
Received 29 November 2022, accepted 1 January 2023, date of publication 10 January 2023, date of current version 13 January 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3235652

Anytime Informed Multi-Path Replanning
Strategy for Complex Environments
CESARE TONOLA 1,2, MARCO FARONI3, MANUEL BESCHI1,2, (Member, IEEE),
AND NICOLA PEDROCCHI 2
1Dipartimento di Ingegneria Meccanica e Industriale, University of Brescia, 25123 Brescia, Italy
2Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing of the National Research Council of Italy (CNR-STIIMA), 20133
Milan, Italy
3Department of Robotics, University of Michigan, Ann Arbor, MI 48109, USA

Corresponding author: Cesare Tonola (c.tonola001@unibs.it)

This work was supported in part by Safe and effective HumAn-Robot coopEration toWards a better cOmpetiveness on cuRrent automation
lacK manufacturing processes (ShareWork Project) through Horizon 2020 (H2020), European Commission, under Grant 820807.

ABSTRACT In many real-world applications (e.g., human-robot collaboration), the environment changes
rapidly, and the intended path may become invalid due to moving obstacles. In these situations, the
robot should quickly find a new path to reach the goal, possibly without stopping. Planning from scratch
or repairing the current graph can be too expensive and time-consuming. This paper proposes MARS,
a sampling-based Multi-pAth Replanning Strategy that enables a robot to move in dynamic environments
with unpredictable obstacles. The novelty of the method is the exploitation of a set of precomputed
paths to compute a new solution in a few hundred milliseconds when an obstacle obstructs the robot’s
path. The algorithm enhances the search speed by using informed sampling, builds a directed graph to
reuse results from previous replanning iterations, and improves the current solution in an anytime fashion
to make the robot responsive to environmental changes. In addition, the paper presents a multithread
architecture, applicable to several replanning algorithms, to handle the execution of the robot’s trajectory
with continuous replanning and the collision checking of the traversed path. The paper compares state-of-
the-art sampling-based path-replanning algorithms in complex and high-dimensional scenarios, showing that
MARS is superior in terms of success rate and quality of solutions found. An open-source ROS-compatible
implementation of the algorithm is also provided.

INDEX TERMS Anytime search, dynamic environments, informed planning, motion planning, path
replanning, sampling-based algorithms.

I. INTRODUCTION
Moving a robot in the real world presents several challenges,
including adapting the robot’s motion to the dynamic nature
of the environment. This problem has become very impor-
tant in recent years with the spread of mobile robotics [1],
social robotics [2], and human-robot collaboration (HRC) in
industrial settings [3]. Path planners usually plan a path from

The associate editor coordinating the review of this manuscript and

approving it for publication was Zheng Chen .

a start point to a goal point, considering only static obstacles.
However, unstructured environments may have moving and
unforeseen obstructions that invalidate the initially calculated
trajectory. In these cases, path replanning algorithms are
needed to enable the robot to react rapidly to environmental
changes, quickly correcting the robot’s route to avoid colli-
sions and reach the goal safely. An example of a possible
application is HRC, i.e., workspace sharing between humans
and robots. Typically, the robot’s speed is modulated accord-
ing to the distance from the operator to avoid collisions.

VOLUME 11, 2023 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 4105

https://orcid.org/0000-0002-7956-0523
https://orcid.org/0000-0002-1610-001X
https://orcid.org/0000-0003-0961-8758

C. Tonola et al.: Anytime Informed Multi-Path Replanning Strategy for Complex Environments

A path replanning algorithm prevents the robot from getting
stuck when the operator obstructs the robot’s path for a long
time.

This work proposes a sampling-based path replanning
strategy that exploits multiple pre-computed paths to repair
and optimize the solution over time. The method combines
an anytime approach and admissible informed sampling [4]
to be fast, even in complex, high-dimensional scenarios. The
complexity of the search is reduced by connecting the current
path to one of the available collision-free paths. The algo-
rithm uses a heuristic to determine which nodes of the other
available paths to connect to; informed sampling, subtrees
reuse, and a directed graph allows for fewer calculations and
a higher solutions convergence rate.

A. RELATED WORKS
Several strategies have been developed over the years to
modify the robot’s path on the fly.
Graph-based replanning algorithms usually derive from

A* [5], a well-known algorithm to find the optimal path in
a graph. For example, Lifelong Planning A* (LPA*) [6] is a
modified version ofA* that repeatedly finds the shortest paths
from a given start node to a given goal node as the edge costs
of a graph change or vertices are added or deleted. Variants
of the algorithm exist [7], [8], [9], but these approaches
suffer from the curse of dimensionality. Consequently, these
algorithms are better suited for small-dimensional problems,
such as planning for mobile robots.
Potential fields also are often investigated [10], [11], [12].

In [10], a force that depends on the distance between the robot
and the obstacles deforms an initial trajectory; a subsequent
force seeks to restore the trajectory. Local minima are a
potential drawback of this approach. There may not be a fix
if the environmental change results in the disappearance of a
passage (i.e., this approach is not complete).
Reinforcement Learning (RL) is an emerging approach for

online planners [13], [14]. These strategies are responsive
and efficient in the environment they have been trained in.
Still, they are not suitable for unfamiliar environments and
completely unpredictable obstacles.
Sampling-based replanning algorithms are the most popu-

lar planners [15], [16], [17], [18], [19], [20], [21], [22], [23],
[24]. Usually, these algorithms are variants of the Rapidly-
exploring Random Tree (RRT) algorithm [25], its optimal
counterpart RRT* [26], or the Probabilistic RoadMap (PRM)
algorithm [27]. Random sampling avoids the a priori dis-
cretization of the search space. For example, Execution-
extended RRT (ERRT) [15] searches for a new path to the
goal alternating the sampling of new states and cached way-
points. The rationale is that the real-world changes, but the
changes are usually small. As a result, the path initially
found can be a guideline for finding a new one. Although
ERRT proves to be faster than RRT in finding the new solu-
tion, there is little information it reuses from previous plan-
ning queries. Dynamic RRT (DRRT) [16] takes a different

approach, reusing the valid branches of the RRT. When an
obstacle obstructs the current path, the algorithm prunes the
tree and starts its construction to reach the goal again. This
approach involves an initial overhead because, firstly, the
algorithm must verify all tree branches. Furthermore, the tree
is re-built using RRT so that the new path will be far from
optimality. Efficient Bias-Goal factor RRT (EBG-RRT) [21]
modifies the two aforementioned methods using an efficient
and optimal waypoint cache to connect the valid part of the
tree to the path beyond the obstacle.

Many sampling-based path planners combine anytime
searches [28], [29], and adaptive sampling strategies [4]
to compute suitable solutions quickly and rapidly refine
them, and, therefore, to meet the needs of real-world appli-
cations. For example, Anytime Dynamic RRT [17] calls a
DRRT when an obstacle stops the current path and uses
an Anytime RRT [29] to enhance the solution. Informed
sampling can speed up the search for better solutions by
shrinking the sampling space with an estimation of the
omniscient set, i.e., the set of samples that can improve
the solution. Sampling the informed set allows considering
only states with a non-null probability of improving the
path [4], [30].

Among other works relevant to ours, [31] uses RRT* to
repair the path given a potential collision. The nodes around
the obstacle are rewired to make the node corresponding to
the robot position as their parent node, and new states are
sampled to find a path to the goal. Reconfigurable Random
Forest (RRF) [32] is multi-query and preserves portions of
the tree that are disconnected by the appearance of a new
obstacle. The algorithm maintains a forest of disconnected
RRTs rooted in different locations and continuously tries to
connect them. Multipartite RRT [19] combines RRF, DRRT,
and ERRT to maintain a forest of disconnected RRTs and
repair the path to the goal. [18] provides the Multiple Par-
allel RRTs (MPRRT) algorithm, which continuously exe-
cutes independent RRTs on each available processor core.
Dynamic Roadmap (DRM) [23] adapts a PRM [27] to envi-
ronmental changes by decomposing the workspace into cells
and detecting the edges and nodes of the roadmap that affect
each cell occupied by obstacles and then searches the graph
again. Time dimension can be added to the graph, and the esti-
mation of the movement of obstacles, if available, can be used
to predict collisions [33]. Furthermore, it is possible to check
vertices and edges inside a time horizon while delaying the
examination of those outside it by representing obstacles as
time-space volumes [34], [35]. Temporal PRM (T-PRM) [24]
exploits obstacle motion prediction to incorporate into the
nodes of a PRM the information about the time intervals
with no collisions. Unlikely, the algorithm assumes a constant
speed for the obstacles.

These methods’ performance deteriorates as the search
space’s complexity and dimensionality increase. When the
robot’s path is obstructed multiple times, computing new
trees from scratch each time or performing tree pruning can

4106 VOLUME 11, 2023

C. Tonola et al.: Anytime Informed Multi-Path Replanning Strategy for Complex Environments

be costly, while path search in a PRM can take a prohibitively
long time to get a real-time response from the robot.

B. CONTRIBUTION
We propose MARS, a Multi-pAth Replanning Strategy
designed to quickly provide a suitable solution in complex
and high-dimensional search spaces. MARS core consists
of building a graph that connects paths to the same goal,
allowing the exploitation of a set of paths pre-calculated.
When an obstacle blocks the current path, it looks for a
new one by trying to connect the current path to the other
available ones. If a connection is found, it can search for better
solutions during the remaining time.

Exploiting a set of pre-computed paths to find a solution
is partially new in the literature. Most algorithms, indeed,
involve a tree pruning phase and its subsequent reconstruction
(DRRT [16], Anytime DRRT [17], RRF [32], and Multi-
partite RRT [19]). The few state-of-the-art approaches that
exploit a population of trajectories for replanning use evolu-
tionary computation [36], or Gaussian processes and factor
graphs [37], [38]. Instead, our multi-path strategy connects
the current path before the obstacle to a node closer than the
goal and then uses the available sub-path from that node to
the goal. Informed sampling allows to improve the plan faster
over time.

The paper presents contributions beyond themethod’s nov-
elty. First, the strategy is not tied to a specific sampling-based
path-planning algorithm. It combines informed sampling,
directed graphs, problem knowledge reuse, and lazy collision
checking to reduce the computational load. Informed sam-
pling is used to focus the search for better solutions, and
the directed graph allows the results obtained in previous
iterations to be exploited. Second, it introduces the first-
order connections and second-order connections to handle
multiple paths to the goal in the same tree. Third, it presents a
multithread architecture for executing the trajectory with con-
tinuous replanning and collision checking. This architecture
can be used with various replanning algorithms and reduces
the computational load on the replanner.

This work represents a revision and extension of previous
papers [39], [40]. There is now a great deal of reuse of the
tree grown at each iteration to find solutions faster. A directed
graph is introduced, which extends the tree data structure,
allows intermediate connections between paths to be handled
more efficiently, and allows multiple existing solutions to be
searched toward the goal. The replanning architecture and its
role are explained in more detail. The open-source C++ code
for the proposed replanner and architecture is at [41].

II. METHOD
Denote X , Xobs ⊂ X as the space of all configurations and
all configurations in a collision, respectively. Given an initial
configuration xstart ∈ Xfree ≡ closure(X \ Xobs) and a goal
configuration xgoal ∈ Xfree, a path planning problem solver
finds a curve σ : [0, 1] → Xfree such that σ (0) = xstart and
σ (1) = xgoal. A solution curve to such a problem is a feasible

FIGURE 1. The graph G and tree T . T is represented with green
connections; G extends T with light green connections. Arrows indicate
the direction of travel of the directed graph.

path. Furthermore, an optimal path is a feasible path σ ∗ such
that:

σ ∗ = argmin
σ∈6free

c(σ), (1)

where c : 6free → R is a cost function that associates a cost
with any feasible path σ ∈ 6free. Often, the cost function
c is the length of the path, ∥σ∥, so that the optimal motion
plan is the shortest collision-free path from xstart to xgoal.
Most path planners consider Xobs constant over time, with
limitations in unstructured environments. A reactive behavior
modifies the robot’s motion at run-time to prevent collisions
and accomplish the intended objective and is implemented via
online path replanning.

We consider two types of data structures embedded in X :
a graph G := (V ,E) and a tree T := (VT ,ET) (Figure 1). V
and E are the sets of nodes and connections (or edges) of G,
respectively, while VT ⊂ V and ET ⊂ E are the sets of nodes
and connections of T . Every node of T possesses a single
parent and can have multiple children except the tree’s root,
which has no parent. Denote as:
first-order connections: connections between nodes in T ,
i.e., ET . Once the tree is connected to the goal node, the
path is obtained following the parents from the goal.

second-order connections: connections to nodes that
already have a parent in the tree and, therefore, an incoming
first-order connection. The set of second-order connec-
tions is cl(E \ET). G, which extends T , knows about these
connections, but T doesn’t.

This formulation handles multiple paths and interconnecting
portions of the same tree. Both T and G will be exploited in
this paper: T is used to build multiple new solutions, and G
is queried to extract the best one.

A. REPLANNING ARCHITECTURE
This architecture handles trajectory execution, continuous
collision checking, and replanning. It is not bound to a spe-
cific replanning algorithm. It offers the advantage of relieving
the replanner of the task of collision checking along the path
followed, thus reducing its computational load. Our replan-
ning algorithm exploits this option (Sec. II-B).
The architecture relies on three parallel threads (Alg. 1):
Trajectory Execution Thread micro-interpolates the robot’s

current trajectory τ to send the new command to the robot
controller at a high rate.

VOLUME 11, 2023 4107

C. Tonola et al.: Anytime Informed Multi-Path Replanning Strategy for Complex Environments

TABLE 1. Notation.

Algorithm 1 The Threads That Operate in Parallel. They Requires σcurr and S as Common Input

1: Thread Trajectory execution
2: t = t +1t
3: state← sampleTrajectory(τ, t)
4: sendToController(state)

5: Thread Collision check
6: σsubpath ← σcurr[xcurr, xgoal]
7: P← S ∪ σsubpath;
8: for σj ∈ P do
9: free, xbefore, xafter ←

checkCollision(σj)
10: if free then
11: cσj ← c(σj)
12: else
13: cσj ←+∞

14: Thread Path replanning
15: xcurr ← projectOnPath(state, σcurr)
16: σRP, success←

replan(σcurr, xcurr, S,max_time)
17: if success then
18: σcurr ← σRP
19: τ ← computeTrajectory(σcurr)
20: else if dist from obstacle ≤ min_dist then
21: sendRobotStop()

Algorithm 2MARS: High-Level Description
1: Define P as the set of available paths
2: DefineQ1 as the queue of the nodes of σcurr between xcurr

and the obstacle
3: Sort Q1 by some criterion
4: for each node xn ∈ Q1 do
5: Insert the nodes of each σ ∈ P into a queue Q2
6: Sort Q2 by some criterion
7: for each xj ∈ Q2 do
8: Define the informed set on the best cost up to now
9: Get the subtree rooted in xn from the informed set
10: Grow the subtree in the informed set to reach xj
11: Update Q1 if a solution was found
12: Get the best path from the graph

Collision Checking Thread checks for the collisions along
the path in execution. It considers σsubpath, which is the part
of the current path σcurr from the current robot configura-
tion xcurr to the goal. This thread also checks for paths σi ∈

S if MARS is running. These checks are parallelizable.
This thread computes which is the last node of the path
before the obstacle (xbefore ∈ wcurr) and the first one after
(xafter ∈ wcurr) (Fig. 2a).

Path Replanning Thread invokes the replanning algorithm
to find a path when the current one is obstructed or to opti-
mize the current solution. Before that, a routine projects

the robot state on σcurr to obtain xcurr. If the replanner
finds a new path, it assigns it to σcurr. The replanner gets
the maximum computation time as an input, which may
change depending on the situation, e.g., it can be shorter
when the path is obstructed and longer otherwise. If the
replanner fails and the robot’s distance from the obstacle is
critical, a robot stop signal is triggered, and a contingency
plan must be implemented.

This architecture allows the replanning algorithm to avoid
collision checking of the current path (and other available
paths σi ∈ S). In this way, the replanner has more time to
search for a solution or to improve the current one.

B. REPLANNING ALGORITHM AT A GLANCE
The section introduces MARS, a path replanner that exploits
a set of pre-computed paths to find a new solution quickly,
even in high-dimensional and complex scenarios. MARS
computes a free path when the current one becomes infeasible
and optimizes it during the execution. MARS follows an
anytime approach so that it gets the first solution quickly and
then tries to improve it over time.

Without loss of generality, we will consider that the cost of
a path is represented by its length:

c(σ) = ∥σ∥ =
M−1∑
i=1

∥xi+1 − xi∥ (2)

4108 VOLUME 11, 2023

C. Tonola et al.: Anytime Informed Multi-Path Replanning Strategy for Complex Environments

where (x1, x2, .., xM) are the nodes of path σ . This cost func-
tion is commonly used, but the method can be easily extended
to other cost functions as well, provided that an admissible
informed set is available.

Consider Algorithm 2, where a high-level pseudo-code
is reported, while the details of the implementations are in
Section II-D. MARS uses a set of pre-computed paths to
find a new solution. The first step consists of adding the
valid part of the current path to the set of available paths
S. Then, all the nodes of the current path between the robot
and the obstacle are inserted into a queue Q1. Some criterion
sorts this queue (e.g., the closest nodes to the robot are the
first processed). The algorithm tries to connect each node
xn ∈ Q1 to the nodes of the other available paths, inserted
into a queue Q2, and sorted by some criterion (e.g., the
distance from the node xn). The next step consists of finding
a path connecting xn ∈ Q1 to xj ∈ Q2. The algorithm first
defines an admissible set with the cost of the best solution
found up to now and then selects the subtree with root in xn
contained in this set. It then invokes a sampling-based path
planner to grow the subtree until it reaches xj (Fig. 2a). Since
xj has a parent node in the tree, a second-order connection
is used to connect the subtree to xj. Second-order connec-
tions are not visible on the tree but on the directed graph.
MARS creates multiple solutions from the robot’s configu-
ration to the goal, and then it extracts the best one from the
graph (Fig. 2b).

C. PROPERTIES OF THE REPLANNING ALGORITHM
Sampling-based path planners are probabilistically complete
if the probability of finding a solution is equal to onewith infi-
nite samples. The planners are almost-surely asymptotically
optimal if the solution cost converges to the optimal one as the
number of samples goes to infinity. These properties are not
provable for replanners without any assumptions on obstacle
dynamics. It is easy to build counterexamples in which an
obstacle obstructs any new given solution, preventing the
robot from finding a path to the goal. Nonetheless, assuming
a static scene from a specific instant of time onward, we can
prove these properties for MARS.

1) PROBABILISTIC COMPLETENESS
MARS searches for a path from a generic start node xn ∈
Q1 to a generic goal node xj ∈ Q2, which do not necessarily
correspond to the current robot configuration and the goal.
Note that the subpaths from the robot configuration to xn
and from xj to the goal are always feasible. The problem,
therefore, reduces to proving that the algorithm is complete
in searching for a path from xn to xj. A sufficient condition
for an RRT-like planner to be probabilistically complete is
to draw samples with a probability greater than zero across
the search space. When the current solution is obstructed,
we superimpose that ci equals infinity (see (7) in Sec. II-
D). The ellipsoid, therefore, comprises the entire search space

Algorithm 4MARS
Input: σcurr, xcurr, S = {σ1, . . . , σN }, G, max_time
Ensure: replanned path σRP
1: mergeTrees(σcurr, S,G)
2: σRP ← σcurr[xcurr, xgoal]; cRP ← c(σRP)
3: P← S
4: if cRP =∞ then
5: P

+
←− σRP[xafter, xgoal]

6: Q1 ← wRP[xcurr, xbefore]
7: else
8: P

+
←− σRP

9: Q1 ← wRP
10: Q1.sortQueue()
11: while ¬ isEmpty(Q1) & t < max_time do
12: xn ← Q1.pop()
13: tMAX ← max_time− t
14: σc2p ← connectToPaths(xn, σRP,P, tMAX)
15: if ¬ isEmpty(σc2p) then
16: σcn ← σRP[xcurr, xn]
17: σcand ← σcn ∪ σc2p
18: if c(σcand) < cRP then
19: σRP ← σcand; cRP ← c(σcand)
20: sol_found← True
21: Q1.updateQueue(wRP)

22: if sol_found then
23: tMAX ← max_time− t
24: (σRP, cRP)← searchBetterPath(xcurr, xgoal,G, σRP, tMAX)

Algorithm 4aMerge the Trees
1: procedure mergeTrees(σcurr, S = {σ1, . . . , σN }, G)
2: T ← σcurr.tree()
3: for σj in S do
4: Tj← σj.tree()
5: if Tj ̸= T then
6: T ← T ∪ Tj
7: for σj in S do
8: σj.setTree(T)

9: if T ̸⊂ G then
10: G.add(T)
11: return updated tree T and directed graph G

sampled with non-zero probability. With an infinite number
of samples, the algorithm can find a feasible solution if one
exists.

2) ASYMPTOTIC OPTIMALITY
MARS is asymptotic optimal when it uses an asymptotically
optimal planner, such as RRT*. When MARS tries to opti-
mize the current path, it chooses pairs of nodes (xn, xj) such
that xn ∈ Q1 and xj ∈ Q2. When xn corresponds to the
current robot configuration and xj corresponds to the goal, the
algorithm behaves like Informed RRT* [30] and is therefore
asymptotically optimal. For all other pairs of nodes, MARS
optimizes the connecting path between the two.

VOLUME 11, 2023 4109

C. Tonola et al.: Anytime Informed Multi-Path Replanning Strategy for Complex Environments

FIGURE 2. Representation of the subtree rooted in xn and built to reach xj . The green path is the current path; the yellow path is another available path.
The red circle represents the current robot configuration xcurr.

D. DETAILED DESCRIPTION OF THE REPLANNING
ALGORITHM
Algorithm 4 is the meta-code of MARS. First, MARSmerges
the current path tree with those of the available paths (Alg.
4a). MARS connects paths that may have been computed
with independent trees and builds a graph to extract the best
solution. The trees of the available paths need to be merged
with that of the current path. Since all trees have the same
root (paths start at the same node), this procedure is trivial.
Ultimately, all paths share the same tree, which belongs to
graph G.
The solution path σRP is initialized with the subpath from

xcurr to the goal. The set of available paths S is enriched with
the valid portion of the subpath σRP to form the set P.
All the nodes of σRP[xcurr, xbefore] are inserted into the

queue Q1. Then, the algorithm computes multiple paths
connecting xn ∈ Q1 to the other available paths using
connectingToPaths and assigns the best solution to σc2p; now,
the algorithm builds the candidate solution concatenating the
subpath from xcurr to xn with σc2p. If the candidate solution
has a lower cost than σRP, it becomes σRP. At this point,Q1 is
updated (e.g.,Q1 is emptied, and the nodes of the new solution
not previously used are inserted into the queue). Note that the
number of nodes in Q1 is small, so the sorting function is
not computationally demanding. In the end, the graph G is
searched for a path better than σRP.
The core of the replanner is connectToPaths (Alg. 4b),

called on each xn ∈ Q1. This function takes as input xn ∈
Q1 and tries to find paths connecting it to the nodes of the
available paths P. As output, it returns the best path σsol from
xn to xgoal found so far. To do this, first, it populates the queue
Q2 with the nodes of each path σj ∈ P and sorts it based on
some criteria (e.g., on the distance from xn). Then, a path from
xn to each xj ∈ Q2 is computed by informedPlan; the path
σconn found is then concatenated with the subpath σjg from xj
to xgoal if it results in a better solution than the best one found
so far.

The graph search (Alg. 4c) takes a lazy approach to col-
lision checking. The algorithm computes a map of paths

sorted by cost; then, it scrolls through the paths contained
in the map until it finds a valid one. During this validation
phase, only connections that have not been checked during
this replanning call are considered: connections that make
up the available paths, those of the connecting paths found,
and others previously checked are not re-checked. The map is
computed using a depth-first search algorithm starting from
the goal node. Specifically, let be xg the goal node, xs the start
node, xi the node considered at the i-th step of the search,
and cgi the cost of the branch from xg to xi followed in this
iteration. The search along this branch stops when

cgi + ∥xi − xs∥ > cbetter (3)

Both first-order and second-order connections are considered
during the search in the graph G.

The most demanding part of Algorithm 4 is
Sub-Algorithm 4b, which must be very efficient.

First, we speed up the search by purging the nodes xj ∈
Q2 that do not improve the solution. Let be xn ∈ Q1 and xj ∈
Q2 the the root and goal nodes of the connecting path σconn
(Fig. 3c). The candidate solution σsol = σconn ∪ σj[xj, xgoal]
is better than the current best solution σi[xn, xgoal], if

c(σconn) < c(σi[xn, xgoal])− c(σj[xj, xgoal]) (4)

The lower bound of c(σconn) is the Euclidean distance from
xn to xj. So, xj improves the current path if∥∥xn − xj∥∥ < c(σi[xn, xgoal])− c(σj[xj, xgoal]) (5)

If (5) does not hold, xj is discarded by connectToPaths. Note
that, if σi[xn, xgoal] is infeasible, (4) and (5) always hold as the
path has infinite cost. When a solution is found, (5) is updated
with the new path’s cost c(σsol), such that∥∥xn − xj∥∥ < c(σsol)− c(σj[xj, xgoal]) (6)

In this way, only nodes with a greater than zero probability of
improving the current solution are considered.
To enhance the speed of Sub-Algorithm 4b, we also exploit

the informed sampling [4] in informedPlan. When searching

4110 VOLUME 11, 2023

C. Tonola et al.: Anytime Informed Multi-Path Replanning Strategy for Complex Environments

FIGURE 3. Subtree (green) and subpaths (bold lines) considered to reduce the computational load of connectToPaths. xs and xg are used in place of
xstart and xgoal for brevity.

FIGURE 4. Screenshots from the tests of MARS. The yellow line is the robot’s current path, while the other colored lines are the other
available paths. Grey boxes are the fixed obstacles, and red boxes are the mobile ones.

for a path connecting xn to xj, the search space can be shrunk
to the hyper-ellipsoid

Ell = {x ∈ Xfree | ∥x − xn∥ + ∥xj−x∥ < ci} (7)

where ci = c(σsol) − c(σj[xj, xgoal]). Equation (7) represents
an admissible set, so the nodes outside the ellipsoid are
discarded since they cannot improve the solution (Fig. 3).
informedPlan checks if an existing path between xn and xj
with a cost lower than cmax exists. This search is in GTs ,
i.e., the subgraph that contains the first-order and the second-
order connections between nodes of Ts or to xj. A ready-to-
use solution can exist thanks to previous replanning iterations.
Otherwise, growInEllipsoid invokes growTree1 that grows
the subtree in the ellipsoid Ell to reach xj. If a solution is
found, replacing the connection to xj with a second-order
connection is the only caveat. growInEllipsoid adopts a lazy
collision check. The connections already in the subtree are
checked only when the path is found. The branches with a
collision are hidden, and growth begins again.

Figure 3 reports one iteration of connectToPaths. We select
xj ∈ Q2 as a valid node to try to connect to by exploiting
σi[xn, xgoal] and σj[xj, xgoal] (the bold green and yellow lines).
The ellipsoid Ell (grey dotted ellipse) is defined by (7), and
the already existing subtree rooted in xn and contained in Ell

1growTree is a generic sampling-based planner, and the approach is easily
extendable to bi-directional ones.

TABLE 2. Scenarios data used during the experiments.

is selected (Fig. 3a). The connections of the subtree outside
Ell are not considered (dotted green lines). Then, the subtree
is grown in Ell using a path planner (Fig. 3b). Once xj is
reached, a second-order connection is created between it and
the subtree (light green line). The light blue path (Fig. 3c)
is the σconn found. If the cost of σconn ∪ σj[xj, xgoal] is less
than the cost of σi[xn, xgoal], it becomes the new candidate
solution. Then, the procedure is repeated for each xj ∈ Q2 that
satisfies (6). Once the whole Q2 has been considered, Q1 is
updated, and a new xn popped.

III. EXPERIMENTAL RESULTS
A. NUMERICAL SIMULATIONS
A simulation testing was conducted to compare MARS with
some state-of-the-art path replanners. In particular, MARS
was compared with DRRT, Anytime DRRT, MPRRT, and
with [31], which we will refer to by the acronym DRRT*

VOLUME 11, 2023 4111

C. Tonola et al.: Anytime Informed Multi-Path Replanning Strategy for Complex Environments

FIGURE 5. Normalized path length in each scenario. When a boxplot is below the red dashed line, the replanner produces a shorter path
than the initial one. The success rate is listed under each replanner’s name. Only replanners with a success rate greater than 5% are shown.
Maximum replanning time 200ms.

for convenience. The tests were conducted using ROS and
MoveIt! on a computer with a 2.80 GHz CPU. The code
implemented can be found here [41]. Each of the algorithms
has been integrated into the architecture of Algorithm 1.

They were tested in 6 scenarios, which differed in the
size of the search space (i.e., degrees of freedom of the
robot):
Scenarios 1, 2, and 3 consist of a point robot moving in a

3-dimensional space. There are fixed obstacles of vari-
ous sizes in each of the scenarios (Table 2);

Scenarios 4, 5 and 6 provide a 6-, 12-, and 18-DoF anthro-
pomorphic robot, respectively. Each of these scenarios
shares the same fixed obstacles.

The test consists of 200 executions for each scenario, divided
into 20 queries and 10 iterations per query. At each query
corresponds a different pair of start and goal configurations.
For each start-goal pair, the test is repeated 10 times. Ini-
tially, the robot path is calculated. In the case of MARS, the
set of the other paths (two paths) is also computed at the
beginning. The planner used is RRT-Connect [42], followed
by an optimization procedure [43]. During execution, new
obstacles randomly appear, obstructing the robot’s path and
forcing the replanner to find a new path. Table 2 shows the
number of fixed and moving obstacles. Each algorithm is
assigned a maximum replan time of 200ms. The frequency
of the trajectory execution thread and the collision checking

4112 VOLUME 11, 2023

C. Tonola et al.: Anytime Informed Multi-Path Replanning Strategy for Complex Environments

Algorithm 4b Connect Node to Paths
1: procedure conntectToPaths(xn, σi,P,max_time)

2: function growInEllipsoid(T , Ell , xj, tMAX)
3: while ¬ ok & iter < max_iter & t < tMAX do
4: iter = iter + 1
5: q← sampleInEllipsoid(Ell)
6: xnew ← T .growTree(q)
7: if ||xnew − xj|| < min_dist then
8: if path from tree root to xj is valid then
9: create a second-order connection from xnew to xj

10: ok ← True
11: else
12: hide the invalid branch temporarily from T

13: return ok

14: function informedPlan(xn, xj, cmax, max_time)
15: Ell ← ellipsoid defined by cmax
16: Ts ← subtree rooted in xn contained in Ell
17: GTs ← the subgraph of G containing Ts
18: (σnj, cnj)← searchBetterPath(xn, xj,GTs , cmax,max_time)
19: if ¬ isEmpty(σnj) then
20: ok ← True
21: else
22: tMAX ← max_time− t
23: ok ← growInEllipsoid(Ts,Ell , xj, tMAX)
24: if ok then
25: (σnj, cnj)← searchBetterPath(xn, xj,GTs , cmax)

26: return σnj from xn to xj, cnj, ok

▷Main connectToPaths Code
27: σsol← σi[xn, xgoal]; csol ← c(σsol)
28: for σj ∈ P , xj ∈ wj do
29: Q2.addTuple(xj, σj)

30: Q2.sortQueue()
31: while ¬ isEmpty(Q2) & t < max_time do
32: (xj, σj)← Q2.pop()
33: σjg← σj[xj, xgoal]; cjg← c(σjg)
34: cmax ← csol − cjg
35: if

∥∥xn − xj∥∥ < cmax then
36: tMAX ← max_time− t
37: σconn, cconn, ok ← informedPlan(xn, xj, cmax, tMAX)
38: if ok then
39: cnew ← cconn + cjg
40: if cnew < csol then
41: σsol← σconn ∪ σjg; csol ← cnew
42: Q2.removeTuple(xj, σj)

43: return a new path σsol from xn to xgoal

thread are 500Hz, and 30Hz. The queue Q1 of MARS is
sorted on the distance along the path from the current robot
configuration. The queue Q2 is sorted on the distance from
the processed node xn ∈ Q1.
The algorithms are evaluated using the following metrics:

Success rate: denote Nsucc and Ntests as the number of tests
executed without collisions and the number of tests per-
formed in each scenario, respectively. The success rate

S% = Nsucc/Ntests

Algorithm 4c Search a Better Path in the Graph
1: procedure searchBetterPath(xs, xg,G, σc OR cmax, tMAX)
2: if ¬ isEmpty(σc) then
3: σbetter ← σc; cbetter ← c(σc)
4: else
5: σbetter ← VOID; cbetter ← cmax

6: if tMAX is VOID then
7: tMAX←∞

8: sorted_map← G.lowerCostPaths(xs, xg, cbetter, tMAX)
9: while ¬ ok & ¬ isEmpty(sorted_map) do
10: (σnew, cnew)← sorted_map.pop()
11: if σnew.valid() then
12: σbetter ← σnew; cbetter ← cnew
13: ok ← True
14: return σbetter from xs to xg, cbetter

is the percentage of tests in which the robot reached the
goal without collisions.

Collision rate: denote Ncollisions, Ntests and Nobs as the num-
ber of obstacles the robot collided with, of tests performed
and of random obstacles in the considered scenario, respec-
tively. The collision rate

C% = Ncollisions/((1− S%)Ntests Nobs)

indicates the number of obstacles the robot collided with
when the replanner failed. The denominator is the number
of obstacles during unsuccessful iterations. For robots with
a built-in safety stop procedure that avoid collisions, this
metric can be used as a proxy for the number of safety
stops.

Normalized path length: denote ∥σreal∥ and ∥σinit∥ as the
length of the path traversed by the robot and the length
of the path computed at the beginning of the iteration,
respectively. The

n.p.l. = ∥σreal∥/∥σinit∥

indicates how longer (due to obstacle avoidance) or
shorter (due to path optimization) the path is compared
to the initial one. Since σreal depends on σinit, its length
is normalized to obtain a comparable measure across
tests.

Figure 4 shows screenshots of two tests of MARS in a 3
DoF and 6 DoF scenario. Table 3 shows the success rate S%
and collision rate C% of the algorithms in each scenario.
Figure 5 shows the boxplot of the normalized path length
n.p.l for replanners that achieved at least a 5% success rate.
All planners have a high success rate for scenario 1. As the
complexity grows, MARS maintains a high success rate
(S% ≥ 88.5%). In scenarios 5 and 6, MPRRT and DRRT*
achieve a success rate of 9.0% and 4.0%, respectively,
whereas DRRT and Anytime DRRT always fail. MPRRT
performs better than DRRT and Anytime DRRT in scenario
6 because it plans on multiple parallel threads, and its colli-
sion rate remains lower than DRRT and Anytime DRRT.

VOLUME 11, 2023 4113

C. Tonola et al.: Anytime Informed Multi-Path Replanning Strategy for Complex Environments

TABLE 3. Success rate and Collision rate in different scenarios. Maximum replanning time 200ms.

FIGURE 6. Collaborative robotic cell with UR10e mounted upside down
and Intel RealSense D435.

Figure 5 shows the n.p.l for the algorithms with a
S% ≥ 5%. When a boxplot is below the red dashed line,
the replanner produces a shorter path than the one computed
initially. Anytime DRRT, MPRRT, and MARS continuously
try to improve the solution, even when it is unobstructed.
DRRT and DRRT* replan only when the path is obstructed.
DRRT ends as soon as it finds a feasible solution. DRRT*
uses all remaining replanning time to improve the found
solution.

In scenarios 1-2 MARS, DDRT* and MPRRT provide
comparable n.p.l. (Figure 5a and 5b). The performance dif-
ference compared to MARS increases with the complexity of
the problem. MARS outperforms the baselines in all those
situations where the time to compute and optimize the initial
path is critical; the algorithm, in these cases, will act as an
online optimizer. Anytime DRRT seems equivalent to DRRT,
probably because most of the replanning time is spent by
DRRT on finding a feasible solution, and the remaining time
devoted to its improvement is small.

In scenarios 5 and 6, MARS andMPRRT have comparable
n.p.l. results. However, they are dramatically different in
terms of success rate (93% and 88.5% of MARS compared
to 7.5% and 9% of MPRRT).

B. REAL-WORLD EXPERIMENTS
MARS and the replanning architecture were tested in the
collaborative robotic cell of Figure 6. Specifically, the setup
consists of a 6-DoF UR10e manipulator mounted upside
down and an Intel Realsense D435 to track the operator’s
position. A speed scalingmodule was active during the exper-
iments to slow down the trajectory depending on the human-
robot distance for safety reasons (see Section III.F of [44],
and [45] for more details about the scaling module). In the
experiments, the robot moved from a start position to an end
position. At the same time, a human obstructed its initially
calculated path, forcing the algorithm to search for a new
valid path and to optimize it over time. A demonstration video
of the application is attached to this paper.

IV. CONCLUSIONS AND FUTURE WORKS
This paper proposed MARS, a sampling-based path replan-
ning algorithm for complex, high-dimensional scenarios. The
novelty of the algorithm is the exploitation of a set of pre-
computed paths to find and optimize over time a new path
when the current one is obstructed by an unexpected obstacle.
The algorithm determines which nodes of the available paths
to connect to based on the cost of the current solution and
gradually builds a directed graph to exploit the results of
previous iterations. Informed sampling, subtrees reuse, and
lazy collision checking allows for fewer calculations and
finding better solutions more quickly. MARS proved supe-
rior to leading sampling-based replanning algorithms in the
state-of-the-art in terms of both success rate and quality of
solutions found. The superiority of MARS lies in the fact that
it reduces the complexity of the search by trying to connect
the current path to a node of the other available paths closer
to the current path than the goal.

We also propose a multithread architecture for executing
the robot trajectory with continuous replanning and collision
checking, applicable to many replanning algorithms. The
open-source C++ code of the algorithms and the architecture
is available at [41].

Future developments include analysis of how the initial
set of paths affects MARS. The trade-off between diversity
and quality of initial paths affects the performance, e.g.,
optimizing the initial path may reduce diversity, with the risk
that a single obstacle will block them all, thus reducing the
chances of success. Furthermore, we will improve the graph
search algorithm. Currently, a depth-first search algorithm is

4114 VOLUME 11, 2023

C. Tonola et al.: Anytime Informed Multi-Path Replanning Strategy for Complex Environments

used to find all solutions with a cost less than the desired value
and then extract the valid and less costly one. An alternative
and more efficient approach could be taken by LPA* [6],
which could avoid searching all solutions before checking the
validity of the less expensive one.

REFERENCES
[1] H. S. Hewawasam, M. Y. Ibrahim, and G. K. Appuhamillage, ‘‘Past,

present and future of path-planning algorithms for mobile robot navigation
in dynamic environments,’’ IEEE Open J. Ind. Electron. Soc., vol. 3,
pp. 353–365, 2022.

[2] O. Nocentini, L. Fiorini, G. Acerbi, A. Sorrentino, G. Mancioppi, and
F. Cavallo, ‘‘A survey of behavioral models for social robots,’’ Robotics,
vol. 8, no. 3, p. 54, Jul. 2019.

[3] G. Michalos, P. Karagiannis, N. Dimitropoulos, D. Andronas, and
S. Makris,Human Robot Collaboration in Industrial Environments. Cham,
Switzerland: Springer, 2022, pp. 17–39.

[4] J. D. Gammell, T. D. Barfoot, and S. S. Srinivasa, ‘‘Informed sampling for
asymptotically optimal path planning,’’ IEEE Trans. Robot., vol. 34, no. 4,
pp. 966–984, Aug. 2018.

[5] P. E. Hart, N. J. Nilsson, and B. Raphael, ‘‘A formal basis for the heuristic
determination of minimum cost paths,’’ IEEE Trans. Syst. Sci. Cybern.,
vol. SSC-4, no. 2, pp. 100–107, Jul. 1968.

[6] S. Koenig, M. Likhachev, and D. Furcy, ‘‘Lifelong planning A∗,’’ Artif.
Intell., vol. 155, nos. 1–2, pp. 93–146, 2004.

[7] S. Koenig and M. Likhachev, ‘‘Fast replanning for navigation in unknown
terrain,’’ IEEE Trans. Robot., vol. 21, no. 3, pp. 354–363, Jun. 2005.

[8] M. Likhachev, D. Ferguson, G. Gordon, A. Stentz, and S. Thrun, ‘‘Any-
time dynamic A∗: An anytime, replanning algorithm,’’ in Proc. Int. Conf.
Automated Planning Scheduling (ICAPS), Jan. 2005, pp. 262–271.

[9] S. Aine and M. Likhachev, ‘‘Truncated incremental search,’’ Artif. Intell.,
vol. 234, pp. 49–77, May 2016.

[10] O. Brock and O. Khatib, ‘‘Elastic strips: A framework for motion gen-
eration in human environments,’’ Int. J. Robot. Res., vol. 21, no. 12,
pp. 1031–1052, Dec. 2002.

[11] G. Chiriatti, G. Palmieri, C. Scoccia, M. C. Palpacelli, and M. Callegari,
‘‘Adaptive obstacle avoidance for a class of collaborative robots,’’
Machines, vol. 9, no. 6, p. 113, Jun. 2021.

[12] H. Liu, D. Qu, F. Xu, Z. Du, K. Jia, J. Song, and M. Liu, ‘‘Real-time
and efficient collision avoidance planning approach for safe human–robot
interaction,’’ J. Intell. Robot. Syst., vol. 105, no. 4, p. 93, Aug. 2022.

[13] Y. Li, X. Hao, Y. She, S. Li, and M. Yu, ‘‘Constrained motion planning of
free-float dual-arm space manipulator via deep reinforcement learning,’’
Aerosp. Sci. Technol., vol. 109, Feb. 2021, Art. no. 106446.

[14] G. Nicola and S. Ghidoni, ‘‘Deep reinforcement learning for motion plan-
ning in human robot cooperative scenarios,’’ in Proc. 26th IEEE Int. Conf.
Emerg. Technol. Factory Autom. (ETFA), Sep. 2021, pp. 1–7.

[15] J. Bruce and M. M. Veloso, ‘‘Real-time randomized path planning for
robot navigation,’’ in Proc. Robot Soccer World Cup, in Lecture Notes in
Artificial Intelligence: Subseries of Lecture Notes in Computer Science,
vol. 2752, 2003, pp. 288–295.

[16] D. Ferguson, N. Kalra, and A. Stentz, ‘‘Replanning with RRTs,’’ in Proc.
IEEE Int. Conf. Robot. Autom. (ICRA), May 2006, pp. 1243–1248.

[17] D. Ferguson and A. Stentz, ‘‘Anytime, dynamic planning in high-
dimensional search spaces,’’ in Proc. IEEE Int. Conf. Robot. Autom.
(ICRA), Apr. 2007, pp. 1310–1315.

[18] W. Sun, S. Patil, and R. Alterovitz, ‘‘High-frequency replanning under
uncertainty using parallel sampling-based motion planning,’’ IEEE Trans.
Robot., vol. 31, no. 1, pp. 104–116, Feb. 2015.

[19] M. Zucker, J. Kuffner, and M. Branicky, ‘‘Multipartite RRTs for rapid
replanning in dynamic environments,’’ in Proc. IEEE Int. Conf. Robot.
Autom. (ICRA), Apr. 2007, pp. 1603–1609.

[20] M. Otte and E. Frazzoli, ‘‘RRTx : Real-time motion planning/replanning
for environments with unpredictable obstacles,’’ Int. J. Robot. Res., vol. 35,
no. 7, pp. 797–822, 2016.

[21] C. Yuan, G. Liu, W. Zhang, and X. Pan, ‘‘An efficient RRT cache method
in dynamic environments for path planning,’’ Robot. Auto. Syst., vol. 131,
Sep. 2020, Art. no. 103595.

[22] B. Chandler and M. A. Goodrich, ‘‘Online RRT∗ and online FMT∗: Rapid
replanning with dynamic cost,’’ in Proc. IEEE/RSJ Int. Conf. Intell. Robots
Syst. (IROS), Sep. 2017, pp. 6313–6318.

[23] M. Kallman and M. Mataric, ‘‘Motion planning using dynamic
roadmaps,’’ in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), May 2004,
pp. 4399–4404.

[24] M. Huppi, L. Bartolomei, R. Mascaro, and M. Chli, ‘‘T-PRM: Tempo-
ral probabilistic roadmap for path planning in dynamic environments,’’
in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Oct. 2022,
pp. 10320–10327.

[25] S. LaValle, ‘‘Rapidly-exploring random trees: A new tool for path plan-
ning,’’ Dept. Comput. Sci., Iowa State Univ., Ames, IA, USA, 1998.

[26] S. Karaman and E. Frazzoli, ‘‘Sampling-based algorithms for optimal
motion planning,’’ Int. J. Robot. Res., vol. 30, no. 7, pp. 846–894,
2011.

[27] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, ‘‘Prob-
abilistic roadmaps for path planning in high-dimensional configura-
tion spaces,’’ IEEE Trans. Robot. Autom., vol. 12, no. 4, pp. 566–580,
Aug. 1996.

[28] S. Karaman, M. R. Walter, A. Perez, E. Frazzoli, and S. Teller, ‘‘Anytime
motion planning using the RRT∗,’’ in Proc. IEEE Int. Conf. Robot. Autom.,
May 2011, pp. 1478–1483.

[29] D. Ferguson and A. Stentz, ‘‘Anytime RRTs,’’ in Proc. IEEE/RSJ Int. Conf.
Intell. Robots Syst., Oct. 2006, pp. 5369–5375.

[30] J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot, ‘‘Informed RRT∗:
Optimal sampling-based path planning focused via direct sampling of
an admissible ellipsoidal heuristic,’’ in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst., Sep. 2014, pp. 2997–3004.

[31] D. Connell and H. M. La, ‘‘Dynamic path planning and replanning for
mobile robots using RRT,’’ in Proc. IEEE Int. Conf. Syst., Man, Cybern.
(SMC), Oct. 2017, pp. 1429–1434.

[32] T.-Y. Li and Y.-C. Shie, ‘‘An incremental learning approach to motion
planning with roadmap management,’’ J. Inf. Sci. Eng., vol. 23, no. 2,
pp. 3411–3416, 2002.

[33] Z. Zhang, B. Qiao, W. Zhao, and X. Chen, ‘‘A predictive path planning
algorithm for mobile robot in dynamic environments based on rapidly
exploring random tree,’’Arabian J. Sci. Eng., vol. 46, no. 9, pp. 8223–8232,
Sep. 2021.

[34] Y. Chen, Z. He, and S. Li, ‘‘Horizon-based lazy optimal RRT for fast,
efficient replanning in dynamic environment,’’ Auto. Robots, vol. 43, no. 8,
pp. 2271–2292, Dec. 2019.

[35] J. van den Berg, D. Ferguson, and J. Kuffner, ‘‘Anytime path planning
and replanning in dynamic environments,’’ in Proc. IEEE Int. Conf. Robot.
Autom. (ICRA), May 2006, pp. 2366–2371.

[36] J. Vannoy and J. Xiao, ‘‘Real-time adaptive motion planning (RAMP)
of mobile manipulators in dynamic environments with unforeseen
changes,’’ IEEE Trans. Robot., vol. 24, no. 5, pp. 1199–1212,
Oct. 2008.

[37] E. Huang, M. Mukadam, Z. Liu, and B. Boots, ‘‘Motion planning with
graph-based trajectories and Gaussian process inference,’’ in Proc. IEEE
Int. Conf. Robot. Autom. (ICRA), May 2017, pp. 5591–5598.

[38] K. Kolur, S. Chintalapudi, B. Boots, and M. Mukadam, ‘‘Online motion
planning over multiple homotopy classes with Gaussian process infer-
ence,’’ in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Nov. 2019,
pp. 2358–2364.

[39] C. Tonola, M. Faroni, N. Pedrocchi, and M. Beschi, ‘‘Anytime informed
path re-planning and optimization for robots in changing environments,’’
2021, arXiv:2103.13245.

[40] C. Tonola, M. Faroni, N. Pedrocchi, and M. Beschi, ‘‘Anytime informed
path re-planning and optimization for human–robot collaboration,’’ in
Proc. 30th IEEE Int. Conf. Robot Hum. Interact. Commun. (RO-MAN),
Aug. 2021, pp. 997–1002.

[41] C. Tonola and M. Beschi. An Open-Source Library for Robot Path Replan-
ning. Accessed: Jan. 9, 2023. [Online]. Available: https://github.com/JRL-
CARI-CNR-UNIBS/replanning_strategies.git

[42] J. J. Kuffner and S. M. LaValle, ‘‘RRT-connect: An efficient approach
to single-query path planning,’’ in Proc. IEEE Int. Conf. Robot.
Automat. (ICRA), vol. 2, San Francisco, CA, USA, Apr. 2000,
pp. 995–1001.

[43] M.-C. Kim and J.-B. Song, ‘‘Informed RRT∗ with improved converging
rate by adopting wrapping procedure,’’ Intell. Service Robot., vol. 11, no. 1,
pp. 53–60, Jan. 2018.

[44] M. Faroni, M. Beschi, and N. Pedrocchi, ‘‘Safety-aware time-optimal
motion planning with uncertain human state estimation,’’ IEEE Robot.
Autom. Lett., vol. 7, no. 4, pp. 12219–12226, Oct. 2022.

[45] M. Faroni and M. Beschi. SSM_Safety. Accessed: Jan. 9, 2023. [Online].
Available: https://github.com/CNR-STIIMA-IRAS/ssm_safety.git

VOLUME 11, 2023 4115

C. Tonola et al.: Anytime Informed Multi-Path Replanning Strategy for Complex Environments

CESARE TONOLA received the B.S. and M.S.
degrees in industrial automation engineering from
the University of Brescia, Italy, in 2018 and
2020, respectively. He is currently pursuing the
joint Ph.D. degree in mechanical and industrial
engineering with the University of Brescia and
National Research Council, Institute of Intelligent
Industrial Technologies and Systems for Advanced
Manufacturing, Milan, Italy. His research interests
include motion planning and replanning, control

techniques for industrial manipulators, and human–robot collaboration.

MARCO FARONI received the B.S. and M.S.
degrees in industrial automation engineering and
the Ph.D. degree in mechanical and industrial
engineering from the University of Brescia, Italy,
in 2013, 2015, and 2019, respectively. He was
a Researcher with the Italian National Research
Council, Institute of Intelligent Industrial Tech-
nologies and Systems for Advanced Manufactur-
ing, Milan, Italy, between 2019 and 2022. He is
currently a Research Fellow of the Department of

Robotics, University of Michigan.

MANUEL BESCHI (Member, IEEE) received the
B.S. and M.S. degrees in industrial automation
engineering from the University of Brescia, Italy,
in 2008 and 2010, respectively, and the Ph.D.
degree in computer science, engineering and con-
trol systems technologies from the Department of
Mechanical and Industrial Engineering. He has
been an Associate Professor with the University of
Brescia, since 2022.

NICOLA PEDROCCHI received the M.S. degree
in mechanical engineering from the University
of Brescia, Italy, in 2004, and the Ph.D. degree
in applied mechanics and robotics, in 2008.
From 2008 to 2011, he was a Research Assis-
tant with the Institute of Industrial Technologies
and Automation, National Research Council of
Italy, where he has been a Full Researcher, since
2011. His research interests include control tech-
niques for industrial manipulators in advanced

application requiring the interaction robot-environment (e.g., technological
tasks) or robot–human operator (e.g., workspace sharing and teach-by-
demonstration). He is involved in researches for accurate elastic modeling
and dynamic calibration of industrial robots. Since 2015, he has been coor-
dinating the activity of the Robot Motion Control and Robotized Processes
Laboratory, CNR-STIIMA.

Open Access funding provided by ‘Università degli Studi di Brescia’ within the CRUI CARE Agreement

4116 VOLUME 11, 2023

