B) ≥ 0.3

n3 = glb(φM
3 , B) ≥ 0.3

n4 = glb(φM
4 , B) ≥ 0.4

Figure 3: Deduction tree for mimmaxglb(Σ, B).

noting that branch φ2, φ3 and φ4 need not to expanded further, according to Step 3.

4.2.3 Determining the greatest lover bound of a proposition: an alternative approach

In this section we present an alternative method to compute glb(Σ, A). The method is based on
the fact that from Σ it is possible to determine a finite set NΣ ⊂ [0, 1], where |NΣ| is O(|Σ|),
such that glb(Σ, A) ∈ NΣ, i.e. glb(Σ, A) has to be an element of NΣ. Therefore, glb(Σ, A) can be
determined by computing the greatest value n ∈ NΣ such that Σ ∪ {(A<n)} is unsatisfiable, i.e.
SAT(Σ∪ {(A<n)}) returns false. The easiest way to do that is to order the elements of NΣ and
the to perform a binary search among these values.

Let us determine NΣ. As Σ|≈(A≥0), 0 ∈ NΣ follows. Additionally, Σ could be not satisfiable
and, thus, Σ|≈(A≥1), i.e. 1 ∈ NΣ. Since glb(Σ, A) = glb(Σ, A′) for any equivalent CNF A′ of A,
without loss of generality we will assume that A is in CNF, i.e. A =

∧m
i=1 Ci. By Equation (57),

glb(Σ, A) is one of the values nφ such that φ ∈ ΦΣ, where nφ = min{nφ
1 , . . . , nφ

m} and each nφ
i is

determined according to Equations (54) and (56). Therefore, glb(Σ, A) is 0.5 (thus, 0.5 ∈ NΣ) or
one of the values val(Ci, φ). But, val(Ci, φ) is one of the values val(lij

, φ) which is determined by
pos(p, φ) or neg(p, φ), according whether lij is p or ¬p, respectively (see Equation (46)). Finally,
we have to determine the possible values of pos(p, φ) and neg(p, φ), respectively. That is, by
Equation (45), we have to determine the value n for which (p≥n) ∈ φA or (p>n) ∈ φA and the
value 1 − m for which (p≤m) ∈ φA or (p<m) ∈ φA. Since each ψ ∈ Σ is in NNF and given the
inference rules used by SAT (see Table 2), it follows that each number n occurring in Σ and its

16

Algorithm binaryglb(Σ, A):
Let Σ be a meta theory and let A be a proposition. Set Min := 0 and Max := 2.

1. determine NΣ according to Equation (60);

2. pick binary n ∈ NΣ such that Min < n < Max. If there is no such n, then set glb(Σ, A) :=
Min and exit;

3. if Σ|≈(A≥n) then set Min = n, else set Max = n. Go to step 2.

Table 5: The binaryglb procedure.

negation 1 − n are possible values for glb(Σ, A). For instance, for the meta theory in Example 6,
the possible values for glb(Σ, A) are {0, 0.5, 1} ∪ {0.3, 0.7, 0.2, 0.8, 0.6, 0.4, 0.1, 0.9}. The reason to
consider, e.g., 0.7 = 1− 0.3 is given by the use of the (∨) rule applied to (p≥0.3)∨ (q≤0.2) which
generates a branch containing (p<0.3). This observation leads us directly to a way to be even
more precise. In fact, consider the set of rules Rs = {(up), (∧), (∨s)}. Obviously, SAT is still
correct and complete using Rs in place of RDPLL. But then, if e.g. (p<m) ∈ φA then (p<m) has
to occur in Σ as meta literal. Similarly for the other cases. So, for a meta theory Σ, we define

NΣ = {0, 0.5, 1} ∪
{n : (p≥n) or (p>n) occurs in Σ} ∪
{1 − n : (p≤n) or (p<n) occurs in Σ}

(60)

For instance, for the meta theory in Example 6, NΣ is given by {0, 0.5, 1}∪ {0.3, 0.8, 0.6, 0.9, 0.4}.
The following proposition follows from the discussion above.

Proposition 5 Let Σ be a meta theory. Then glb(Σ, A) ∈ NΣ. �

Note that, since for any proposition A, (A<0.5) is normalised, it follows from Corollary 2 that
|= A iff |≈(A≥0.5), i.e.the truth value of classical propositional tautologies is at least 0.5. But, by
Proposition 5, glb(∅, A) ∈ {0, 0.5} and, thus, |= A iff glb(∅, A) = 0.5, i.e. classical tautologies have
0.5 as its greatest truth value lover bound.

As anticipated, Table 5 specifies the algorithm for determining glb(Σ, A) through a binary
search among the values in NΣ. The value of glb(Σ, A) can, thus, be determined in at most
log |NΣ| entailment tests, i.e. SAT calls.

Example 7 Consider Example 6. It follows that NΣ = {0, 0.3, 0.4, 0.5, 0.6, 0.8, 0.9, 1}. The fol-
lowing table highlights a binaryglb(Σ, B) execution.

Round n Min Max Σ|≈(B≥n)
0 − 0 2 −
1 0.5 0 2 false
2 0.3 0 0.5 true
3 0.4 0.3 0.5 false
4 − 0.3 0.4 −

After three entailment tests the procedure stops as there is no value n ∈ NΣ within Min and
Max and, thus, the result is returned: glb(Σ, A) := Min = 0.3.

We finish this section by addressing the computational complexity of determining glb(Σ, A) ≥ n.

Proposition 6 Let Σ be a meta theory, let A be proposition and n ∈ [0, 1]. Then checking whether
glb(Σ, A) ≥ n is a coNP-complete problem. �

17

Proof: Let n ∈ [0, 1]. Since Σ|≈(A≥n) iff glb(Σ, A) ≥ n, and (see Corollary 3) for all n, deciding
Σ|≈(A≥n) is a coNP-complete problem, coNP-hardness of the glb(Σ, A) ≥ n decision problem
follows.

The following NP algorithm determines whether glb(Σ, A) < n. Non-deterministically generate
a deduction tree T for Σ′ = Σ ∪ {(A<n)} by running SAT(Σ′): glb(Σ, A) < n iff there is some
completed branch φ in T . The depth of the branch φ is polynomially bounded by the input.
Hence, deciding glb(Σ, A) < n is in NP. Therefore, deciding glb(Σ, A) ≥ n is in coNP. Q.E.D.

5 Evaluation

In the following two sections we will evaluate the performance of the presented algorithms. In
particular, in Section 5.1 we will address the fuzzy SAT problem, while in Section 5.2 we will deal
with the BTVB problem.

5.1 The fuzzy SAT problem

The evaluation method that we adapt is an extension to LM of the one usually used in classical
SAT experiments and proposed by Mitchell et al. [11]. To set up a benchmark suite for DPLL
theorem provers Mitchell et al. generate propositional formulae using the fixed clause-length model.
Each random proposition is a proposition in CNF. There are several parameters which guide the
generation of CNFs: (i) the number N of propositional letters; (ii) the number K of literals in a
disjunct; and (iii) the number L of conjuncts. Based on a given choice of the above parameters,
random K-CNF propositions are generated as follows. A random letter is a variable randomly
chosen from the set of propositional letters. A random literal is with probability 0.5 a random
letter or its negation, otherwise. A random K-CNF clause is a disjunction of K random literal
such that no letter appears more than once. The extension to the meta level is as follows. A
random K-CNF meta clause is of the form (A≥n), where A is a random K-CNF clause and n is
a randomly chosen value in (0, 1). Each random K-CNF meta clause expresses a constrain on the
truth value of its literal. A random K-CNF meta proposition is a conjunction of L random K-CNF
meta clauses. Finally, a random K-CNF meta theory is a set of L random K-CNF meta clauses.
As the application of the (∧) rule to a random K-CNF meta proposition yields a random K-CNF
meta theory, we will restrict the test to random K-CNF meta theories only. All parameters except
L, the number of clauses, are fixed (e.g., N = 30 and K = 3). The parameter L ranges from N
to 15N . For each value of the ratio L/N a set of 100 random K-CNF meta theories is generated.
For each generated meta theory Σ we measure both the time t needed to determine satisfiability
and the number of nodes s (in the following called states) of the deduction tree. Since checking a
single meta theory can take arbitrarily long in the worst case, there is an upper limit for the CPU
time consumed. As soon as the upper limit is reached, the computation for Σ is stopped. We set
this upper limit to 2000 seconds. For each ratio r = L/N , r = 1, . . . , 15, both the median time tr
of the 100 tests and the median number of states sr are determined5. The time performance graph
(state performance graph) has as X-axis the values of r and as Y-axis the values of tr (of sr). In
case of evaluation comparison, the seed of the random generator has been maintained identical so
that identical problem instances are generated. Our tests have been run on a SUN Ultra 5 with
384 MB main memory and, of course, a depth first strategy has been adopted.

Figure 4 reports the result of our tests, where N = 10, 20, 30, K = 3. In it, (a) reports the
probability of satisfiability and unsatisfiability of meta theories for N = 30, K = 3, (b) reports
the median CPU time and (c) reports the median number of states. In (b) we also report the
performance of SAT, where the (up) rule has been replaced with the simpler version (⊥). The

5Given Tr = tr1 , . . . , tr100 , let T≤
r = t′r1

, . . . , t′r100
be T ordered according to ≤. Then tr is (t′50 + t′51)/2. Note

that the mean of a set of number is influenced by a very small number of very large values. As the median is less
sensitive to such “out-liers”, it appears to be a more informative statistics.

18

graphs show similar patterns to the well known patterns for classical propositional logic [11, 15].
In the following two paragraphs we will comment the results.

Sat UnSat

(a)

(b)

No UP

N=40

N=30

N=20

(c)

N=40

N=30

N=20

Figure 4: (a) Probability of theory satisfiability vs. theory unsatisfiability, for K = 3, N = 30.
(b-c) Satisfiability tests for random K-CNF meta theories, for K = 3, N = 20, 30, 40.

Satisfiability vs. unsatisfiability: Figure 4a tells us that small random 3-CNF meta theories
(r ≤ 6) are likely to be satisfiable, whereas large random 3-CNF meta theories (r ≥ 8) are not,
i.e., the probability that a random 3-CNF meta theory is satisfiable decreases as the number of
clauses increases. This behaviour is motivated by the fact that the more clauses are in a theory Σ
the more constrains on the truth value of the literal appearing in Σ there are and, thus, the less
completed branches φ ∈ ΦΣ (from which models of Σ can be build6) there are. The unsatisfiability
graph is complementary to the satisfiability one. The crossing point between the two graphs is
the point where the probability of satisfiability is 0.5 and is called phase transition point (ptp). As
described below, this is the point where the hard satisfiability problems are. Through interpolation,
we estimated the point at ptp ≈ 6.70 which is greater than the value for classical propositional
logic (ptp =≈ 4.3). This is motivated by the fact that there are satisfiable meta propositions
ψ for which cψ is not satisfiable. For instance, as we already pointed out, (A≥0.3) ∧ (A≤0.7) is

6Note that a meta theory Σ may have an infinite number of models.

19

satisfiable whereas A∧¬A is classically unsatisfiable. Therefore, in order to make a meta theory Σ
unsatisfiable a higher number of clauses is required with respect to the classical propositional case.
In Figure 5 we report the same test except that normalised random 3-CNF meta theories have
been generated. As we can see ptp is located at ≈ 4.48 which is compliant both to the classical
case and to Proposition 3.

(a) (b)

Figure 5: Satisfiability test for normalised random 3-CNF meta theories and N = 30.

Phase transition: Figure 4b reports the median CPU time required for each ratio r = L/N ,
r = 1, . . . , 15, in case of using either (⊥) or (up). What (b) shows is that in order to perform any
successful experiment the (up) rule should be used. For classical propositional logic this fact is
well known and, LM is no exception.

More interestingly, (b) shows the typical easy-hard-easy pattern. For random 3-CNF meta
theories that are either small or relatively large SAT finishes quickly, but random 3-CNF meta
theories of medium size take much longer. Since random 3-CNF meta theories with few clauses are
under constrained and have many completed branches, a completed branch is likely to be found
early in the search. Random 3-CNF meta theories with very many clauses are over constrained
(and usually unsatisfiable), so contradictions are found easily, so a full search can be completed
quickly. Finally, random 3-CNF meta theories in between are much harder because they have
relatively few (if any) completed branches (see Figure 6), and a closed branch φ will only be
generated after assigning truth value constraints (pos(p, φ) and neg(p, φ)) to a large number of
letters, resulting in a deep search tree. As for classical SAT problems, the hard area is related
to the probability of satisfiability. Indeed, the peak of the median CPU time, as well as for the
median number of states, closely corresponds to the point where the probability of satisfiability is
0.5 (see also [16]).

5.2 The BTVB problem

In this section we will evaluate the two algorithms presented, minmaxglb and binaryglb, to compute
the greatest lower bound glb(Σ, A) for a meta theory Σ and a proposition A. We will extend the
test method for the fuzzy SAT problem to the BTVB problem as follows. Each meta theory Σ
will be a random K-CNF meta theory, whereas each proposition A, for which we will compute its
greatest lower bound, will be a proposition in DNF is defined as follows: (i) a random K-DNF
clause is a conjunction of K random literal such that no letter appears more than once; and (ii)
a random K-DNF proposition is a disjunction of random K-DNF clauses. As for the satisfiability
problem, the values for N and K are fixed, whereas the parameter L ranges from N to 15N . For
each value of the ratio r = L/N , r = 1, . . . , 15, and for each i = 1, . . . , 100 we generate a random
K-CNF meta theories Σr

i of L clauses and a random K-DNF proposition Ar
i (of N ≤ lri ≤ 15N

clauses) for which glb(Σr
i , A

r
i) should be determined. For each pair (r, i) we measure the time tri

20

Figure 6: Number of completions for r = L/N ∈ [6, 7] and K = 3, N = 30.

and the median number of states sr
i required and compute for each ratio r the median time tr and

number of states sr as for the fuzzy SAT problem. The following two points have to be clarified
about the choice of Ar

i :

1. Ar
i is in DNF. This is due to the fact that in this way it is easier to randomly generate a

proposition A for which glb(Σ, A) > 0, i.e. there is an n > 0 such that Σ|≈(A≥n). Indeed,
we tried several algorithms for generating randomly propositions in CNF, but in almost all
cases glb(Σ, A) was 0. Furthermore, a benefit of considering random K-DNF propositions A
is that in case of binaryglb, by invocation of SAT(Σ ∪ {(A<n)}), with value n ∈ NΣ, (A<n)
is, after NNF transformation (see, (25),(26)), already in CNF;

2. the number lri of random K-DNF clauses in Ar
i is not fixed within a sample of 100 tests.

Indeed, lri is uniformly distributed in [N, 15N], the range of theory length. So, for each r

and i = 1, . . . , 100, lri = � i(15N−1)
100 � + 1.

Further, we slightly modify binaryglb as follows: (i) we remove 0 and 1 from NΣ; (ii) then we
check first whether Σ|≈(A≥m), where m = min{n : n ∈ NΣ} holds. If not then we know that
glb(Σ, A) = 0, so we can stop the search. Otherwise, we test if Σ is satisfiable. If not then
glb(Σ, A) = 1, else we proceed with a binary search among the remaining values in NΣ. The idea
is to reduce the number of SAT calls in all those cases where either the theory is unsatisfiable or
the greatest lower bound is 0.

In Figures 7-9 the results of our tests are shown.
In Figure 7a, for K = 3, N = 30 we report the statistics of the computed greatest lower bounds.

As the random K-CNF meta theories are as for the satisfiability test, the Sat and UnSat curves
behave exactly identical (ptp ≈ 6.7). Concerning the glb values, four statistics are reported for
each sample r = 1, . . . , 15: (i) the probability p1(r) of glb(Σ, A) = 1; (ii) the probability p0 of
glb(Σ, A) = 0; (iii) the probability p0.5(r) of glb(Σ, A) = 0.5; and (iv) the probability p(r) of
glb(Σ, A) = n ∈ (0, 0.5) ∪ (0.5, 1). Of course, p1(r) + p0(r) + p0.5(r) + p(r) = 1. It is worth noting
that, by definition, neither � nor ⊥ appear in A and Σ, and both 0 and 1 do not appear in Σ.
Further, we restricted random K-CNF meta clause (B≥n) to the case where n = 0.5.

(i) Concerning p1(r), we have that for a random K-DNF proposition A and a random K-CNF
meta theory Σ, glb(Σ, A) = 1 iff Σ is unsatisfiable. So, the UnSat curve corresponds also to the
case where glb(Σ, A) = 1.

(ii) Concerning p0(r), p0(0) ≈ 0.23 and decreases as r increases. This is simply motivated by
the fact that as the theories grow, the theories become more informative and, thus, the probability
that Σ|≈(A≥n) holds, for n > 0, grows.

21

Figure 7: (a-c) Analysis of the computed glb values, for K = 3, N = 30, 20, 10.

(iii) Concerning p0.5(r), as we have seen early, for a random K-DNF proposition A, A is a
classical tautology iff glb(∅, A) = 0.5. Since 0.5 does not appear in Σ, p0.5(0) ≈ 0.74 expresses the
probability of having a classical tautology as query among the 100 generated ones. Please note
that even if A is a classical tautology this does not mean that glb(Σ, A) = 0.5, for all Σ. Indeed,
glb(∅, p ∨ ¬p) = 0.5, but glb({(p≥0.8)}, p ∨ ¬p) = 0.8. Similarly to p0(r), p0.5(r) decreases as the
theories become more informative.

(iv) Concerning p(r), probably the most interesting case, it considers all those cases in which
the theory Σ is satisfiable, there is entailment, i.e. Σ|≈(A≥n) (for n > 0) and all those cases in
which A is a classical tautology for which Σ contains enough information such that glb(Σ, A) > 0.5.
As the picture shows, p(r)’s pattern is that of a normal (or gaussian) distribution with maximum
at rm ≈ 4.9 and p(4.9) ≈ 0.87. This is the point where the probability of having entailment is
maximal (excluding, the obvious cases of being the theory unsatisfiable). Quite interesting to note
is the fact that near to rm, p0(r), p1(r) and p0.5(r) intersect at r ≈ 5.2 (for which we have no
explanation yet). Furthermore, as p0(r) and p0.5(r) approach to 0, after rm, p(r) becomes 1−p1(r)
and, thus, behaves as Sat.

In Figures 8, we report the comparison between binaryglb and minmaxglb, for K = 3, N = 10.
As we can see, binaryglb clearly outperforms minmaxglb in the satisfiability zone. This is due to the
fact that in this case each theory has a large set of completions which are computed by minmaxglb.
We also reported the curve of the minmaxglb− algorithm which is as minmaxglb except that Point
4d has been disabled, as it introduces certainly a lot branches. minmaxglb− is still correct in the
sense that it computes a lower bound, but it is not complete as it does not compute the greatest

22

one. Disabling Point 4d, reduces the execution time but the comparison to binaryglb is qualitatively
the same. As the theories grow, the number of completions decreases and, thus, the execution time
of minmaxglb decreases as well. The crossing point between binaryglb and minmaxglb is located at
≈ 5.3 which is close to the rm point where p(r) is maximal and p0(r), p1(r) and p0.5(r) intersect
(≈ 5.5, see Figure 7). The difference between the two algorithm is negligible after this point and
is motivated by the fact that binaryglb executes in average two SAT calls (first, checking whether
there is entailment and second, check for unsatisfiability). What comes out is that the performance
of minmaxglb is strictly related to the computation of completions and, thus is slower than binaryglb
in the satisfiability zone, while it is comparable to binaryglb both in the ptp zone (hard zone) as
well as in the unsatisfiability zone. Due to the huge number of completions, we were unable to
complete the test for minmaxglb for K = 3, N ≥ 20.

binaryglb

minmaxglb

minmaxglb -

binaryglb

minmaxglb

minmaxglb -

(d) (e)

binaryglb

minmaxglb

minmaxglb -

Figure 8: (b,c) Comparison between binaryglb and minmaxglb, for K = 3, N = 10.

In Figure 9a, the median time for binaryglb is represented, where, K = 3 and N = 10, 20, 30.
Not surprisingly, (i) the time increases as the number of variable increases; (ii) there is a easy-
hard-easy pattern which similar to the satisfiability problem (indeed, binaryglb calls successively
SAT and (iii) the hard zone is located near to the point where p(r) is maximal, e.g. for N = 30,
≈ 5.7 which is close to rm ≈ 4.9. Indeed the hard zone for the greatest lower bound problem is
located near to rm. This is due to the fact that (i) rm is near to the ptp where the satisfiability
problem is hardest, so SAT is most expensive; and (ii) since at ≈ 5.7, p(r) is maximal, i.e. the
probability that there is entailment is maximal (excluding unsatisfiable theories), this requires in
average the maximal number of SAT calls.

Finally, in Figure 9b, the median time for binaryglb is represented, where, K = 3, N = 30, but
different lengths lri of the query proposition has been considered. Indeed, rather than letting to
range the query length from 1 to 15N , we partitioned [1, 15N] into four parts, P1, . . . , P4, where
P1 = [1, 60], P2 = [61, 150], P3 = [151, 240] and P4 = [241, 450]. We executed four tests T1, . . . , T4.
In each test Tj , for each r = 1, . . . , 15, the length lri of the query propositions A is uniformly
distributed in Pr. That is, we sampled the queries into very short, short, medium and long queries
in order to compute the impact of the query length to the greatest lower bound problem. As
the picture shows, while the easy-hard-easy pattern still remains the same and, in particular, the
peeks are still around rm, the execution time increases notably with increasing query length.

6 Conclusions and future research

In this paper we considered both from a theoretical and practical point of view a well known fuzzy
propositional logic, based on Zadeh’s implication operator: at the object level, truth values are in
the interval [0, 1] and the connectives ¬,∧,∨ and → are the well known operators 1−,min,max
and Zadeh’s implication “p → q = max{1 − p, q}”. At the meta level, restrictions on the truth
value of a proposition are allowed by means of the relations ≤,≥, < and >.

23

N=30

N=20

N=10

N=30

N=20

N=10

(a)

l=1,...,60

l=61,...,150

l=151,...,240

l=241,...,450

3-SAT, N=30

l=1,...,60

l=61,...,150

l=151,...,240

l=241,...,450

3-SAT, N=30

(b)

Figure 9: (a) Comparison between binaryglb, for K = 3, N = 10, 20, 30. (b) Comparison between
binaryglb, for different query lengths, for K = 3, N = 30.

We presented several decision algorithms for two important decision problems within it, the
fuzzy SAT problem and the BTVB problem, and experimentally tested them.

Concerning the fuzzy SAT problem, essentially it shows a similar easy-hard-easy pattern as
for the classical satisfiability problem. Further, as our SAT decision algorithm is a (fuzzy) variant
of the classical DPLL SAT algorithm, performance improvements may be obtained by adapting
techniques from the classical SAT proof theory (e.g. heuristics for selecting the branching meta
literal).

Concerning the BTVB problem, we presented two different algorithms, minmaxglb and binaryglb
and have shown that binaryglb clearly outperforms minmaxglb. Interestingly, while binaryglb
presents an easy-hard-easy pattern too, the hard zone is located near to the point where the
probability of entailment is maximal. From a performance point of view, as binaryglb consists of a
reduction of the BTVB problem into several satisfiability problems (logarithmic with respect to the
theory size), a main problem for further research consists of reducing this number of calls. Another
possibility is to develop an ad-hoc algorithm in the style of [13, 14] which performs the fuzzy en-
tailment test only once. Roughly, in order to determine glb(Σ, A), we start with Σ′ = Σ∪{(A<v)},
where v is a new variable symbol. Thereafter, we apply to Σ′ deduction rules similar to those in
RDPLL until each branch φi is completed. Finally, we are looking for the maximal value n ∈ [0, 1]
such that for each of the completions φi, φi[v/n] (if not empty) contains a clash, where φi[v/n] is
the set obtained by replacing each occurrence of v by n. Whether this approach may improve the
performance has still to be shown and is a topic for further research.

References

[1] Jianhua Chen and Sukhamany Kundu. A sound and complete fuzzy logic system using
Zadeh’s implication operator. In Zbigniew W. Ras and Michalewicz Maciek, editors, Proc.
of the 9th Int. Sym. on Methodologies for Intelligent Systems (ISMIS-96), number 1079 in
Lecture Notes In Artificial Intelligence, pages 233–242. Springer-Verlag, 1996.

[2] Marcello D’Agostino and Marco Mondadori. The taming of the cut. Classical refutations with
analytical cut. Journal of Logic and Computation, 4(3):285–319, 1994.

24

[3] M. Davis, G. Longemann, and D. Loveland. A machine program for theorem proving. Journal
of the ACM, 5(7):394–397, 1962.

[4] M. Davis and H. Putnam. A computing procedure for quantificatio theory. Journal of the
ACM, 7:201–215, 1960.

[5] Melvin Fitting. First-Order Logic and Automated Theorem Proving. Springer-Verlag, 1990.

[6] Sukhamany Kundu. An imporved method for fuzzy-inferencing using zadeh’s implication
operator. In Proceedings of IJCAI Workshops on Fuzzy Logic in AI, Montreal, Canada, 1995.

[7] Sukhamay Kundu and Jianhua Chen. Fuzzy logic or Lukasiewicz logic: A clarification. In
Zbigniew W. Ras and Maria Zemenkova, editors, Proc. of the 8th Int. Sym. on Methodologies
for Intelligent Systems (ISMIS-94), number 869 in Lecture Notes In Artificial Intelligence,
pages 56–64. Springer-Verlag, 1994.

[8] Jérôme Lang. Semantic evaluation in possibilistic logic. In Proc. of the 3th Int. Conf. on
Information Processing and Managment of Uncertainty in Knowledge-Based Systems, (IPMU-
90), number 521 in Lecture Notes in Computer Science. Springer-Verlag, 1990.

[9] Richard C. T. Lee. Fuzzy logic and the resolution principle. Journal of the ACM, 19(1):109–
119, January 1972.

[10] J. Lukasiewicz. Selected works - Studies in logic and the foundations of mathematics. Noth-
Holland, Amsterdam,Warsaw, 1970.

[11] David Mitchell, Bart Selman, and Hector Levesque. Hard and easy distribution of SAT
problems. In Proc. of the 9th Nat. Conf. on Artificial Intelligence (AAAI-92), pages 459–465.
AAAI Press/The MIT Press, 1992.

[12] J. Pavelka. On fuzzy logic i,ii,iii. Zeitschrift für Mathematik und Logik, 25:45–52,119–134,447–
464, 1979.

[13] Umberto Straccia. A four-valued fuzzy propositional logic. In Proc. of the 15th Int. Joint
Conf. on Artificial Intelligence (IJCAI-97), pages 128–133, Nagoya, Japan, 1997.

[14] Umberto Straccia. A fuzzy description logic. In Proc. of the 15th Nat. Conf. on Artificial
Intelligence (AAAI-98), pages 594–599, 1998.

[15] Special Volume. Frontiers in problem solving: Phase transition and complexity. Artificial
Intelligence Journal, 81(1–2), 1996.

[16] Toby Walsh. The constrainedness knife-edge. In Proc. of the 15th Nat. Conf. on Artificial
Intelligence (AAAI-98), pages 406–411, 1988.

[17] L. A. Zadeh. Fuzzy sets. Information and Control, 8(3):338–353, 1965.

25

