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Abstract
Energy transfer in small nano-sized systems can be very different from that in their
macroscopic counterparts due to reduceddimensionality, interactionwith surfaces, dis-
order, and large fluctuations. Those ingredients may induce non-diffusive heat transfer
that requires to be taken into account on small scales. We provide an overview of the
recent advances in this field from the points of view of nonequilibrium statistical
mechanics and atomistic simulations. We summarize the underlying basic properties
leading to violations of the standard diffusive picture of heat transport and its universal
features, with some historical perspective. We complete this scenario by illustrating
also the effects of long-range interaction and integrability on non-diffusive transport.
Then we discuss how all of these features can be exploited for thermal management,
rectification and to improve the efficiency of energy conversion. We conclude with a
review on recent achievements in atomistic simulations of anomalous heat transport
in single polymers, nanotubes and two-dimensional materials. A short account of the
existing experimental literature is also given.
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1 Introduction

Energy transfer in nonlinear systems occurs in many physical contexts, ranging from
condensed matter to optics. Besides its basic interest, understanding the principles of
vibrational energy transport at the nanoscale is of importance to eventually improve
our capability to manage thermal transport on small-scale devices [1]. In the case of
phononic systems, where heat is mostly transported by lattice vibrations, this calls for
a deeper understanding of the properties of strongly anharmonic and/or disordered
crystals and artificial materials. Nonlinear effects are essential in many respects: in
the first place, they determine thermal transport properties. When reducing the system
size towards the micro and nano-scale, a series of novel effects appear. Temperature
gradients can become very large, leading to non-linear response. Also, the role of
thermal contact and interfaces may not be negligible, and in general heat-current
fluctuationsmaybe relevant, and one has to treat themwithin a suitable thermodynamic
approach for small systems. Particularly dramatic effects occur in reduced dimensions,
where nonlinear interactions of energy fluctuations lead to anomalous conductivity.

In this article, we will review the main features of non-Fourier (superdiffusive) heat
conduction in low-dimensional many-body systems. Starting from simple theoretical
models (anharmonic chains) we will argue that this phenomenon displays remark-
able universal properties. As it is known, the idea of universality is very relevant in
statistical physics. It tells us that some quantitative relations hold, independently of
the microscopic details. The concept was born out of the theory of critical phenom-
ena: for instance, any ferromagnetic transition exhibits the same dependence of the
magnetization on temperature if the underlying Hamiltonian has the same symmetry.

In the context of nonequilibrium processes (like heat transport), this is even more
striking. For instance, if we have a nearly one-dimensional system with some symme-
tries leading tomomentum, energy, and density conservation, we expect superdiffusive
transport with given exponents, independently of the actual microscopic forces. As a
concrete example, the simple Fermi–Pasta–Ulam–Tsingou (FPUT) model discussed
below is expected to be in the same universality class of transport as, say, a single-
walled nanotube or a nanowire, made of complicated assemblies of atoms.

Building on this theoretical background, we describe how these features can be
exploited to achieve control and enhancement of thermal energy conversion. The sim-
plest case is the one in which nonlinear interaction can be exploited to obtain a thermal
rectifier. Anomalous conduction can be also employed to enhance the conversion of
thermal energy into mechanical work, as it occurs in thermoelectricity and thermod-
iffusion.

A crucial issue is the applicability of the theoretical concepts to real nanomaterials.
The fabrication of one- and two-dimensional nanomaterials (nanotubes, nanowires,
graphene, two-dimensional semiconductor membranes, etc.) is nowadays a concrete
experimental possibility. For the sake of illustration, a typical setup we have in mind
is sketched in Fig. 1. Thus, one may hope to test experimentally the predictions from
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Fig. 1 Sketch of a nanoscale heat transfer experimental setup to measure the heat conductance of a thin
nanosized object in thermal contact with two leads, acting as thermal reservoirs at different temperatures
TH > TC. Lower figure: a simple idealized model, for vibrational energy transport in a one-dimensional
structure. It consist of an anharmonic chain in contacts with two heat reservoirs at different temperatures.
The reservoirs can be modeled, for instance, by adding Langevin thermostats at assigned temperatures [2,
14]

statistical physics. In this respect, molecular dynamics (MD) is a fundamental tool to
investigate and test theories. We will provide a review of current research focused on
non-Fourier heat transport.

This work complements existing reviews of the research done in the nonequilibrium
statistical physics community [2–5] by reporting some recent advances, but also with
an eye to applying the concepts to thermal management and to realistic atomic simula-
tions, of interest for condensed-matter. Although our main focus is on the microscopic
foundations, in this respect, we have to mention that thermodynamic and mesoscopic
phenomenological approaches have also been worked out to tackle the problem of
non-Fourier heat transport in various materials and devices. This leads to various gen-
eralization of the heat conduction laws. For the sake of space, we cannot fully account
for all these contributions in this review: the reader can recover a basic information
about these approaches in the existing literature [6–11]. For completeness, wemention
that reviews in non-Fourier heat transport from a phonon physics viewpoint can be
found in [12] and [13]. It is now recognized that the reduced dimensionality originates
unusual size-dependent features in nanomaterials. Phonon confinement, surface, and
interfacial scatterings at the nano-scale are also relevant research topics in this context
[13]. Before entering the main matter, we give a brief historical account.

1.1 Historical perspective

From a historical perspective, one discovers that the problem of non-diffusive heat
transport affected quite soon the theoretical foundations of statistical mechanics. At
the end of the nineteenth century, Boltzmann’s equation had solved both the equilib-
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rium problem and the hydrodynamics of the ideal gas [15] within a fully consistent
approach, which allowed to interpret phenomenological equations, such as theNavier–
Stokes and the Heat equation, as direct outcomes of the kinetic theory. The interest
for studying the problem of energy (heat) transport in microscopic models of mat-
ter, rather than simply relying upon the coarse-grained description of an ideal fluid,
emerged quite soon in the twentieth century. For instance, P. Debye in the 1930s
argued that the problem of heat transport in solids could not be modeled by a har-
monic crystal. In fact, the thermodynamics of such a system amounts to a gas of
non-interacting quasi-particles, in which the harmonic waves (that now we usually
call phonons), propagate ballistically at the speed of sound. Accordingly, no diffusion
mechanism can be at work in such a model of a solid that propagates any perturbation
ballistically, as a heat superconductor. The Dutch physicist suggested that nonlinear
interactions and/or disorder should be included in the model, in order to allow for a
microscopic mechanism of phonons scattering. His pupil, R. Peierls, approached this
problem in the framework of quantum mechanics with phonons being the basic ingre-
dients as quantized linear waves. Taking advantage of the arguments raised by Debye,
he built up a phenomenological quantum theory of heat transport in solids by intro-
ducing the so-called umklapp processes, i.e. effective interactions among phonons,
treated as a perturbative first-order correction of the unrealistic harmonic limit (more
precisely, they correspond to phonon scattering processes that do not conserve the
quasi-momentum, see [16]). This “trick” was able to restore diffusion as the basic
mechanism yielding energy transport, as expected also in classical models.

The seminal considerations raised by Debye certainly inspired also E. Fermi to
pursue the other possibility, i.e. including explicitly the role of nonlinearity in classical
models. Fermi could tackle this problem because in the last part of his life he and his
collaborators (J. Pasta, S. Ulam and M. Tsingou) had access to the biggest computer
facility of the time, the MANIAC digital computer in Los Alamos, designed by J.
von Neumann. They used MANIAC to perform the first numerical simulation of the
dynamics of a 1D anharmonic crystal. Fermi expected that the presence of nonlinear
interactions could allowanyout-of-equilibrium initial condition to relax spontaneously
to thermodynamic equilibrium, signaled by energy equipartition among the normal
(Fourier) modes (a more appropriate denomination of phonons in a classical system).
Contrary to his expectations, they found that the energy of the out-of-equilibrium initial
condition (typically a single Fourier mode) initially spreads its energy to other normal
modes, but later on, exhibits a quasi-periodic recurrence to the initial state. Nowadays
we know that this peculiar phenomenon is due to the presence of soliton-like waves
(described by the Korteweg–deVries partial differential equation) in the low-energy
limit of the model, which corresponds to the range of parameters explored by Fermi
and coworkers. Fermi was really puzzled by having not met what he had reasonably
conjectured and the account of these numerical simulations appeared only in 1954,
the same year when Fermi passed away, just as an internal Los Alamos report [17]. It
is worth pointing out that the quasi-periodic recurrence of the initial states not only
challenged the spontaneous evolution to thermodynamic equilibrium, but it was also
incompatible with the presence of any diffusive mechanism for energy transport in the
FPUTmodel. Tomake a long story short, we can just mention that energy equipartition
was eventually observed in numerical experiments (performed by computers definitely
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muchmore powerful thanMANIAC), exploring the FPUTmodel for sufficiently large
values of the energy and for a long enough time [18].

Still following a historical pathway, we have to mention that a complete mathemat-
ical description of the peculiar features of a harmonic chain, conjectured by P. Debye,
was provided in a seminal paper by Rieder, Lebowitz and Lieb [19], who obtained
an explicit solution of the model of a chain of harmonically coupled oscillators (with
fixed boundary conditions) in contact at its boundaries with stochastic Langevin heat
baths at different temperatures T+ and T−. A clear signature of ballistic energy trans-
port is testified by an essentially flat temperature profile in the bulk of the chain at
T = (T+ + T−)/2, which decays abruptly at the bath temperatures very close to the
corresponding boundaries. Moreover, the heat flux is found to be proportional to the
temperature difference, rather than to the temperature gradient.

This paper provided inspiration to other applied mathematicians for exploring the
other suggestion by P. Debye, i.e. including disorder as an ingredient of the model.
The simplest way amounts to introducing isotopic disorder in the harmonic chain by
assigning random masses (selected by some probability distribution function) to each
harmonic oscillator. Relying upon a naive extrapolation of localization theory, one
could guess that isotopic disorder should turn the homogeneous superconductor into
a perfect insulator, because any propagating energy perturbation should eventually
localize, due to the presence of one-dimensional disorder. This guess is not entirely
correct, because it was found that the mechanism of heat transport in an isotopi-
cally disordered chain crucially depends on the adopted boundary conditions. One
should always take into account that, at variance with equilibrium properties, out-of-
equilibrium ones typically exhibit a strong dependence on the boundary conditions.
A preliminary important achievement was the rigorous proof that the harmonic chain
with isotopic disorder evolves to a unique stationary non-equilibrium state [20, 21].
Summarizing a long story (for details see [2]), it was also proved that for fixed bound-
ary conditions the heat conductivity κ of the disordered harmonic chain of size N
vanishes in the thermodynamic limit as

κ ∼ 1√
N

, (1)

while for free boundary conditions it diverges in the thermodynamic limit as

κ ∼ √
N . (2)

Accordingly, the latter case shows that anomalous conductivity already emerges in a
disordered harmonic chain with free boundary conditions, thus indicating that despite
the presence of isotopic disorder, superdiffusive heat transport already emerges in such
conditions.

Almost in the same period of time when these contributions about disordered har-
monic chains appeared, another community of researchers, concerned with the study
of hydrodynamic models, pointed out that anomalous hydrodynamic behavior is a dis-
tinctive feature of real fluids [22, 23], through the manifestation of peculiar memory
kernels characterizing their space-time correlation functions, and, accordingly, the
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associated transport coefficients through the Green–Kubo formula (see [24]). Con-
versely, the attempt of providing a general theoretical approach to the problem of heat
transport in fluid dynamics (see [25]) pointed out that superdiffusive (i.e., anomalous)
transport properties should characterize one- and two-dimensional fluids—an out-
come that, at the time, appeared almost as a mathematical curiosity, in the absence of
experimental tests to be performed on real physical systems. Nowadays, we are facing
the possibility of exploring predictions originated by suitable mathematical models in
the realm of nanophysics, where such effects are sizable and of primary interest for
material science, as widely reported in this review article.

The last ingredient invoked for reconciling normal transport properties with low-
dimensional systems was deterministic chaos. The basic conjecture was that models
of many-body systems exhibiting chaotic dynamics should generate spontaneously
diffusive-like behavior of energy perturbations, regardless of their dimensionality,
and any other peculiar feature of the model at hand. In fact, the first numerical study
of the 1D chaotic model known as Ding-a-ling1 confirmed the above conjecture [26].
Nowadays, we know that normal transport properties in this chaotic model are just a
mere consequence of the presence of the on-site force acting on each particle, which
prevents the possibility of total momentum conservation, because translation invari-
ance is broken by the local harmonic forces. In fact, contrary to what was conjectured
about chaotic systems, when the total length, the total momentum and the total energy
of any 1D and 2D chaotic system are conserved, anomalous transport sets in. This is
what we are going to discuss broadly in Sect. 2.

1.2 Outline of the paper

In this work, we will provide an updated review of the research on the problem of
anomalous transport, with an eye to its effect on nanoscale systems. The choice of
topics reflects of course our own work and expertise, and we refer the reader to the
Bibliography for a more complete overview.

In Sect. 2 we briefly introduce the main features as studied for simple models,
namely low-dimensional lattices of coupled nonlinear oscillators. We recap the rele-
vant phenomena andnumerical evidence of anomalous energy transport and emphasize
their universal features. Some recent results, including the effects of magnetic fields,
long-range forces, and weak chaos will be reviewed. To demonstrate the generality of
these results, we also report on some simulation studies of low-dimensional fluids.

Section 3 addresses the general problem of how to control and manage heat
transfer in nanosized structures, exploiting the general knowledge gained by recent
research. The section deals first with thermal rectification and possible enhancement
mechanisms of heat-to-work energy conversion. Then we review the counterintuitive
phenomenon of inverse coupled currents, whereby currents flow against both temper-
ature and concentration gradients.

As a step towards implementation of the above concepts in realistic low-dimensional
structures, in Sect. 4, we review the current state of the art of molecular dynamics sim-

1 A chain of particles attached to on-site harmonic springs and interacting between themselves by collisions
with nearby particles.
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ulations of nanosystems, that are the best candidates to observe and exploit anomalous
heat conduction in devices. We first recall the basic simulation methods, which can
be grouped into equilibrium and non-equilibrium molecular dynamics approaches.
We then describe anomalous transport in three cases: isolated single polymers, indi-
vidual carbon nanotubes, and graphene. These appear to be ideal candidates to test
the theoretical predictions in one and two dimensions. Then we discuss the relevance
of hydrodynamic effects on non-Fourier heat transport at the nanoscale. Finally, we
review some of the works in which the original concept of thermal rectification based
on phonons non-linearity has been investigated.

A few experimental works have been reported to try to validate the theoretical
predictions. In Sect. 5, we briefly point to the relevant literature.

2 Statistical mechanics of non-Fourier heat transport

In this section, we review the main features of anomalous energy transport and viola-
tions of Fourier law in low-dimensional non-linear systems from the point of view of
statistical physics. For a more extensive account, we refer the reader to existing review
papers [2, 3, 5, 27].

Anomalous transport emerges as a hydrodynamic effect due to the conspiracy of
reduced space-dimensionality, conservation laws, and non-linear interactions, yield-
ing nonstandard relaxation properties even in a linear response regime. The most
concise, heuristic way to describe what anomalous energy transport is about, is to
imagine that the energy carriers (e.g. phonons in a low-dimensional structure) prop-
agate superdiffusively, i.e. in a non-Brownian way. Indeed, most of the anomalous
transport phenomenology in such many-body systems can be effectively described as
a random propagation [28] of the energy carriers, as demonstrated extensively in the
literature [29–31]. A Lévy walk is a stochastic process where a particle undergoes
random jumps with constant speed and for random times distributed as an inverse
power-law distribution [28]. This description entails that the mean free path becomes
effectively infinite, thus leading to the breakdown of standard kinetic approaches.

2.1 Anomalous heat transport in classical anharmonic chains

As a reference system, we will consider the class of models, represented by a Hamil-
tonian of the following form:

H =
N∑

n=1

[
p2n
2m

+U (qn+1 − qn)

]
. (3)

The model admits two physical interpretations: one as a discretization of a scalar field
q(x, t) on a one-dimensional lattice, qn(t) ≡ q(n, t). Otherwise, one can regard qn as
physical positions on the line, i.e as a 1D fluid. One implicitly assumes that particle
order is preserved. For isolated chains, one typically enforces periodic boundary con-
ditions qN+1 = q1+ L , where L is the total length. Hamiltonian (3) has the invariance
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property under translations qn → qn +cst leading to momentum conservation. More-
over, the “stretch” variable

∑
n(qn+1 − qn) is also conserved. Since we are interested

in heat transport, one can set the total momentum to zero without loss of generality.
The relevant state variables of microcanonical equilibrium are the specific energy (i.e.,
the energy per particle) h = H/N and the elongation l = L/N (i.e., the inverse of
the particle density). If U is quadratic around the equilibrium state, the chain admits
a single branch of acoustic phonons.

Common choices for the interaction potential are the famous FPUT potential

UFPUT(x) ≡ 1

2
x2 + α

3
x3 + β

4
x4 (4)

or the Lennard–Jones one [32]

ULJ(x) = 1

12

(
1

x12
− 2

x6
+ 1

)
. (5)

Throughout this paper, we adopt suitable adimensional model units to simplify the
notation.

The main results, emerging from a long series of contributions, can be summarized
as follows— [2, 3, 5, 27]. Models of the form (3) having the three conservation laws
described above, generically display anomalous transport and relaxation features. In
other terms, Fourier’s law does not hold: the kinetics of energy carriers is so correlated
that they are able to propagate faster than in the ordinary (diffusive) case.

Such a behaviour manifests itself in the simulations in various facets [33]:

• The finite-size heat conductivity κ(L) diverges in the limit of a large system size
L → ∞ as, κ(L) ∝ Lγ [34], i.e. the heat transport coefficient is ill-defined in
the thermodynamic limit.

• The equilibrium correlation function of the total energy current J displays a
nonintegrable long-time tail 〈J (t)J (0)〉 ∝ t−(1−δ), with 0 ≤ δ < 1 [35, 36].
Accordingly, the Green–Kubo formula yields an infinite value of the conductiv-
ity.2

• Energy perturbations propagate superdiffusively [29, 37]: a local disturbance of
the energy field spreads, while its variance broadens in time as σ 2 ∝ tβ , with
β > 1.

• Temperature profiles in the nonequilibrium steady states are intrinsically nonlinear,
even for vanishing applied temperature gradients. Typically they are the solution
of a fractional heat equation instead of the standard heat equation, [30, 38, 39].

There is a large body of numerical evidence that the above features occur gener-
ically in 1D, whenever the conservation of energy, momentum and length hold. As
it is known, this is related to the existence of long-wavelength (Goldstone) modes
(an acoustic phonon branch in the linear spectrum) that are very weakly damped.

2 An alternative formulation of this statement, based on the well-known Wiener–Khintchine theorem and
asymptotic analysis, is that the equilibrium power spectrum of the energy current has a zero-frequency
singularity of the form ω−γ .
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Moreover, the exponents that characterize the phenomena listed above are related, as
they are different facets of the same physical effects. For instance, if there is a finite
propagation speed one can argue that δ = γ , etc. [2, 3, 5, 27].

As for the dependence on the dimension, one can find evidence of anomalous
transport and a diverging heat conductivity in 2Dmodel, like for instance a 2D version
of the the FPUT model. Typically, the finite-size conductivity data are consistent with
a logarithmic dependence with the system size L [40–42]. Moreover, normal diffusive
transport is restored in the 3D case [43, 44] (with the exception of integrable models
like a purely harmonic crystal).

The importance of conservation laws can be appreciated by examining the following
examples.Consider first the anharmonic chainswhere a local external pinningpotential
V is added to the Hamiltonian,

H =
N∑

n=1

[
p2n
2m

+U (qn+1 − qn) + V (qn)

]
. (6)

The main difference is that this class of models has only one global conserved quan-
tity, namely energy. The dispersion in the linear limit is gapped, i.e. it admits only
optical phonon modes. Relevant examples in this class that have been discussed in the
present context are the discrete φ4 theory [45] and the Frenkel–Kontorova model [46].
Generally, the addition of pinning forces suffices to make the anomalies disappear and
restore Fourier’s law and standard heat diffusion. Another interesting and well-studied
example [47, 48] is the rotor (or Hamiltonian XY) chain, namely (3) with

U (x) = UXY (x) ≡ 1 − cos x .

Here, x has to be read as a difference between angles, and thus the stretch variable is no
longer globally conserved by a change of relative phases by 2π . So the model has two
conserved quantities only, and transport is normal with finite thermal conductivity and
finite Onsager coefficients [49–51]. (A more sound theoretical justification for those
observations will be reviewed below).

For completeness, we also mention another important model related to the ones
mentioned above, namely the discrete nonlinear Schrödinger (DNLS) lattice (also
termed the discrete Gross–Pitaevskii equation). As it is known, it has important appli-
cations inmany domains, for instance, electronic transport in biomolecules and atomic
condensates in optical lattices [52]. It is defined by the Hamiltonian

H =
N∑

i=1

[
1

4

(
p2i + q2i

)2 + pi pi+1 + qiqi+1

]
, (7)

whose equation of motion can be written in terms of the complex variable zn =
(pn + iqn)/

√
2 as

i żn = −2 | zn |2 zn − zn−1 − zn+1. (8)
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Besides the total energy, the system admits a second constant of motion, namely
the total norm A = ∑N

n=1 | zn |2, which, depending on the physical context, can
be interpreted as the gas particle number, optical power, etc. At variance with its
continuum counterpart, the DNLS is non-integrable and typically displays chaotic
dynamics. There is evidence that transport is normal for DNLS, i.e. that the elements
of the Onsager matrix are well-defined in the thermodynamic limit [53–56].

To end this section, let us mention that the actual simulations described here turned
out to be quite challenging, despite the apparent simplicity of the models. As it is
known, equilibrium simulations of correlation functions are affected by large statis-
tical fluctuations. Reliable measurements of transport coefficients in nonequilibrium
simulations can also be very difficult, while the presence of boundary resistances
and strong finite-size effects are usually serious issues. It is worth mentioning that
improved methods, which originated in the statistical physics community, seem very
promising. For instance, importance sampling schemes aiming at sampling the prob-
ability of rare current fluctuation have been proposed [57]. This approach, based on
the so-called cloning algorithms, seems quite effective in assessing the anomalous
transport properties of low-dimensional nanomaterials [58].

2.2 Kardar–Parisi–Zhang universality

The main theoretical insight that has been achieved is the intimate relation between
the anharmonic chain and one of the most important equations in nonequilibrium
statistical physics, the celebratedKardar–Parisi–Zhang (KPZ) equation, also known as
the noisy (or fluctuating) Burgers equation. The latter was originally introduced in the
(seemingly unrelated) context of surface growth [59], but turned out to be a paradigm
of many non-equilibrium problems in physics. In the case of a scalar stochastic field
h(x, t) in one spatial dimension it reads

∂h

∂t
= ν

∂2h

∂x2
+ κ

2

(
∂h

∂x

)2

+ η, (9)

where η(x, t) represents a Gaussian white noise with 〈η(x, t)η(x ′, t ′)〉=2Dδ(x −
x ′)δ(t − t ′) and ν, κ, D are the relevant parameters.

The connection between the KPZ and anomalous transport has been derived within
the nonlinear fluctuating hydrodynamics approach [60, 61]. The theory is able to justify
and predict several universal features of anomalous transport in anharmonic chains.
This implies that their large-scale dynamical properties are in the same dynamical
universality class as Eq. (9). We give here a preliminary account, referring the reader
to [60, 62] for details. The main entities are the random fields describing deviations of
the conserved quantities with respect to their stationary values. The role of fluctuations
is taken into account by the renormalization group or some kind of self-consistent
theory.

More precisely, large-scale fluctuations result from three stochastic fields or modes:
two soundmodes,φ±, traveling at speed c in opposite directions, and one stationary but
decaying heatmode,φ0. Loosely speaking,we can represent e.g. the displacement field
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as the superposition of counter-propagating plane waves, modulated by an envelope
that is ruled at large scales by Eq. (9). The quantities of interest are the equilibrium
spatiotemporal correlation functions Css′(x, t) = 〈φs(x, t)φs′(0, 0)〉, where s, s′ =
−, 0,+. Because themodes separate linearly in time, one argues that the corresponding
equations decouple into three single-component equations. Those for the soundmodes
have precisely the structure of the noisy Burgers equation [60]. For the heat mode,
the self-coupling coefficient vanishes, whatever the interaction potential. Sub-leading
corrections must be considered within the mode-coupling approximation, resulting in
the symmetric Lévy distribution.

For the generic case of non-zero pressure, which corresponds either to asymmet-
ric inter-particle potentials or to an externally applied stress, the theory predicts the
following scaling form for the auto-correlation functions of the modes

C∓∓(x, t) = 1

(λs t)2/3
fKPZ

[
x ± ct

(λs t)2/3

]
, (10)

C00(x, t) = 1

(λet)3/5
f 5/3LW

[
x

(λet)3/5

]
. (11)

Remarkably, the scaling function fKPZ is universal and known exactly (see [60] and
references therein). Also, f ν

LW(x) denotes the Lévy function of index ν, defined as the
Fourier transform of the characteristic function e−|k|ν . Such a family of functions is
well-known and (not by chance) appears in the theory of anomalous diffusion [63].
The non-universal features are in the λs and λe, that are model-dependent parameters.
Therefore, fluctuations of observables display, in the hydrodynamic limit, anomalous
dynamical scaling, as manifested by the t1/z dependence of correlation on time, as
seen in Eq. (10). Here the dynamical exponent z = 3/2 is different from z = 2,
expected for a standard diffusive process.3 As a consequence of such scaling, it has
been argued that the energy current correlations decay with an exponent δ = 1/3 i.e.
κ(L) ∼ L1/3.

Even from such a short outline, it is evident that the hydrodynamic approach pro-
vides several predictions. Most of them have been successfully tested for several
models [64–66], including anharmonic chains with three conserved quantities like the
FPUTmodel [67, 68]. Also, the KPZ scaling is not limited to scalar displacements, but
applies as well to quasi-1D chains with 3D motions [69]. It should be however recog-
nized that departures from universality have been reported in simulations of specific
hard-point gas models [70].

Another remarkable feature is that theKPZ scalingmay hold approximately in some
regimes. For instance, it accounts well for the low-temperature hydrodynamics of the

3 Equivalently, one can recast the results in reciprocal space. For instance, the dynamical structure factor
S(k, ω) of the particle displacement shows for k → 0 two sharp peaks at ω = ±ck that correspond to the
propagation of sound modes and for ω ≈ ±ωmax it behaves as

S(k, ω) ∼ f̂KPZ

(
ω ± ωmax

λskz

)
, (12)

with f̂KPZ being the transform of the scaling function.
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DNLS equation (8) in the regime where there is an approximate third conservation
law [55, 71]. It should however be kept in mind that the observability of KPZ scaling
may be hindered by significant scale effects, especially when the dynamics is only
weakly chaotic [72] (we will come back to this in Sect. 2.4 below).

Although the KPZ class is expected to be generic, there may be specific cases that
belong to a different (non-KPZ) universality class by virtue of additional symmetries.
This is the case of anharmonic chains models with symmetric interaction potentials
like the FPUT-β model, namely the potential in Eq. (4) with α = 0 [73, 74], as well as
of chains with conservative noise (e.g., the noisy harmonic [75, 76] or nonlinear [77,
78] chains). Physically, this condition corresponds to the casewhere the chain is at zero
pressure [74]. This possibility is also accounted for by the fluctuating hydrodynamics
approach. Indeed, for an even potential, the mode-coupling approximation predicts a
different scaling of the correlation functions [60]:

C∓∓(x, t) = 1

(λ0s t)
1/2 fG

[
x ± ct

(λ0s t)
1/2

]
, (13)

C00(x, t) = 1

(λ0e t)
2/3 f 3/2LW

[
x

(λ0e t)
2/3

]
, (14)

where fG(x) is the unit Gaussian with zero mean. This class would correspond to a
diverging finite-size conductivity with γ = 1/2. It is worth also mentioning, that the
kinetic theory approach confirms a non-KPZ behavior for the FPUT-β model [79–82],
albeit with a different exponent γ = 2/5, which is pretty close to the numerical one
[73, 83].

To conclude, it has been also argued that the two main nonequilibrium universal-
ity classes, the diffusive and KPZ, are only two cases of an infinite discrete family.
The members of this family can be identified by their dynamical exponent, which
depends on both the number of conserved quantities and the coupling among their
hydrodynamic modes [84].

2.3 Anomalous transport with broken time-reversal

The effect of time-symmetry breaking on anomalous transport has been considered in
[85, 86] that investigated a one-dimensional chain of charged beads, interacting with a
quadratic potential, in the presence of an external magnetic field B. For B = 0, δ = 1

2 ,
thus indicating the presence of anomalous transport and a divergent heat conductivity

κ(L) ∼ L
1
2 . For nonvanishing B the total pseudo-momentum is conserved, and the

hydrodynamics of the model must be modified. Actually, numerical and analytic esti-
mates indicate that in this case, the exponent δ may turn to a value different from 1

2 . In
particular, in [85] two different cases were considered: the one where oscillators have
the same charge and the one where oscillators have alternate charges of sign (−1)n ,
n being the integer index numbering oscillators along the chain. In the former case,
the sound velocity vanishes, and the energy correlator exhibits a heat peak centered
at the origin and spreading in time. Conversely, in the latter case, the sound velocity
is finite and its value depends on B. Here, the heat mode is coupled to sound modes
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propagating through the chain. The exponent γ is the same obtained for B = 0, i.e.
γ = 1

2 .
In the case of equally charged beads, one finds a novel exponent γ = 3

8 , which
corresponds to a different universality class.An important remark on this newexponent
is that, in the absence of a finite sound velocity, the identification of the exponents δ

and γ , invoked above, no longer holds. Indeed, in this case, one has δ ≈ 3
4 . Rigorous

estimates of these exponents also for the d = 2 and d = 3 versions of the model have
been obtained through the asymptotes of the corresponding Green–Kubo integrals,
where the deterministic dynamics has been substituted with a stochastic version that
conserves the same quantities [86].

2.4 Integrable models and their perturbations

The above results aremostly obtained in a strongly nonlinear regime ormore generally
far from any integrable limit. For the FPUTmodel, this means working at high enough
energies/temperatures to avoid all the difficulties induced by quasi-integrability and
the associated slow relaxation to equilibrium.

Integrable systems constitute per se a relevant case and experienced a renovated
interest in recent years. In the framework of this review article, the reference example
is certainly the celebrated Toda chain, namely the model in Eq. (3) with

UT (x) = e−x + x − 1.

As intuitively expected, heat transport is ballistic due to its integrability and the asso-
ciated solitonic solution [87]. Mathematically, this is expressed by saying that there
is a non-vanishing Drude weight, namely a zero-frequency component of the energy-
current, and power spectrum [88, 89]. A lower bound of the Drude weight can be
estimated by making use of Mazur inequality [90] in terms of correlations between
the currents themselves and the conserved quantities. See [88, 89] for application
to the Toda case. However, the idea of solitons transporting energy as independent
particles is somehow too simplistic. At variance with the harmonic chain, which is
also integrable, but whose proper modes are non-interacting phonons, the Toda chain
should rather be considered as an interacting integrable system [91]. In simple terms,
it means that the quasi-particles (the famous Toda solitons) experience a stochastic
sequence of spatial shifts as they move through the lattice, interacting with other exci-
tations without momentum exchange. This yields a kind of non-dissipative diffusion
[92] that reflects in the calculation of the transport coefficients by the Green–Kubo
formula, indicating the presence of a finite Onsager coefficient. The latter corresponds
to a diffusive process on top of the dominant ballistic one [89, 93, 94].

In general, equilibrium correlations of integrable models should display a ballistic
scaling, as indeed confirmed for the Toda chain [93]. There are some exceptions to this
rule, like in the case of the scaling behavior of the integrable lattice Landau–Lifshitz
spin chain that, for the case with zero mean magnetization, has a scaling function
identical to the one obtained for the KPZ equation [95].
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A natural question concerns the behavior when a generic perturbation is applied to
an otherwise integrable system. The first observation is that the actual form of per-
turbation is relevant. For instance, adding a quadratic pinning potential V (x) = x2/2
to the Toda chain does restore standard diffusive transport, but numerical simulations
show that long-range correlations are preserved over relatively large scales [39, 94].
Moreover, weak perturbations that conserve momentum (and are thus expected to dis-
play anomalous transport in the KPZ class) display instead significant deviations [78]
and even diffusive transport over the accessible simulation ranges [96].

The relevant issue regards the typical length scales over which the anomalous trans-
port is restored by the effect of a perturbation. The length-independent flux exhibited
by integrable systems is the result of the free displacement of quasi-particles (the
integrals of motion, such as solitons) from the hot towards the cold reservoir. In the
vicinity of the integrable limit, as a result of mutual interactions, the quasi-particles
acquire a finite and large mean free path �. A purely ballistic behavior is observed for
L < �. On the other hand, L > � is not a sufficient condition to observe a crossover
toward the anomalous behavior predicted by the above-mentioned theoretical argu-
ments. In fact, it is necessary for L to be so long that the normal flux induced by
inter-particle scattering becomes negligible. Altogether, upon increasing L at fixed �,
one should observe a first ballistic regime followed by a kinetic (diffusive) one, until
eventually, the asymptotic hydrodynamic (anomalous) regime is attained. The three
different regimes are observable only provided the relevant length scales are widely
separated.

Based on these heuristic considerations, one may look for a decomposition of heat
flux J (L, ε) as [72]

J (L, ε) = JA(L, ε) + JN(L, ε), (15)

where ε measures the perturbation strength i.e. the distance from the integrable limit,
JA is the anomalous hydrodynamic part, and JN is the kinetic contribution, accounting
for the energy transported by the weakly interacting quasi-particles. As explained
above, for L → ∞, we expect JA ≈ Lγ−1 with γ = 1/3 in systems belonging to the
KPZ class.

Following a kinetic argument [97], we argue that JN must be only a function of
ξ = L/�, which is the ratio expressed in units of the mean free path �, the only
relevant scale. Moreover, JN should display a crossover from ballistic to diffusive
regimes depending on ξ , namely it should approach a constant for small ξ and be
proportional to 1/ξ for large ξ . A simple interpolating formula would thus be

JN(ξ) = j0
r + ξ

, (16)

where r is a constant accounting for the boundary resistance [98] and j0 is an additional
constant.

Approaching the integrable limit, the mean free path must diverge, and it is natural
to assume that � ≈ ε−θ , where θ > 0 is a system-dependent exponent. As long as
JA(L, ε) does not display any singularity for ε → 0 (we return to this point below),
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we can neglect its dependence on ε. Altogether, Eq. (15) can be approximated for
large L as

J (L, ε) ≈ cA
L1−γ

+ cN
Lεθ

, (17)

where cA and cN are two suitable parameters. Accordingly, the anomalous contribution
dominates only above the crossover length �c ≈ ε−θ/γ . For L ≤ �c, heat conduction
is dominated by JN. In particular, within the range [� = ε−θ , �c] an apparent normal
conductivity is expected, which is nothing but a finite size effect.

The above description accounts very well for the numerical data for the perturbed
Toda and hard-point gas models [72].

The standard case of the perturbed harmonic chain deserves a special consideration
from this point of view. Numerical analysis of the FPUT-β model at very low energy,
i.e. below the strong stochasticity threshold, does not reveal any signature of an inter-
mediate diffusive regime, but rather a direct crossover from ballistic to anomalous
regimes [99]. More compelling evidence of the absence of a diffusive regime comes
from the study of the harmonic chain with conservative noise [75] with rate ε → 0.
It has been found analytically [76] and confirmed numerically [100] that JA(L, ε),
exhibits a singular dependence in the form of a divergence of the coefficient cA in
Eq. (17), cA ≈ ε−1/2, which implies that JA dominates JN for any value of L .

The above reasoning can explain the numerical observation of the apparent normal
diffusion observed for asymmetric potentials U (x) �= U (−x) [78, 96, 101, 102].
Indeed, if the potential is well approximated by a perturbed Toda one, the crossover
to the anomalous regime may occur at prohibitively large sizes. For instance, the
paradigmatic FPUT chain is consistentwith this scenario [65]. Other studies confirmed
that the diffusive regime is indeed a finite-size effect, whereby anomalous behavior is
recovered for L large enough [65, 102–104].

2.5 Long-range interacting chains

Another ingredient that has been considered in this context is the effect of long-range
interactions, i.e. systems in which the interparticle potential decays at large distances
r as r−d−σ , in dimension d. [105, 106]. The study of this class of problems has a
long-standing tradition in equilibrium statistical mechanics, starting from the seminal
works byDyson [107]. Besides the theoretical motivations, there are also experimental
examples, notably trapped ion chains, dipolar condensates etc. both classical and
quantum [108].

One distinguishing feature is that, for interactions decaying sufficiently slowly with
distance, perturbations may propagate with infinite velocities, yielding qualitative dif-
ferences with respect to their short-ranged counterparts [109, 110]. At nonequilibrium,
the dynamics of long-range systems presents metastable states, whose lifetime scales
as N [105, 106, 111] and even lack of thermalization upon interaction with a single
external bath [112]. As far as transport and hydrodynamics are concerned, non-local
effective equations are expected to arise naturally by the non-local nature of couplings.
This has also effects on energy transport for open systems interacting with external
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Fig. 2 Schemes of a one-dimensional coupled-oscillator model with single and double-well local potential
and long-range interaction decaying as d−1−σ

i j , di j represents the distance between the lattice sites, and the
Hamiltonian is given by (18)

reservoirs and, more generally, on the way in which the long-range terms couple the
system with the environment.

For the class of nonlinear oscillator lattices treated here, there is now a body of
evidence that non-Fourier transport would occur, although several issues are still open.
Let us first considered the simplest extension of (6) that contains long-range harmonic
couplings (see Fig. 2) [113]

H =
N∑

i=1

⎡

⎣ p2i
2

+ V (qi ) − μ

Nσ

N∑

j>i

qi q j

d1+σ
i j

⎤

⎦ (18)

where μ is a coupling constant. The cases μ > 0 and μ < 0 correspond to ferro-
magnetic (attractive) and antiferromagnetic (repulsive) interactions, respectively. For
a finite, periodic lattice, di j identifies the shortest distance between sites i and j

di j = min{| i − j |, N− | i − j |}. (19)

The real exponent σ ≥ −1 controls the interaction range. In one-dimension, for
σ < 0 the energy is made extensive by the Kac prescription [105] i.e. by introducing
the factor

Nσ = 2
N/2∑

r=1

1

r1+σ
. (20)

For σ > 0, Nσ attains a constant value for large sizes N and diverges for σ <

0, ensuring energy extensivity. Notice that σ = −1 corresponds to a mean-field
interaction, N−1 = N [114, 115], while in the limit of σ → +∞ the case of nearest-
neighbor interactions is retrieved.

Another class of models is the one with nonlinear long-range forces. Two specific
examples have been considered in the literature. The first one is a harmonic chain with
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long-range quartic coupling [116, 117]

H =
N∑

i=1

⎡

⎣ p2i
2

+ 1

2
(qi+1 − qi )

2 + 1

Nσ

N∑

j �=i

(qi − q j )
4

d1+σ
i j

⎤

⎦ . (21)

The second has instead the form [118, 119]

H =
N∑

i=1

⎡

⎣ p2i
2

+ 1

Nσ

N∑

j �=i

U (qi − q j )

d1+σ
i j

⎤

⎦ , (22)

withU = UXY [118] andU = UFPUT [119]. The two models differ in their dispersion
relation in the harmonic limit, as obtained by seeking for plane-wave solutions of the
form qn ∼ exp(ıkn − ı�σ t) (for periodic boundary conditions the allowed values
of the wave number k are integer multiples of 2π/N ). In fact, model (21) has the
standard, σ -independent acoustic dispersion �2(k) = 4 sin2(k/2) and finite group
velocities. Instead, for (22) the dispersion relations read [120, 121]:

�2
σ (k) = 2

Nσ

N∑

n=1

1 − cos kn

n1+σ
. (23)

For N → ∞ and in the small wavenumber limit, | k |→ 0,

�σ (k) ∝
{

| k | σ
2 for 0 < σ < 2,

| k | for σ ≥ 2.
(24)

As a consequence, the group velocity diverges as | k | σ−2
2 in the first case, while it

is finite in the second one. This result can also be derived from the continuum limit,
yielding a fractional wave equation [122]. The case σ < 0 is even more peculiar,
since the spectrum remains discrete in the thermodynamic limit [123] and will not be
considered henceforth.

Let us first discuss the case (18), and focus on the so-called weak-long range case,
σ > 0. As far as hydrodynamics is concerned, the main results can be described
effectively assuming that the fluctuations of the local energy field

hi = p2i
2

+ V (qi ) − μ

Nσ

N∑

j �=i

qi q j

d1+σ
i j

, (25)

propagates as a Lévy flight. This process is well known as the simplest generalization
of the Brownian random walk, yielding anomalous diffusion of an individual particle
[124].More precisely, we assume that the site energies h j undergo a stochastic process
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ruled by the master equation

ḣ j =
∑

i �= j

Wi j (hi − h j ), Wi j = λ

| i − j |σ+2 , (26)

where λ is a characteristic rate, setting the inverse timescale of the process. Remark-
ably, this simplemodel accounts both for the dynamical scaling of structure factors and
for the scaling of the energy flux out-of-equilibrium [113]. Large-scale fluctuations
of the local energy field display hydrodynamic behavior, which is diffusive for σ > 1
and superdiffusive for 0 < σ < 1 in both the cases with single and double-well local
potentials, with either attractive or repulsive couplings. In the superdiffusive case,
numerical data and (26) suggest that the energy field follows a fractional diffusion
equation of order σ , i.e. a non-Fourier heat transport with an anomalous scaling of
the energy flux as L−σ . Remarkably, in the case of the double-well potential with
attractive interaction such behavior of energy fluctuations appears to be insensitive to
the phase transition.

In hindsight, the very fact that a Lévy flight model accounts for the large-scale
energy fluctuations and transport may appear an obvious consequence that the cou-
plings decay algebraically with the distance. However this is not the case for at least
two reasons. First, the correct exponent in (26) must be σ + 2, which is not trivial
a priori. Second, models with the same r−1−σ interactions like (21) and (22) have
different dynamical exponents [116, 118, 125]. For instance for the FPUT model, the
structure factors at finite energy density display distinct peaks, corresponding to long-
wavelength propagating modes, whose dispersion relation is compatible with (24).
Also, they display dynamical scaling of the form (12), with a dynamical exponent z
that depends weakly on σ in the range 0 < σ < 2. The line shapes have a non-trivial
functional form and appear somehow independent of σ .

In other words, models having the same coupling r−1−σ may belong to different
dynamical universality classes, having different hydrodynamics. This conclusion is
confirmed also by noting the differences between model (18) and the momentum-
exchangemodel with long-range interactions [126]. It consists of the Hamiltonian (18)
with a quadratic pinning potential V perturbed by a random exchange of momenta
between the nearest neighbor sites, occurring with a given rate [126]. This model
allows for an exact calculationof the exponent δ ruling the decayof energy current auto-
correlation (and thus the finite-size scaling of the heat flux in the nonequilibrium setup).
It turns out that δ has a dependence on σ which is different from the nonlinear model
described above: for instance, for the momentum-exchange model, superdiffusive
transport occurs for 1

2 < σ < 3
2 instead of 0 < σ < 1. Moreover, the associated

fractional diffusion equation in the hydrodynamic limit [127] has a different order.
Thus the two models belong to different classes.

The situation is even more complicated for models (21) and (22). The numerical
results indicate that the exponent γ of finite-size conductivity depends in a non-trivial
way on σ [94, 116], see Fig. 3. An intriguing feature is also that for σ = 1 the
conductivity diverges almost linearly with the system size and the temperature profile
has a negligible slope [94, 116]. This ballistic transport regime is unexpected and may
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Fig. 3 Long-range chains:
dependence of the thermal
conductivity exponent γ (σ ) on
the exponent controlling the
interaction range σ . Upper
panel: case of models
momentum-conserving FPUT
(21 and (22 taken from [116]
and [94]. Lower panel: case with
pinning potential (18) taken
from [113]; the solid purple line
is what predicted from the Levy
flight master equation (26). In
both panels, the solid green lines
are the analytical result for the
related momentum-collision
model, see [86] for details
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perhaps suggest that the models are close to some (yet unknown) integrable limit. To
try to rationalize the results so far available, in Fig. 3, we collected the data of the
exponent γ as a function of the range exponent σ .

At equilibrium, there is also evidence of dynamical scaling of the correlation func-
tions of sound modes, akin to the one seen in the short-range case Eq. (10), but with
a σ -dependent dynamical exponent z(σ ) [125]. Within the accessible time and size
ranges, it is also found that the short-range limit is hardly attained, even for relatively
large values of σ .

In conclusion, there is plenty of evidence that transport in long-range interacting
systemsmay be anomalous, but a systematic understanding of the different universality
classes, akin to the short-range case, is lacking.

2.6 Low-dimensional fluids

So far we have discussed the case of lattice models, mostly in one dimension. To
test the generality of the results and their universality, we also discuss the case
of low-dimensional fluids. Historically, it is in this context that the long-time tails
of correlations were first discovered and studied by mode-coupling approximations
[25]. Although molecular dynamics would be the natural choice, we describe here
a different approach, that has been recently used to study anomalous transport. The
idea is to consider effective stochastic processes capable to mimic particle interac-
tion through random collisions. A prominent example is the Multi-Particle-Collision
(MPC) simulation scheme [128], that proved to be very effective for the simulation of
the mesoscopic dynamics of polymers in solution, colloidal and complex fluids etc.

In brief, the MPC method consists in partitioning the system of N particles into Nc
cells. The center-of-mass coordinates and velocity in each cell are computed and parti-
cle velocities in the cell’s center-of-mass frame are rotated around a random axis. The
rotation angles are assigned in such a way that the invariant quantities are locally pre-
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served. All particles are then propagated freely, for a time interval δt . Physical details
of the interactions can be also included. For instance, energy-dependent collision rates
can be considered [42]. Interaction with external reservoirs can be implemented by
imposing Maxwellian distributions of velocity and chemical potentials on the ther-
mostatted cells [129], or via thermal walls at the system boundaries [130].

For the case of a one-dimensional MPC fluid, since the conservation laws are the
same as say, the FPUT model, we expect it to belong to the same KPZ universality
class of anomalous transport [60, 131]. At equilibrium, numerical measurements of
dynamical scaling agrees with Eq. (12) both in the strictly 1D [68] than in quasi-
one-dimensional case, namely a fluid confined in a box with a relatively large aspect
ratio [42]. Possible dimensional crossovers upon changing the aspect-ratio are also
demonstrated [42].

Evidence of superdiffusive heat transport is also found in the open setup, where the
1D MPC fluid interacts with two heat reservoirs modeled as thermal walls [130]. In
Fig. 4, we report the results of simulations that clearly show anomalous transport in
the KPZ universality class for the regime of small enough collision times δt (crosses).
Moreover, upon increasing δt one observes a clear crossover from a normal/kinetic
regime to an anomalous/hydrodynamic one, above a characteristic size, which can be
estimated to be of order (δt)3. This is in agreement with the scenario presented above
for almost-integrable systems [72, 104, 132].

For the more realistic case of a genuine 3D MPC fluid for large aspect ratios of the
simulation box, a crossover from3D to one-dimensional (1D) abnormal behavior of the
thermal conductivity occurs [133]. The transition from normal to abnormal transport
is well accounted for by the decomposition (17) of the energy current, and the three-
regimes scenario described in Sect. 2.4 is again observed in the weakly collisional
case, where the mean free path is large enough (i.e. when the frequency of the MPC
move is small). This confirms that superdiffusive heat transport persists also for almost
1D fluids over a large range of sizes.

To conclude this overview, we register a growing interest and evidence for anoma-
lous heat transport also in other condensed-matter systems. For instance, the thermal
conductivity for one-dimensional electronic fluids has been recently examined [134].
It is argued that at lowest frequencies or longest length scales, the thermal transport is
dominated by Lévy flights of low-momentum bosons that lead to a fractional scaling,
ω−1/3 and L1/3 of heat conductivity with the frequency and system size, respectively.

3 Thermal management and conversion

In this section, we describe some application of the above concepts to achieve control
of energy currents, enhanced energy conversion and inverse coupled currents, flowing
against applied thermodynamic forces.
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Fig. 4 MPC fluid confined in a 1d box of length L . The MPC collision is performed at regular times steps,
separated by a constant time interval of duration δt . Particles interact with two thermal walls at temperatures
T0 = 4, TL = 2: when a particle crosses the boundary it is re-injected inside with a new velocity drawn at
random from a Maxwellian distribution at the wall temperature. a The energy current J as a function of the
box size L for increasing collision times δt = 0.1, 0.5, 1.0, 2.0, 5.0 and 10 (bottom to top). The upper and
the lower dashed lines correspond to the scaling of normal and anomalous transport, respectively. b The
heat conductivity κ = J L/(TL − T0) with the system size L; the dot-dashed blue line is a fit of the data
for δt = 10 with the functional form 34.2x/(12.2 + x), suggested by kinetic theory, see Eq. (16)

3.1 Thermal rectification

Generally speaking, a thermal rectifier (or thermal diode) is a device that allows the
heat flow fromone end to the other of it, but it inhibits the flow in the opposite direction.
While the design of a thermal rectifier [135–142] is fully compatible with the Fourier
law, non-Fourier transport may introduce useful features.

Let us first define a suitable rectification coefficient. We consider the heat flow
in, say, the x direction, with heat baths imposed at the left and right boundaries of a
system, T (x = 0) = T1 and T (x = L) = T2, respectively. Thermal rectification can
occur if there exist some features that break the left-right symmetry of the system. In
the case of Fourier transport, we should have a local thermal conductivity that depends
on the position x and on the local temperature T (x). Using the Fourier law, we can
then write

T (x) = T (0) +
∫ x

0
dξ

Jf
κ[ξ, T (ξ)] , (27)

where Jf if the forward heat flow (from left to right, under the condition T1 > T2)
and κ the local thermal conductivity. By solving this equation under the boundary
condition T (x = L) = T2, we can determine Jf . If the boundary conditions are
reversed, T (x = 0) = T2 and T (x = L) = T1, we obtain another dependence on
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x of local temperature and local thermal conductivity. The resulting backward heat
flow Jb (from right to left) can be different from the forward heat flow, as a result of
either inhomogeneity in the material or in the geometry. The rectification coefficient
can then be defined as

fr = (J+ − J−)

J−
× 100%, (28)

where J+ = max{Jf , Jb} and J− = min{Jf , Jb}.
Summarizing the previous discussion, we need two basic ingredients for thermal

rectification: a temperature-dependent thermal conductivity and the breaking of the
(left–right) inversion symmetry in the direction of the heat flow. Here, we consider the
case of electrical insulators in which heat is only carried by phonons. The two basic
ingredients can then be found in simple models of one-dimensional lattices. Let us
consider the Hamiltonian

H =
N∑

i=1

(
p2i
2mi

+ Vi (qi )

)
+ 1

2

N−1∑

i=1

(qi+1 − qi )
2 , (29)

where qi denotes the displacement from the equilibrium position of the i-th particle
with mass mi and momentum pi , and Vi (qi ) is a nonlinear on-site potential. Ther-
mal rectification requires some inhomogeneity in the system, for instance, one could
consider segmented chains with different nonlinearities in the different parts, or a
mass-graded system. The nonlinearity is needed to obtain a temperature dependence
of the phonon bands. In the presence of a thermal gradient, the effective phonon fre-
quencies can depend, for a given position x , on the orientation of the gradient. As
a result, one can have either a good matching of the phonon bands at the interfaces
between different parts of the material (say, for forward thermal bias, T1 > T2), or
a mismatch (for backward bias, T1 < T2). In the first case, the thermal conduction
is expected to be much higher than in the latter. The discussion so far could be car-
ried within the framework of Fourier heat transport, and indeed theoretical models
of nonlinear systems which obey the Fourier law have been proposed, for which a
rectification factor up to the order of 10,000% has been found.

Besides experimental difficulties (phononic devices [143–151] so far are limited
to fr ≈ 70%), there is a main conceptual limitation. For a system described by the
Fourier law, rectification rapidly decays to zero as the size increases. This effect is due
to the fact that rectification is a nonlinear phenomenon, which vanishes in the linear
response regime. For a given temperature bias, the temperature gradient decreases as
the system size increases, and therefore the linear response regime is approached more
and more with increasing the system size. To address larger system sizes is, on the
other hand, a practical necessity, since it is difficult to apply large temperature biases
on small scales.

Non-Fourier transport offers a possibility to solve this problem, by inserting a
ballistic channel between the two, anharmonic and asymmetric, leads [152] (see Fig. 5,
top left, for a schematic drawing of the model). For instance, one can consider the φ4
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Fig. 5 Top left: schematic drawing of a thermal rectification model based on mass-graded leads, connected
by a ballistic channel. Bottom left: boundaries of the effective phonon band as a function of temperature,
for lighter masses (m = 1, solid red lines) and for heavier masses (m = 10, dashed blue lines). Right:
rectification factor versus the overall system size N , with ballistic channel (squares) and for theφ4−φ4−φ4

model (triangles), for max(TL, TR) = 9.5, min(TL, TR) = 0.5, NL = NR = 10, mL = 1, mC = 4.5,
mR = 10, γL = γR = 1, and γC = 0 (γC = 1) for the model with (without) ballistic channel. Adapted
with permission from [152]. Copyright @ 2018 American Physical Society

lattices, Vi (qi ) = γi q4i
4 in Eq. (29). The overall system consists of NL (NR) particles

with massmL (mR) and strength of the on-site potential γL (γR) in the left (right) lead.
The two anharmonic leads are connected by a ballistic channel, that is, by a purely
harmonic central chain of NC particles with mass mC and zero on-site potential,
γC = 0. The total system size is N = NL + NC + NR.

The asymmetry needed for heat rectification is here provided by considering amass-
graded system, with mL < mR. The mechanism for rectification can be explained in
terms ofmatching/mismatching of the phonon bands for the two leads, when the higher
temperature is on the side of the heavier/lighter masses. An effective phonon analysis
predicts the phonon spectrum in the band

√
1.23 T 2/3/m ≤ ω ≤ √

(4 + 1.23 T 2/3)/m.
This band is shown in the bottom-left panel of Fig. 5. A weak temperature dependence
is observed for heavy masses, since in this case the nonlinearity is weak, while the
temperature dependence is much stronger for light masses. The phonon bands for
the two leads then significantly overlap when the higher temperature is applied to
the heavier lead, with band mismatch for the reverse thermal bias configuration. The
ballistic channel is then chosen with phonon band that has a significant overlap with
the phonon bands of both leads, as it is the case for mass mC intermediate between
mL and mR.

The advantage of a non-Fourier, ballistic channel is clear from the right panel of
Fig. 5, showing the size-dependence of the rectification factor fr when the intermediate
channel is either diffusive (γC = γL = γR) or ballistic (γC = 0). While in the former
case (φ4 −φ4 −φ4 model) the rectification factor rapidly decays with the system size,
in the latter case (φ4-harmonic-φ4 model) the rectification factor is size-independent.
Such a result is a consequence of the flat temperature profile in the ballistic channel.
That is, the temperature drop happens only in the leads and therefore the temperature
gradient, there, is not affected by the length of the ballistic channel. The linear response
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regime, whichwould imply no rectification, is therefore never reached, in contrast with
the case where the whole system is a φ4 lattice, which obeys the Fourier law.

3.2 Coupled transport

In this section, we discuss the possibilities offered by anomalous heat transport for
heat to work conversion.

We consider steady-state transport of two coupled flows, induced by two thermo-
dynamic forces. For concreteness, we focus on thermoelectricity [153–156], where
the two coupled flows are heat and charged particle flow, induced by gradients of tem-
perature and electrochemical potential. However, the discussion that follows could
be easily reformulated to other cases, like thermodiffusion, where the flow coupled to
heat is neutral particle flow. In thermoelectric devices part of the heat flow is converted
into useful work. To characterize the performance of a heat engine, we should consider
different features.

First, we define the engine efficiency as the ratio η = W/Qh of the output workW
over the heat Qh extracted from the hot reservoir. The second law of thermodynamics
tells us that the efficiency is upper bounded by the Carnot efficiency ηC = 1− Tc/Th,
with Th and Tc temperature of the hot and cold reservoir, coupled to the system (the
“working fluid”) where the energy conversion occurs.

Moreover, one should also consider the output power, since an ideal engine
approaching the Carnot efficiency for a quasi-static, infinitely slow transformation
would be of no practical use. Indeed, the delivered power would vanish in that limit.

Finally, also the constancy in the power supplied by the engine is important, and
power fluctuations are expected to play an important role when dealing with nanoscale
engines.

Note that, while we focus our discussion on power production, one could equally
well consider refrigeration, after an appropriate reformulation of the problem, where
the coefficient of performance (heat extracted from the cold reservoir over the absorbed
power) and the cooling power are considered as key quantities.

Thermoelectric transport can be conveniently formulated within linear response.
Since linear response is based on the expansion of currents, to linear order, around local
equilibrium conditions, the validity of such approach requires that the temperature
drop �T and the electrochemical potential drop �μ on the scale of the relaxation
length are such that �T � T and �μ � kBT , where kB is Boltzmann constant and
T the local temperature. In thermoelectric materials at room temperature, electrons
are typically thermalized by inelastic electron–phonon scattering and the relaxation
length is of some tens of nanometers. In this case, linear response is usually a good
approximation, even though the temperature differences between the two reservoirs
can be large. For instance, in the proposed application of the automotive industry to
generate electricity from the waste heat in a vehicle’s exhaust pipe, the hot reservoir
(the exhaust gases) is at temperature Th ≈ 600–700 K, while the cold reservoir (the
environment) is at room temperature, Tc ≈ 270–300K. In spite of the large temperature
difference, linear response can be used, since the temperature drop from Th to Tc takes
place on the scale of a few millimeters, and therefore on the scale of the relaxation
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length (around 10 nm) the temperature drop is of the order of 0.003 K, much smaller
than the local temperature.

Within linear response, the relation between currents and generalized forces is linear
[157, 158]. In particular, for thermoelectric transport, we have

⎧
⎨

⎩

Je = LeeFe + LeuFu,

Ju = LueFe + LuuFu,

(30)

where Je is the electric current density, Ju is the energy current density, and the
conjugated thermodynamic forces are Fe = −∇(μ/eT ) and Fu = ∇(1/T ), where
μ is the electrochemical potential and e is the electron charge. The coefficients Lab

(a, b = e, u) are known as kinetic or Onsager coefficients. Note that the heat current
is Jh = Ju − (μ/e)Je, namely it is the difference between the total energy current Ju
and the “ordered” part of it, i.e. the electrochemical potential energy current (μ/e)Je.

The kinetic coefficients Lab are related to themore familiar thermoelectric transport
coefficients: the electrical conductivityσ , the thermal conductivity κ , the thermopower
(or Seebeck coefficient) S, and the Peltier coefficient �:

σ = −e

(
Je

∇μ

)

∇T=0
= Lee

T
, (31)

κ = −
(

Jh
∇T

)

Je=0
= 1

T 2

det L
Lee

, (32)

S = −1

e

(∇μ

∇T

)

Je=0
= 1

T

(
Leu

Lee
− μ

e

)
, (33)

� =
(
Jh
Je

)

∇T=0
= Lue

Lee
− μ

e
. (34)

For systemswith time reversal symmetry, due to theOnsager reciprocal relation Leu =
Lue, and therefore � = T S.

When the above Onsager relation is valid, the thermoelectric performance is gov-
erned by the thermoelectric figure of merit

ZT = σ S2

κ
. (35)

Thermodynamics imposes only a lower bound on the figure of merit: ZT ≥ 0. The
thermoelectric conversion efficiency is a monotonic increasing function of ZT , with
η = 0 at ZT = 0 and η → ηC in the limit ZT → ∞. Nowadays, most efficient ther-
moelectric devices operate at around ZT ≈ 1, corresponding to amaximum efficiency
about 15% of the Carnot efficiency. On the other hand, it is generally accepted that
ZT > 3–5 is the target value for a commercially competing thermoelectric technology.
Indeed, reaching these values would yield a maximum efficiency about 40% of the
Carnot efficiency, thus making thermoelectric devices on par with other widely used
heat engines. It is an elusive challenge to increase the thermoelectric efficiency, since
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Fig. 6 Left: Thermoelectric transport coefficients for the two-dimensional MPC model as a function of
the system size. The dashed lines correspond to the theoretical predictions σ ∼ L , κ ∼ log L , S = 3/2,
and ZT ∼ L/ log L . Right: ZT vs. L , with the above theoretical expectation (dashed line) compared with
simulation where a stochastic noise breaking momentum conservation is added, of strength growing from
top to bottom. Adapted with permission from [129]. Copyright @ 2014 Institute of Physics

the transport coefficients S, σ, κ are generally interdependent. For instance, the phe-
nomenological Wiedemann–Franz law states that σ and the electronic contribution κe
to κ are proportional, so that it is not possible to independently increase σ and decrease
κ , as desirable to enhance the figure of merit ZT . It is therefore of great importance
to understand which physical mechanisms might allow to independently control the
above transport coefficients, and in particular to violate the Wiedemann–Franz law.
Note that the thermal conductivity κ = κe + κp also includes the contribution κp

from phonons and photons, so that improving the efficiency of energy conversion for
electrons by itself does not guarantee a high ZT . At the same time, one should be able
to manipulate phonon transport to reduce the overall thermal conductivity.

In the case of non-integrable, momentum-conserving systems, the thermal con-
ductivity κ diverges sub-ballistically with the system size L . On the other hand, a
theoretical argument [159] predicts that in such systems the electrical conductivity is
ballistic, that is, σ ∝ L , and the Seebeck saturates with the system size. This leads to a
blatant violation of theWiedemann–Franz law, since σ/κ → ∞ in the thermodynamic
limit L → ∞. At the same time, since S ∼ L0, also ZT diverges.

Such prediction has been confirmed in several momentum-conserving models: in
a diatomic chain of hard-point colliding particles [159], in a two-dimensional system
[129], with the dynamics simulated by the MPC method discussed in Sect. 2.6 (see
Fig. 6, left), and in a one-dimensional gas of particleswith screened (nearest neighbour)
Coulomb interaction [160]. In all thesemodels, collisions are elastic.On the other hand,
when noise breaking momentum conservation is added, ZT becomes asymptotically
independent of the system size, as expected for a diffusive transport regime. However,
when noise is weak ZT can grow up to large values before saturating (see the right
panel of Fig. 6).
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Besides efficiency, also power and constancy deserve a close inspection. Indeed,
an ideal heat engine should operate as close as possible to the Carnot efficiency,
deliver large power and exhibit small fluctuations. A trade-off between these three
desiderata of a heat engine can be obtained for a broad class of systems on the basis of
thermodynamic uncertainty relations (TURs) (see [161, 162] for perspective papers on
TURs). More precisely, we refer to classical systems described by thermodynamically
consistent rate equations on a discrete set of states or modeled with overdamped
Langevin dynamics, under steady-state conditions and with time-reversal symmetry.
In that case, from the TUR for the “work current”, namely for power, it is possible to
show that [163]

Q ≡ P
η

ηC − η

kBTR
�P

≤ 1

2
, (36)

where the (steady-state) power fluctuations are given by

�P ≡ lim
t→∞[P(t) − P]2 t . (37)

Here P(t) is themean delivered power up to time t . Note that, since P(t) converges for
t → ∞ to P as 1/

√
t , an additional factor of t in (37) is needed to obtain a finite limit

for �P . Bound (36) tells us that it is not possible to go arbitrarily close to the Carnot
efficiency while keeping at the same time finite power and non-diverging fluctuations.

Note that non-integrable, momentum-conserving systems, for which heat conduc-
tivity is anomalous, can achieve the bound Q = 1

2 when approaching the Carnot
efficiency [164]. On the other hand, for (classical and quantum) systems described
by scattering theory the upper bound for η → ηC is lower, Q = 3

8 [164]. Therefore,
interactions are necessary to achieve the optimal performance of a steady-state heat
engine, as it is the concretely the case for momentum-conserving systems.

3.3 Inverse coupled currents

The usual way to build a thermoelectric heat-engine is to construct a thermocouple
from two thermoelectric materials, the two ideally having opposite thermoelectric
responses. The reason is that in the Seebeck effect a temperature difference pushes
charge carriers to the cold side of the material, so that a voltage is induced. In the case
the flow is due to electrons, as in n-type semiconductors, the Seebeck coefficient S is
negative. On the other hand, in p-type semiconductors, the flow is due to holes, posi-
tively charged, and so S is positive. As a consequence, in a thermocouple a circulating
current is established, and a load attached to the circuit can turn the electrical power
into some other kind of work (for instance the load could be a motor which generates
mechanical work).

Momentum-conserving systems offer a conceptually appealing possibility to have
systemswith opposite sign of the Seebeck coefficient. A negative Seebeck is here quite
counterintuitive since it implies the possibility of a particle current against thermo-
dynamic forces, a possibility, however, not excluded by thermodynamics for coupled
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Fig. 7 Top left: Schematic drawing of ICC, where either particle or heat flow is against both the temperature
and the concentration gradient. Bottom left: Sketch of an ICC-based heat engine, consisting of two channels,
between two reservoirs at different temperatures TL and TR (chemical potentials self-adapt to values μL
and μR in the steady-state regime). For visualization purposes, the two species of charged particles in each
channel are represented by bullets and rods, respectively. A circular current of bullets can form and work
can be extracted by the applied potentials UA and UB. Right: dependence of the figure of merit YT on the
system size L = LA = LB for barrier height h = hA = hB = 0.5, 1.0, and 1.5. Adapted with permission
from [176]

flows. For a single flow, a response to an applied static force F > 0 by generating
a current J < 0 against that force is known as absolute negative mobility (ANM).
Such possibility is excluded around a thermal equilibrium state [165, 166], otherwise
ANM could be exploited to construct a perpetuum mobile of the second kind, with a
single heat bath performing work. That is to say, the entropy production rate Ṡ = JF
would be negative, against the second law of thermodynamics. Therefore, ANM can
appear only in nonequilibrium setups, for instance in relation to particle separation
[167, 168], self-propulsion [169], tracer dynamics in a laminar flow [170], and also
experimentally in semiconductor superlattices [171], micro-fluidic systems [172], and
Josephson junctions [173].

Conversely, the above limitation does not apply for coupled flows, and it is indeed
possible to have inverse currents in coupled transport [174, 175] (ICC). Referring
again for concreteness to thermoelectricity, the positivity of the entropy production rate
Ṡ = JeFe + JuFu (Fe,Fu > 0) can be fulfilled even though one of the two induced
currents has sign opposite to both forces (say, Je > 0 and Ju < 0). Within linear
response, one needs negative Onsager cross-coefficients [53, 174, 175], a possibility
not excluded by thermodynamics. Indeed, since Je = LeeFe + LeuFu , and from the
positivity of entropy production Lee ≥ 0, it is necessary that Leu < 0.

We stress that the ICC phenomenon should not be confused with standard thermo-
electric transport, where the two thermodynamic forces have opposite sign instead.
There, the motion of particles against an electrochemical potential difference is possi-
ble thanks to a temperature difference. In ICC an inverse particle current is obtained,
very counterintuitively, when particles move against both the temperature and the
concentration gradient (see the top left panel of Fig. 7).
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Momentum-conserving systems offer an appealing possibility to realize ICC in a
Hamiltonian system, which can be seen as a classical version of the Lieb–Liniger
model [177, 178]:

H =
∑

i

p2i
2mi

+
∑

i< j

V (xi − x j ), (38)

where mi ∈ {m, M}, V (x) = h for x ≤ |r | and V (x) = 0 otherwise, with h ≥ 0
being the height of the potential barrier (hereafter we set r = 0). Note that for h = 0,
all particles move freely and the system is integrable, while in the other limiting
case h → ∞, the system reduces to the nonintegrable two-species hard-core gas, a
paradigmatic model in the study of anomalous one-dimensional heat transport.

We can understand the fact that the cross-coefficient Leu is negative as follows. If
we set Fe = 0 and Fu > 0, then the probability for two particles to cross each other
is higher when the light particle is closer to the hot reservoir and the heavy particle is
closer to the cold reservoir. In this case, the relative velocity of the two particles is on
average higher than in the opposite configuration. Hence, it is more probable that the
relative velocity of the two particles injected by the baths is sufficient to overcome the
potential barrier. This creates an unbalance in the particle density for the two species.
As the temperature difference between the two reservoirs is increased, this mechanism
can even lead to a phase separation [179, 180].

Thanks to the ICC effect, it is possible to build a two-channel heat engine [176]
where, as in a thermocouple, a stationary circular motion of particles is established and
maintained by an applied temperature bias (see Fig. 7, bottom left). In the channels the
particles of mass MA > m (in channel A) and MB < m (in channel B), represented for
visualization purposes as rods, are reflected back when they hit a channel boundary,
with a newly assigned velocity sampled from the equilibrium, thermal distribution
determined by the temperature of the reservoir in contact with that boundary. On the
other hand, particles of mass m (depicted as bullets) can enter the reservoirs, which
in turn inject bullets into the channels with rates and energy distribution determined
by their temperatures and densities. Thanks to this effect, it is possible to make the
bullets flow inversely in one channel, say, channel B, by setting MB < m, so that a
clockwise-circulating bullet current through the whole system is created. Work can
then be extracted by applying two external bias voltages UA and UB on the two
channels, respectively (for instance, we could use a portion of the kinetic energy of
the circulating particles to set to rotation lifting wheels). The net effect is that the
engine converts a portion of the heat flowing from the hot to the cold reservoir into
work, in a very efficient way. Indeed, numerical simulations and a linear response
analysis suggest that the Carnot efficiency can be achieved, under suitable conditions,
in the thermodynamic limit.

Note that within linear response engine efficiency is a monotonously growing func-
tion of the figure of merit YT [181, 182]:

YT = (σA/L A)(σB/LB)(SA − SB)2

(σA/L A + σB/LB)(κA/L A + κB/LB)
T , (39)
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where σi , κi , Si , and Li stand for electrical conductivity, thermal conductivity, ther-
mopower, and length of channel i (i = A, B). Thermodynamics requires YT ≥ 0,
with the efficiency of heat to work conversion vanishing for YT = 0 and achieving the
Carnot efficiency for YT → ∞. Numerical simulations suggest that the Carnot limit
can be achieved for L = L A = LB , hA = hB ∼ 1/

√
L , in the thermodynamic limit

L → ∞, thanks to the interplay between ballistic particle transport and anomalous,
sub-ballistic heat transport, and to the opposite sign of the Seebeck coefficients in the
two channels, with the negative Seebeck coefficient in the channel with ICC.

4 Atomistic simulations

Since the 1990s, the developments in the fabrication and characterization of nanostruc-
tures have provided the opportunity to test experimentally the predictions of statistical
physics models. Suitable one-dimensional systems to probe anomalous heat transport
are nanotubes, nanowires, and polymer fibers. Graphene, hexagonal boron nitride,
exfoliated transition metal dichalcogenide monolayers, and thin semiconductor mem-
branes have been considered to study thermal transport in two-dimensional systems,
as well as possible platform to implement thermal rectification concepts [141].

However, it is difficult to reproduce the physics of ideal models in experiments,
the direct interpretation of which is often arduous. Atomistic simulations provide a
much-needed bridge between models and experiments. These simulations can entail
the specific properties of actual materials and realistic features, such as defects, surface
features, and contacts while allowing a detailed insight into the microscopic mecha-
nisms of thermal transport. In fact, atomisticmodeling has been successfully employed
both to predict the behavior of nanostructures and to interpret experiments.

In this section, we review the contributions of atomistic simulations to the under-
standing of the aspects non-Fourier heat transport discussed in the previous sections.
After some methodological considerations, we address the diverging thermal conduc-
tivity in one- and two-dimensional materials, and thermal rectification. Rather than
trying to list all the systems that have been studied by molecular simulations, we focus
on those closer to statistical models and most likely to exhibit anomalous proper-
ties. Further information about simulations of heat transport in nanostructures may be
found in [183].

4.1 Molecular simulationmethods

Atomistic methods to simulate thermal transport can be classified into two categories:
molecular dynamics (MD) and lattice dynamics (LD). Transport coefficients, such as
thermal conductivity, can be computed by MD either from the fluctuation of currents
at equilibrium (EMD) or, directly, from non-equilibrium (NEMD) simulations. In the
former case, the thermal conductivity of a system of volume V is obtained as the
infinite time limit of the Green–Kubo integral of the heat current auto-correlation
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function:

καβ = 1

VkBT 2

∫ ∞

0
dt〈Jα(t)Jβ(0)〉 (40)

where α, β are the Cartesian components of the heat current vector J . EMD applies to
periodically replicated systems in the bulk limit. Non-Fourier transport is characterized
by a slow decay of 〈J (t)J (0)〉 ∝ t−(1−δ), i.e. δ ≥ 0 (see Sect. 2). Hence, proving non-
Fourier thermal transport by EMD involves probing the long-time tail of correlation
functions, which are affected by large statistical uncertainties. This problem is further
aggravated by the poor ergodicity ofmost low-dimensional systems. This issuemay be
circumvented by running several statistically independent replicas of the same system.

NEMD and reverse-NEMD [184, 185] methods are similar to actual experiments:
a system of finite length in the transport direction is connected to two thermal baths at
different temperatures. The evolution of the system is simulated until the energy flux
(J ) from the hot to the cold reservoir becomes stationary.When transport is diffusive at
stationary conditions κ may be estimated directly from Fourier’s law as κ = −J/∇T
by estimating ∇T from the temperature profile. In fact, as one normally simulates
systems from several nanometers up to at most 10µm, the temperature profile is often
nonlinear. In these cases, one should calculate the Kapitza conductance of finite-length
(L) systems as G(L) = J/�T , where �T is the temperature difference between
the two thermal baths, and estimate the length-dependent thermal conductivity as
κ(L) = G ·L [186]. The results of finite-size simulations cannot be easily extrapolated
to the infinite size limit so proving the divergence of κ of realistic materials through
NEMD is a deceptive task [187]. In turn, as a non-perturbative method, NEMD is
ideal to probe non-linear effects, such as thermal rectification. There is a variety of
algorithms, thermostats, to control either the temperature of the thermal reservoirs in
direct NEMD or the heat current in reverse NEMD.Whereas in the diffusive transport
regime in three-dimensional materials different approaches to NEMD are generally
equivalent, the choice of the algorithm becomes critical in low-dimensional systems,
especially concerning ergodicity [186, 188].

An efficient alternative way of computing thermal transport in the MD frame-
work is the so-called approach-to-equilibrium MD (AEMD) [189]. AEMD consists
of preparing the system out of equilibrium with two regions at different temperatures
and monitoring the relaxation to equilibrium. In diffusive conditions, the temperature
difference between the hot and cold regions should decay exponentially following the
heat equation, and the thermal diffusivity is proportional to the relaxation time. Size
effects in this approach are similar to NEMD.

Taking care of the above-mentioned technical precautions, EMD and NEMD
approaches are complementary and provide a versatile framework to perform numeri-
cal thermal transport experiments.However, the classical nature ofMD limits the direct
comparison to experiments when quantum effects matter, i.e. when the temperature
is lower than the Debye temperature, �D of the system. For example, �D > 1500
K for carbon-based materials and ∼ 600 K for silicon. While quantum corrections
can be implemented in NEMD simulations with spectral decomposition [190], lattice
dynamics and the Boltzmann transport equation (LD-BTE) offer a more natural route
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to compute quantum phonon transport in solids [16, 191, 192]. This approach consists
of treating the normal modes of a solid as a gas of quantum quasi-particles that diffuse
according to the Boltzmann equation at stationary conditions:

�vi (q) · ∇T
∂ni (q)

∂T
=

[
∂n(q)

∂t

]

scattering
(41)

where ni (q) and �vi (q) are the populations and group velocities of mode i at wavevec-
tor q and T is the temperature. The right-hand side of Eq. (41) can be expressed
in terms of a tensor, �, that encompasses both extrinsic, e.g. isotope and boundary
scattering, and intrinsic scattering multi-phonon scattering processes. The latter are
usually approximated considering three-phonon processes only, but recent works have
highlighted the impact of higher-order four-phonon processes, especially in high ther-
mal conductivity materials [193, 194]. The solution of Eq. (41) gives an expression
for the thermal conductivity

καβ = 1

NqV

∑

i,q

ci,qv
(α)
i (q)λ

(β)
i (q) (42)

in terms of the heat capacity ci (q), group velocity vi (q) and mean free path λ
(β)
i (q) of

the renormalized phonon modes [195], also called relaxons [196] A major advantage
of LD-BTE is that it offers a direct evaluation of the contribution of each mode to the
thermal conductivity and it easily allows one to identify which phonon may lead to
anomalous heat transport in the extended size limit. Yet, atomistic LD-BTE is rarely
used to probe anomalous transport, and the comparison with MD, potentially very
insightful, is often challenging [197].

4.2 Anomalous transport in one-dimensional systems

Isolated polymer chains
Isolated polymer chains are the systems thatmost closely resemble one-dimensional

models, such as the FPUT model. While in their bulk form polymer plastics have low
thermal conductivity (κ < 0.5Wm−1K−1 for polyethylene (PE) at room temperature),
early simulations suggested that single polymer chains can have substantially higher
conductivity [201]. Realistic EMD simulations predicted a very high thermal conduc-
tivity, above 100 Wm−1K−1 for a single PE chain longer than 10 nm, and possibly
diverging κ(L) in the infinite-length limit [198]. The raw data from these simula-
tions, reported in Fig. 8a, show that in different runs of the same system the integral
in Eq. (40) appears to either diverge or converge depending on the initial conditions.
The thermal conductivity of the infinite PE chain would diverge with length under the
assumption that all the four acoustic modes would have diverging mean free path. In
turn, κ(L) would saturate if one uses a fitted finite value for the relaxation time of
these modes, as obtained from the runs in which the Green–Kubo integral converges.
Further simulations show that increasing the dimensionality of the system to 2D (thin
films) and 3D (bulk) suppresses the anomalous transport behavior [202]. Similarly, at
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Fig. 8 Molecular dynamics simulations of isolated polymer chains: a Green–Kubo running integral of
polyethylene (PE) with a different number of units (uc); b extrapolated thermal conductivity (TC) and
thermal conductance (G) of PE chain adapted with permission from [198]; c NEMD results for various
polymer chains between 1 nm and 1µm-long exhibiting critical exponents γ ∼ 0.4 adaptedwith permission
from [199]; d diverging κ for PEDOT with γ ∼ 0.5, adapted with permission from [200]

the single molecule level, finite-length fully stretched alkane chains exhibit ballistic
transport up to several tens of units [203], but their conductance is reduced introducing
kinks by bending [204].

NEMD simulations of 1D polymers of several different kinds consistently report
κ ∝ Lγ divergence for length up to 1µm,with γ � 0.4 [199], in good agreement with
kinetic theory predictions for the FPUT-β model [79–82]. Crnjar et al. investigated
anomalous heat transport in poly-3,4ethylenedioxythiophene (PEDOT) 1D chain by
AEMD [200]. These simulations show a power-law divergence of κ(L)with exponent
γ ∼ 0.5, possibly corresponding to anewuniversality class. ThePEDOTmodels are up
to 7.5µmlong, about one order ofmagnitude longer than previous inNEMDnumerical
experiments. It is nevertheless not proven that such length is sufficient obtain a well-
converged estimate of the critical exponents, as shown by systematic studies of size
effects in model systems [73]. EMD simulations of PEDOT show similar behavior as
for PE: for some trajectories the Green–Kubo integral (see Eq. (40)) reaches a constant
value, while for others it diverges. In general, these works suggest anomalous thermal
transport in 1D polymer chains with critical exponents larger than 1/3. While it is
unlikely that measurements will confirm or refute this hypothesis, these simulations
have suggested an effective approach to obtain high-thermal conductivity polymeric
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materials by drawing PE fibers, so that the PE chains are aligned and stretched as in
the ideal models [205].
Carbon nanotubes

Readily available and much easier to manipulate than polymer chains, carbon nan-
otubes (CNT) have been among experimentalists’ favorite systems to test anomalous
heat transport. After the first measurements reporting extremely high κ in CNTs [206–
208], several studies tried to assess the thermal conductivity of carbon nanotubes using
either MD or LD simulations [58, 209–221]. Early works confirm the high thermal
conductivity observed in experiments. Some of them explicitly address the possibility
of anomalous transport, but they fundamentally disagree on the convergence of κ with
length. As shown in Table 1, most EMD simulations suggest that the thermal conduc-
tivity should be finite, based on the convergence of the Green–Kubo integral. In turn,
most NEMD simulations show that κ keeps growing up to lengths of several µm. As
in the case of polymer chains, this uncertain scenario results from the difficulty of con-
verging MD simulations of nonergodic low-dimensional systems, and the sensitivity
of the results on specific methodological choices [222]. In any case, both NEMD and
AEMD results show anomalous transport—between ballistic and diffusive—in CNTs
up to several microns in length. Ray and Limmer [58] showed that the time evolution
of temperature perturbations (as in AEMD) and temperature profiles in NEMD agree
with those predicted by a Levy walk model, which is non-diffusive, and the thermal
conductivity of CNTswith L < 2µmdiverges as κ ∝ L1/2. This result is supported by
the analysis of heat flux fluctuations at equilibrium in finite-length systems, suggesting
that κ divergence is not produced by large temperature gradients.

The picture emerging from LD-BTE works is also inconclusive: early calculations
showed convergent κ if higher-order anharmonic processes are explicitly accounted
for [211]. However, the same authors eventually suggested that κ may converge only
when a cutoff to the propagation of low-frequency phonon modes is imposed [225].
These calculations, however, were carried out using a self-consistent solution of the
BTE, which has convergence issues when the scattering tensor in the right-hand side
of Eq. (41) is non-diagonally dominant [192]. From these works, it is also clear that
solving the LD-BTE in the relaxation time approximation (RTA) does not give the
correct physical picture of heat transport in either CNTs or any other low-dimensional
system.

Exploring the dependence of κ on the CNT diameter, d, both MD and LD-BTE
calculations showed that, for a given length, κ is higher for thinner CNTs [220, 226,
227]. As CNTs are not strictly speaking 1D systems, one may argue that the smaller
their diameter the closer to an actual 1D system. Ref. [226] showed that this trend is
non-monotonic, as κ reaches a minimum for d ∼ 2 nm, and then slowly rises toward
the limit thermal conductivity of graphene.

While the estimates of CNTs κ by numerical simulations are in the same ballpark of
thousandsWm−1K−1 at room temperature, there is seldom any quantitative agreement
among MD and LD-BTE calculations. A couple of recent works have addressed this
issue using consistent systems and simulation control parameters for bothMDandLD-
BTE [227, 228]. These LD-BTE calculations suggest that transport is non-diffusive up
to lengths of the order of ∼1mm, but κ(L) would probably saturate to a finite value.
This determination is however based on the calculation of phonon mean free paths at
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Fig. 9 a Thermal conductivity of a (10,0) CNT from the Boltzmann transport equation (BTE) and equi-
librium and nonequilibrium molecular dynamics (EMD, NEMD) simulations as a function of length. The
insert shows the convergence of the Green–Kubo integral from an ensemble of EMD runs [228]. b Lifetimes
of the flexural and torsional acoustic phonon modes of the same CNT from BTE and either analytical or
numerical interatomic force constants. The dashed lines indicate the power law for diverging contribution
to κ in the limit of vanishing wavevector, adapted with permission from [229, 230]

extremely short wavenumbers, which is very sensitive to numerical errors [229, 230].
To date, BTE cannot be considered conclusive as for the value of the infinite-length
limit thermal conductivity of CNTs. Figure9b highlights the numerical sensitivity of
BTE calculations in the long wavelength limit. Bruns et al. also highlighted discrep-
ancies between NEMD and LD-BTE [227]. The main source of these discrepancies is
the use of quantum statistics in BTE, while NEMD is Newtonian. If classical statistics
is used in the BTE [195] and the boundary conditions for the finite-length systems are
applied correctly [231], the NEMD and BTE agree well for nanotubes up to 10 µm
long. Furthermore, EMD simulations converge to a value that is higher than the highest
NEMD estimate of κ for L ∼ 10 µm, which makes the two methods substantially
agree (Fig. 9a) [228].

On the one hand, the analysis of phonon lifetimes from modal analysis of MD tra-
jectories and BTE calculations indicates that the phonons that may lead to anomalous
transport are the two flexural acoustic modes (Fig. 9b). On the other hand, if the atomic
coordinates perpendicular to the CNT axis are constrained, the system is left with only
the longitudinal acoustic mode and its thermal conductivity is predicted to diverge as
κ ∝ Lα , with α ∼ 0.45 [228]. A similar effect may be achieved by applying tensile
strain to the CNT, for which BTE calculations predict superdiffusive transport [232].

4.3 Non-Fourier transport in 2Dmaterials

Graphene and hexagonal boron nitride (h-BN) are one-atom thin rigid sheets, thus
realizing in the material world the equivalent of two-dimensional lattice models. For
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Fig. 10 a Thermal conductivity of graphene as a function of temperature and length computed solving
the BTE with ab initio interatomic force constants (adapted with permission from [236]. Copyright 2014,
American Chemical Society). b Decomposition of the thermal conductivity in in-plane and out-of-plane
contributions for unstrained and strained graphene from molecular dynamics simulations (adapted with
permission from [237])

this reason, thermal transport in graphene, and to a lesser extent in h-BN, has been
intensively investigated to unravel anomalous conduction both by experiments and
simulations [233]. As in the case of CNTs, NEMD simulations of graphene do not
usually manage to reach saturation of the thermal conductivity, due to their inherent
limitation in size and time scales. Large-scale NEMD up to 107 atoms showed that the
thermal conductivity of graphene does not saturate for patches up to several µm long
in very good agreement with experimental measurements [234]. In the length range
considered by this work, κ ∝ log(L), as predicted for 2D lattice models [41], thus
supporting the hypothesis of anomalous transport. Logarithmic divergence of κ was
observed in both NEMD and AEMD simulations on graphene with L < 2 µm [58].
However, further extending the size of the graphene patches to L ∼ 100 µm, shows
evidence of κ saturation [235].

In fact, both EMD simulations with empirical potentials [237, 238], and ab initio
lattice dynamics BTE calculations [196, 236, 239] confirm that the extended limit of
the thermal conductivity is finite. BTE calculations give a quantitative estimate of the
bulk thermal conductivity of graphene as a function of both length and temperature
in very good quantitative agreement with experiments (Fig. 10a), and they provide in-
depth insight into the transport mechanism [236]. At room temperature, heat transport
is superdiffusive over lengths of the order of 1mm, as the main heat carriers are
collective phonon excitations with mean free paths that extend up to 100 µm. This
collective effect, equivalent toPoiseuille flow in afluid, is enhanced in low-dimensional
materials, due to the reduced phase space for phonon scattering [196, 239].

The decomposition of the thermal conductivity of graphene into in-plane (κin) and
out-of-plane (κout) from MD simulations at room temperature shows that the relative
contribution depends on the length of the graphene patch (Fig. 10b). κin converges at
relatively short length L ∼ 1 µm, while κout keeps increasing up to 10 µm. Remark-
ably, these simulations predict that strained graphene would exhibit divergent thermal
conductivity, and κout, i.e. the flexural modes, would be responsible for the divergence
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of κ(L) [237]. This mechanism is analogous to the one discussed for strained CNT in
the previous section. It is worth noting that some BTE calculations support the diver-
gence of κ in strained graphene [240, 241], others suggest that strain would reduce κ ,
thus in stark disagreement with MD [196, 236]. The thermal conductivity of strained
graphene remains an open issue.

4.4 Ballistic-to-diffusive transport regime

Fourier’s law applies to the diffusive transport regime, which generally occurs in
extended materials. However, regardless of their dimensionality, thermal transport
through systems of finite size is ballistic when the mean free path of the heat carriers
exceeds the distance between the heat baths. From measurements and simulations
of nanoscale systems, an intermediate transport regime has emerged, denoted as
ballistic-to-diffusive, superdiffusive, or nanoscale transport regime, in which the ther-
mal conductivity appears to be size-dependent [242, 243]. As discussed in the previous
sections, in this regime the thermal conductivity depends on the length of the system
along the transport direction. This length may extend to several millimeters for low-
dimensional nanostructures, but superdiffusive transport has been observed over µm
lengths also for bulk systems at room temperature e.g. crystalline silicon [244], and
even in the cross-plane direction of layered materials stemming from unexpectedly
long heat carrier mean free paths [245, 246]. It is widely accepted that the superdiffu-
sive regime emerges from the wide range of heat carriers’ mean free paths, which can
be accurately obtained from the exact solution of the phonon BTE at the microscopic
level. [192] However, it is a matter of debate whether Fourier’s law can be applied to
model transport at the nanoscale in ballistic-to-diffusive conditions.

Extending the work by Chen and Zeng [247], Maassen, Lundstrom, and coworkers
[231, 248, 249] derived the Fourier’s law for finite-length systems from the BTE by
renouncing the assumption of local thermodynamic equilibrium, and applying phys-
ically correct boundary conditions of the forward and backward phonon fluxes at the
two contacts. Assuming perfectly thermalizing boundary conditions, this approach
leads to temperature jumps at the contacts, which approximates consistently the tem-
perature profiles computed in NEMD simulations [188]. Remarkably, one can prove
that for a model system with a single mean-free-path (λ) independent on phonon fre-
quency, the thermal conductivity over length L < λ is the same as the bulk thermal
conductivity, and the apparent reduction of κ(L) stems from a reduction of the net
phonon flux. In general, this approach describes correctly both ballistic effects and the
diffusive regime, thus, in principle, it can be applied at all length scales. However, this
picture is an approximation, which does not take into account hydrodynamic effects.

Hydrodynamic phonon transport effects, such as Poiseuille heat flow and second
soundwere observed in crystals at cryogenic conditions as early as the 1960s.Whereas
diffusive (Fourier) transport is controlled by momentum dissipating umklapp scat-
tering processes, hydrodynamic effects emerge from momentum conserving normal
scattering processes. The latter prevails at low temperatures, and in materials in which
phonon dispersion relations limit the number of umklapp scattering processes. For
this reason, phonon hydrodynamics was assumed to have a limited impact until recent
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experiments on heat transport in the nanoscale regime. In fact, the exact solution of
the microscopic BTE, Eq. (41), highlighted the contribution of collective hydrody-
namic effects to heat transport in two-dimensional materials [196, 239]. Subsequent
work showed that hydrodynamics plays a significant role not only in low-dimensional
systems or at very low temperatures, but also in bulk materials at non-cryogenic
temperatures [192]. Poiseuille flow and second sound cannot be described by the
macroscopic Fourier’s equation, and efforts have been made to generalize the heat
equation to account for hydrodynamic effects.

In the limit of weak crystal momentum dissipation, Guyer and Krumhansl derived
a steady-state solution of the linearized BTE that can be seen as a generalization of
the Fourier’s law and reads [250]:

�J = −κ∇T + l2
(
∇2 �J + α∇(∇ · �J )

)
, (43)

with α = 2. This equation is characterized by a collective non-local length l that
defines the length-scale L ∼ l at which phonon hydrodynamics impacts heat transport.
Equation (43) can be obtained more generally through the Chapman–Enskog first-
order expansion solution to the BTE with the relaxation time approximation [251].

Similarly to κ , the hydrodynamic length l can be expressed in terms of microscopic
phonon properties by separating the contributions to the phonon lifetime from normal
(τN) and umklapp (τU) scattering processes. In the limit of pure collective regime
l = 〈v2τN〉〈τ−1

U 〉−1 [250]. A more general expression for l that incorporates also
resistive processeswas eventually proposed in the context of a kinetic collectivemodel,
in which the thermal conductivity is expressed as the sum of a diffusive term (κK ) and
a collective term (κC) [252, 253].

Starting from themicroscopic linearizedBTE, Sendra et al. [254] derived an expres-
sion similar to Eq. (43) valid in the approximation of small but finite Knudsen number,
and they provide expressions to compute the parameters κ , l, and α beyond the approx-
imations of the kinetic collective model. For example, in these works, the nonlocal
length for bulk silicon at room temperature was estimated to be l ∼ 195 nm. This
model produces results in accordance with the truncated Lévy formalism with frac-
tal dimension < 2 [255], which accounts for non-Fourier transport as observed in
crystalline semiconductors and semiconducting alloys [253, 256, 257].

Using the relaxons formalism, Simoncelli et al. [258] derived two coupled general
equations for the temperature and the drift velocity fields, valid for heat transport from
the hydrodynamic to the diffusive regime. In these equations, a thermal viscosity coef-
ficient (μ) is added to the thermal conductivity (κ) as a materials parameter. While
the details of this formalism are beyond the scope of this review, it is notable that this
work introduced a parameter that allows one to assess the deviation from Fourier’s law
due to phonon hydrodynamics. This “Fourier deviation number” (FDN) is expressed
in terms of the dimensionless parameters of the newly derived viscous heat equations
and correlates well with the L2 distance between the temperature profiles predicted
by Fourier’s law and that obtained from the hydrodynamic equations. The analysis of
FDN shows that Fourier transport can emerge even at nanometer-length-scales with
important ballistic contributions when hydrodynamic effects are small compared to
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Fig. 11 Graphene-based thermal diodes: a trapezoidal patch (adapted with permission from [275]), b
multilayer graphene step junction [276] (adapted with permission from [277], Copyright 2018, IOP),
c defect-engineered nanoribbon [278] (adapted from [279], Copyright 2020, Elsevier), d nanoporous
graphene, adapted with permission from [279], Copyright 2017, Wiley VCH. e Recalculated thermal recti-
fication for small and large trapezoidal patches (LT, ST) and bilayer (BTM), trilayer (TTM), and quad-layer
to monolayer (QTM) graphene step junctions [186]

dissipative phonon scattering, thus reconciling the viscous transport formalism with
the results inRefs. [231, 249]. It is indeed likely that the application of correct boundary
conditions at the thermal bath provides a qualitative Fourier-like picture of heat trans-
port at the nanoscale with length-dependent thermal conductivity, but hydrodynamic
effects are responsible in the largest part for the non-Fourier behavior observed in the
simulations and experiments on low-dimensional materials and nanoscale systems,
including those reported in the previous sections.

The results of applying mesoscale hydrodynamic models to predict the thermal
conductivity of nanostructures depend critically on the choice of the slip boundary
conditions for the phonon flux at the surface, as for example in nanowires and thin films
[251, 259, 260]. Atomistic MD or LD simulations can in some cases overcome this
issue, as they provide a parameter-free understanding of how surfaces critically affect
nanoscale heat transport, subject to the availability of reliable interatomic potentials.
This has been the case for silicon-based materials, in particular nanowires and nano-
membranes with rough, oxidized or nanostructured surfaces [261–265].

4.5 Thermal rectification

Besides phononic effects [141] thermal rectification may be attained by modulating
electronic conduction, near-field radiation, excitonic effects in quantum structures,
superconducting tunneling junctions, and reversible phase transition in phase change
materials [266–274]. Here we review some of the works in which the original concept
of the thermal diode, based on phonons non-linearity [135, 136], is investigated in
realistic (nano)materials models by atomistic simulations.
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The primary requirements for a phononic thermal diode are the asymmetry of the
device with respect to the direction of the heat current and a strong temperature depen-
dence of the phonon spectrumof the two sides of the device. To enable strong nonlinear
effects, large temperature differences between the thermal reservoirs are necessary,
which rule out any perturbative simulation method, e.g. EMD, BTE, or Landauer
approaches. In fact, NEMD simulations have been extensively employed to calculate
the rectification factor, fr in Eq. (28), of several nanoscale systems and interfaces. Fol-
lowing the experimental demonstration of a thermal diodemade of amass-loadedCNT
[143], carbon nanostructures have been proposed as potential thermal rectification
devices. While NEMD simulations confirmed the relatively low rectification factors
observed in experiments for mass-loaded CNTs ( fR < 16%) [217], spectacular fR
were predicted for triangular (120% and 250%) [280, 281], T-shaped, and trapezoidal
(∼ 100%) [275] graphene patches, multilayer graphene stacks (110%) [276], carbon
nanocones (� 100%) [282], defect-engineered graphene nanoribbons (80% [278]),
and branched nanoribbon junctions (470%) [283]. The highest fR, up to 2500%, have
been reported for CNT-graphene junctions [284, 285], modifying a design originally
proposed in Ref. [286]. The diode effect may be enhanced by designing interfaces in
series, for example using nanoporous graphene phononic crystals, which lead to fR up
to 30% [279]. Large rectification factors were also predicted by NEMD simulations of
asymmetric silicon-based nanostructures, such as telescopic silicon nanowires, graded
silicon–germanium alloys, and porous silicon membranes [287–289].

Recent simulations, however, suggested that the rectification factor of nanoporous
or defect-engineered graphene interfaces may be much lower (∼ 6%) [290]. Also, a
joint experimental and molecular simulation study showed that it is unlikely to obtain
detectable thermal rectification in multilayer graphene step junctions [277]. Further
examples of discrepancies among simulations of similar systems are reported in a
recent comprehensive review of simulations and experiments on thermal rectification
in 2D materials [291]. The reasons for such discrepancies lie in the details of the sim-
ulation setups. The calculation of fr from NEMD is apparently straightforward, as it
primarily consists of bookkeeping the heat flux, J+/−, in the forward and backward
stationary heat transport conditions as determined by the temperature of the two ther-
mal reservoirs. However, the choice of the thermostats and the size of the reservoirs
may lead to substantial artifacts resulting in unphysical massive thermal rectification
factors. For example, a configuration of a graphene patch with asymmetric thermal
reservoirs in NEMD simulations and the Nosé–Hoover (NH) thermostat [292] gives
an apparent rectification factor of 920% [293]. This is obviously an artifact of the
simulation approach as the system is symmetric, thus violating the basic conditions to
obtain a thermal diode. Hu et al. proved that Langevin dynamics provides thermally
equilibrated heat baths with phonon distributions consistent with the classical canon-
ical ensemble. Conversely, with global thermostats, such as the NH and NH-chain
[292, 294] and velocity rescaling methods, provide a spatially uniform heat genera-
tion and nonequilibrium phonon populations in the thermal reservoirs [188]. Li et al.
[186] recalculated the rectification factor for trapezoid graphene patches and multi-
layer step junctions, which were formerly predicted to have fR ∼ 100% (Fig. 11a, b)
[275, 276]. The revised NEMD simulations, in which thermal baths are equilibrated
with the Langevin thermostat, givemuchmoremodest rectification factors, fR < 12%
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(Fig. 11c). The analysis of the phonon density of states of the thermal baths shows that
using the NH thermostat promotes artificially overpopulated modes, which presence
depends on the bias conditions of the system and leads to unphysically large recti-
fication effects. As most of the results reported above have been obtained using NH
(chain) thermostats, they should be carefully ascertained using different thermalization
methods or different parameters of the thermostats.

Interestingly, a systematic reverse-NEMD study of isotope-graded CNTs reported
rectification efficiencies up to 40%, but with an opposite direction to that found in
1D graded chains: in these CNTs heat flows more efficiently from the low-mass to
the high-mass end [295]. This surprising behavior is attributed to phonon scattering
of longitudinal modes from perpendicular flexural modes, and it suggests that CNTs
may not be used as real-world models to validate predictions for 1D systems.

5 Experiments

To conclude, we briefly mention some experimental investigations. The thermal prop-
erties of nanosized objects have an intrinsic technological interest in the field of
nanoscale thermal management. In this general context, nanowires and single-walled
nanotubes have been analyzed to look for deviation from the standard Fourier’s law.
The typical setup to measure steady-state transport is the one sketched in Fig. 1 (see
[296] for a more detailed description).

The first evidence of anomalous heat conduction in single-walled nanotubes was
given in [297]. Further experimental evidence of anomalous transport in very long
carbon nanotubes has been reported [298] although the results appear controversial
[299]. The theoretical work suggesting the importance hydrodynamic effects in room
temperature heat transport in graphene and 2D materials [196, 239, 260] fostered new
experiments that lead to the observation of second sound in graphite [300]. The wave-
like nature of heat conduction, which stands at the base of hydrodynamic effects, was
also proven experimentally in phononic crystal nanostructures engendering phonon
interference [301, 302]. Experiments demonstrating a non-trivial length dependence
of thermal conductance for molecular chains have also been reported [303].

Another experiment displaying anomalous transport has been reported in [304]. The
Authors give experimental evidence of the transition from 3D to 1D phonon transport
in NbSe3 nanowires of less than 26 nm in diameter. A superdiffusive thermal transport
compatible with κ ∼ L1/3, with a large enhancement of conductivity and a normal–
superdiffusive transition is observed. These changes are attributed to strong stiffening
along the direction of the molecular chain direction, which induces 1D along-chain
phonons dominating thermal transport.

Other nanosystems where anomalous thermal transport is investigated are single-
molecule junctions [305] and trapped linear ion chains [306]. It is conceivable that
further experimental progress will occur even in this context in the next future.
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6 Conclusion

Bridging theoretical models with experiments and technological applications is a chal-
lenging goal of physical sciences. This review aims at providing the reader with an
updated overview of the many facets, originating from the discovery that anomalous
heat transport characterizes low-dimensional models of matter. Many decades ago
such a scenario could appear as a mere academic curiosity, due to the absence of
possible experimental verifications. Nowadays, the exploration of states of matter at
nanosize (polymers, nanotubes, carbon layers, etc.) has opened a realistic perspective
for such investigations, together withmany promising expectations of obtaining useful
recipes for designing new materials and devices.

The first part of this manuscript illustrates how non-equilibrium statistical mechan-
ics can provide a conceptual basis for predicting the basic mechanisms of non-Fourier
transport in low-dimensional materials. Beyond details of the different models studied
in the past for tackling this problem, the main message is that the hydrodynamic prop-
erties of heat transport in such systems, as expected, stem from basic conservation
laws. This entails universal properties, that are typical of entire classes of models,
thus indicating that the search for these anomalous transport effects should corre-
spond to fully general features, irrespective of the adopted models of matter, sharing
the same symmetries. Going through the reading of this first part one can appreciate
the efforts to rationalize the overall theoretical matter in a consistent and convinc-
ing frame. In fact, the theoretical foundations of this problem presently rest on solid
ground. In this respect, it is worth pointing out that not only predictions of asymptotic,
i.e. thermodynamic-limit, properties, but also finite size effects can be suitably con-
trolled. It can be easily realized that this is a crucial ingredient for a reliable comparison
with experiments.

The importance of anomalous transport is further stressed by its influence on ther-
malmanagement and conversion.Aswidely discussed in the second part of this review,
this unveils unexpected possibilities for thermal rectification and for enhancing beyond
standard bounds the efficiency of thermodynamic motors in nanosized materials, by
exploiting also coupled transport processes. Relying on these achievements, one can
reasonably forecast the possibility of exploring very important technological applica-
tions for effective work production from thermal processes and for new energy-saving
opportunities.

The last part of this review is an overview of the various computational approaches
worked out for investigating non-Fourier transport in realistic models of matter. This
facet of the problem is of primary importance for checking “in silico” the signatures of
anomalous transport when a direct experimental approach could be hardly effective.
In fact, numerical simulations allow one to obtain reliable estimates of the finite-
size effects (which typically are non-universal, i.e. model-dependent features) that
may prevent the possibility of clear-cut experimental verification. One of the major
problems is the possibility of having at disposal at least a numerical estimate of the
mean-free path of thermal excitations. Only if the system under scrutiny is sensibly
larger than this crucial parameter, one can reasonably expect to recover in a real sample
of matter the predicted anomalous scaling properties of thermal conductivity with
the system size. A short account of a few existing experimental results is eventually
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outlined. The recent progress and improvements in this direction could be considered
as the prelude to a rapid growth of this research field, which certainly concerns basic
aspects of physical sciences, but presumably could yield a major fallout for material
science and its technological applications, far frombeing predictable just a fewdecades
ago.

Finally, we point out that, while our review focused on anomalous thermal trans-
port in classical systems, the quantumworld opens up fascinating avenues. Anomalous
transport in quantum mechanical systems is much less understood than in the classi-
cal case, for both practical and fundamental reasons. First of all, the computational
complexity in the simulation of many-body quantum systems [307] grows exponen-
tially with the number of particles, given the corresponding exponential growth of
the size of the Hilbert space. On a more fundamental level, the same concept of local
equilibrium should be carefully addressed in the quantum world. Indeed, we can have
nanostructures smaller than the length scale over which electrons relax to a local equi-
librium due to collisions with other electrons and phonons. As a consequence, effects
due to quantum interference and entanglement should be taken into account in trans-
port and energy conversion. Moreover, strong system-reservoir coupling and memory
effects, which naturally feature in small quantum systems, make problematic the same
definition of heat [308]. Notwithstanding the difficulties, a deeper understanding of
energetics in the quantum regime, and the development of ideas and tools for efficient
heat management is essential for the development of quantum technologies [309].
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