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Abstract: The coupling of remote sensing technology and crop growth models represents a promising
approach to support crop yield prediction and irrigation management. In this study, five vegetation
indices were derived from the Copernicus-Sentinel 2 satellite to investigate their performance mon-
itoring winter wheat growth in a Mediterranean environment in Lebanon’s Bekaa Valley. Among
those indices, the fraction of canopy cover was integrated into the AquaCrop model to simulate
biomass and yield of wheat grown under rainfed conditions and fully irrigated regimes. The experi-
ment was conducted during three consecutive growing seasons (from 2017 to 2019), characterized
by different precipitation patterns. The AquaCrop model was calibrated and validated for different
water regimes, and its performance was tested when coupled with remote sensing canopy cover.
The results showed a good fit between measured canopy cover and Leaf Area Index (LAI) data and
those derived from Sentinel 2 images. The R2 coefficient was 0.79 for canopy cover and 0.77 for LAI.
Moreover, the regressions were fitted to relate biomass with Sentinel 2 vegetation indices. In descend-
ing order of R2, the indices were ranked: Fractional Vegetation Cover (FVC), LAI, the fraction of
Absorbed Photosynthetically Active Radiation (fAPAR), the Normalized Difference Vegetation Index
(NDVI), and the Enhanced Vegetation Index (EVI). Notably, FVC and LAI were highly correlated
with biomass. The results of the AquaCrop calibration showed that the modeling efficiency values,
NSE, were 0.99 for well-watered treatments and 0.95 for rainfed conditions, confirming the goodness
of fit between measured and simulated values. The validation results confirmed that the simulated
yield varied from 2.59 to 5.36 t ha−1, while the measured yield varied from 3.08 to 5.63 t ha−1 for
full irrigation and rainfed treatments. After integrating the canopy cover into AquaCrop, the % of
deviation of simulated and measured variables was reduced. The Root Mean Square Error (RMSE)
for yield ranged between 0.08 and 0.69 t ha−1 before coupling and between 0.04 and 0.42 t ha−1 after
integration. This result confirmed that the presented integration framework represents a promising
method to improve the prediction of wheat crop growth in Mediterranean areas. Further studies are
needed before being applied on a larger scale.

Keywords: crop models; winter wheat; irrigation; Sentinel 2; vegetation indices; canopy cover

1. Introduction

Current agri-food systems rely on relatively few staple crops; among them, cereal
production is crucial for the Mediterranean region. However, impacts of climate change,
water scarcity, growing population demand, and economic oscillations pose significant

Agronomy 2021, 11, 2265. https://doi.org/10.3390/agronomy11112265 https://www.mdpi.com/journal/agronomy

https://www.mdpi.com/journal/agronomy
https://www.mdpi.com
https://orcid.org/0000-0001-9189-6954
https://orcid.org/0000-0002-9445-5967
https://orcid.org/0000-0002-8911-8755
https://doi.org/10.3390/agronomy11112265
https://doi.org/10.3390/agronomy11112265
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/agronomy11112265
https://www.mdpi.com/journal/agronomy
https://www.mdpi.com/article/10.3390/agronomy11112265?type=check_update&version=1


Agronomy 2021, 11, 2265 2 of 17

challenges for agriculture and cereal production, particularly in semi-arid regions [1,2].
Among cereal crops, wheat is the most widely produced [3], constituting the stable crop
for about half of the world’s population [4], with a global annual production of about
730 million tons [5,6].

In Lebanon, wheat makes up almost 66% of the cultivated cereal crops. The Bekaa
valley represents the food basket of the country, accounting for 58% of wheat production [7].
Nowadays, cereal yield fluctuates mainly due to scarce and erratic precipitation, high
temperature variations, and a non-rational use of supplemental irrigation. The increasing
water deficiency in the valley is the main factor threatening farmers to manage better
water use for food production [8,9]. Indeed, a joint application of different technologies as
crop growth models and remote sensing data may contribute to the achievements of this
scope [10].

Crop growth models have been advancing in their applications during the last decades
due to the increased availability of data necessary for simulation of crop development
and growth as well as prediction of crop yields. Moreover, data acquisition technologies
and remote sensing have been developing almost exponentially, providing a large volume
of high-quality real-time data about the state of vegetation on the ground. Therefore,
dynamic crop growth monitoring has begun to be effectively used in practice for the day-
by-day evaluation of crop growth, taking into account different environmental factors and
management decisions [11]. For this purpose, to improve the estimations, the insertion
of valuable information from remote sensing measurements into crop model simulation
processes is of particular importance.

Multiple kinds of variables such as the leaf area index (LAI) [12], soil moisture [13],
normalized difference vegetation index (NDVI) [14], and fractional cover (FVC) [15] can
be used for the integration of remote sensing data in crop growth models. The studies,
with different degrees of success, have demonstrated the positive effects of these integra-
tion strategies on different crops [16–20]. Among the crops that were studied for yield
forecasting, wheat was investigated by [21] through the integration of LAI in the EPIC
model and by [22] through the assimilation of fc in AquaCrop. Maize crop was studied
by [11,23,24], who assimilated both fc and biomass into the AquaCrop model. Ref. [15]
reported a case study in Italy on the tomato crop with FVC assimilation in AquaCrop.
However, the application of remote sensing to support prediction of crop growth and yield
is still limited to developed countries, and it is poorly adopted in most countries of the
Middle East and North Africa. Accordingly, the use of remote sensing and modelling
tools might be particularly relevant for the southern Mediterranean countries. Therefore,
it is of great interest to test the integration of remote sensing and modelling data in the
Mediterranean areas where the efficient use of water and improvement of crop water
productivity are among the priorities in stabilizing the yield (especially of cereals) and
achieving food security.

The objectives of this study were (i) to investigate the performance of five vegetation
indices derived from satellite data in respect to their correlation to field measurements;
(ii) to calibrate and validate AquaCrop for assessing the response of winter wheat to
different water management strategies; (iii) to examine the suitability of coupling the earth
observation data with field observations and AquaCrop model for monitoring of winter
wheat crop growth. Hence, the benefits of coupling remote-sensing data and a crop growth
model to estimate the responses of winter wheat to different irrigation management options
in a semi-arid Mediterranean area are assessed.

2. Materials and Methods

In this study, the data used was derived from field trials carried out at the experimental
field of Lebanese Agricultural Research Institute (LARI) (33◦51′44′′ N latitude, 35◦59′32′′ E
longitude and 905 m above sea level), in the Bekaa Valley of Lebanon, during three
consecutive growing seasons (2016–2017, 2017–2018, 2018–2019). The location of the study
area and the field trials are provided in Figure S1. Durum wheat (cv. Icarasha) was grown
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under irrigated and rainfed conditions. The collected field data and measurements served
for: (i) comparison of some variables estimated from the earth observations based on ESA-
Sentinel-2 images and on-field ground measurements (datasets 2016–2017 and 2018–2019);
(ii) calibration of the AquaCrop model under different water regimes (dataset of 2016–2017);
(iii) validation of the AquaCrop model (datasets of 2017–2018 and 2018–2019); (iv) insertion
of remote sensing variable (FVC) into AquaCrop (datasets 2016–2017 and 2018–2019).

2.1. Study Area and Field Trials

The Bekaa valley is an important agricultural plain where winter cereals and spring/
summer vegetables are cultivated. Erratic rainfall, drought, and spring frost are the main
challenges for cereal growers in the region [9]. The area is characterized by a Mediterranean
climate with an average annual rainfall of 592 mm, mainly during autumn and winter
months (October to March), while the summer season is hot and dry. Air temperature,
relative humidity, solar radiation, wind speed, and rainfall were recorded from an experi-
mental field’s agro-meteorological station. Monthly weather data, from November 2016
to June 2019, are given in Table 1 together with the reference evapotranspiration (ETo)
estimated by the FAO Penman–Monteith standard approach [25].

Table 1. Monthly climatic data as recorded from November 2016 until June 2019.

Month Rain
[mm Month−1]

Tmax
[◦C]

Tmin
[◦C]

RHmean
[%]

WS
[m s−1]

Rs
[W m−21]

ETo
[mm Month−1]

November-16 29.00 20.35 2.81 45.65 1.41 89.12 59.40
December-16 105.20 10.29 0.43 83.68 1.91 61.77 26.50

17 January 119.40 10.87 −0.73 78.87 1.69 68.20 30.70
17 February 14.20 13.70 −2.12 60.54 1.38 82.75 43.00

17 March 49.40 16.15 4.01 72.03 1.98 118.38 62.00
17 April 12.60 22.33 5.94 53.87 2.11 261.81 126.40
17 May 3.80 27.30 9.02 47.35 2.04 320.03 175.30
17 June 2.40 32.25 12.04 41.97 1.80 346.29 197.40
17 July 0.00 34.92 17.46 36.64 1.18 351.36 198.10

17 August 0.00 35.25 13.20 43.79 1.34 305.01 182.80
17 September 0.20 33.32 12.73 45.17 1.29 250.94 142.60

17 October 13.80 25.43 8.74 54.80 1.18 174.53 85.90
17 November 22.80 19.42 5.02 67.04 1.15 119.52 48.3
17 December 0.20 16.78 2.28 68.03 1.28 96.30 39.7

18 January 168.20 11.88 1.13 82.68 1.50 84.84 29.40
18 February 131.80 16.32 3.26 70.45 1.35 123.62 45.80

18 March 18.20 20.96 3.95 57.61 1.66 206.32 93.20
18 April 17.60 24.35 6.74 52.57 1.37 248.99 117.10
18 May 19.80 27.05 12.48 50.98 1.30 279.58 147.00
18 June 12.20 30.73 14.67 46.51 1.78 322.78 183.30
18 July 0.00 33.40 14.02 45.74 1.93 324.94 203.90

18 August 0.00 33.80 14.25 50.05 1.64 291.17 179.40
18 September 0.00 32.50 13.61 46.94 1.36 232.73 136.60

18 October 70.80 26.43 10.77 60.09 1.26 165.64 86.80
18 November 46.20 17.88 6.28 78.19 1.17 106.52 40.50
18 December 122.20 12.05 4.06 88.77 1.50 76.20 24.30

19 January 288.00 10.70 −0.15 83.45 1.73 102.05 29.80
19 February 214.40 12.69 1.34 81.97 1.45 126.49 37.10

19 March 130.00 14.78 3.09 75.97 1.70 172.19 64.40
19 April 75.60 18.38 4.71 72.63 1.31 222.68 86.90
19 May 13.80 29.62 9.35 45.12 1.19 320.70 163.60
19 June 4.00 32.63 13.81 49.31 1.46 332.87 183.00

The first two experimental seasons (2016–2017 and 2017–2018) were dry, with a pre-
cipitation amount in November–June of 336 and 390.8 mm, respectively. On the contrary,
in the last experimental year (2018–2019), the precipitation was more than two times more
significant, reaching for the same period (November–June) a total amount of 894.2 mm.
When considering the period February–April, corresponding to short vegetation develop-
ment and flowering, the precipitation was 76.2 mm in 2016–2017, 167.6 mm in 2017–2018,
and 420 mm in 2018–2019.
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For each season, soil samples were taken from the experimental field at up to 90 cm
depth. Soils were described according to the guidelines for soil description [26] and
classified according to [27]. In the three experimental seasons, soil hydrological properties
were estimated from the soil granulometric analysis, the electrical conductivity, and the
organic matter by using a pedo-transfer function as suggested by [28]. The results are
presented in Table S1. The experiments were conducted in the same experimental farm but
in three different fields in three years. Therefore, in the first year, the soil water holding
capacity was 180 mm m−1, while in the second it was almost 25% lower (136 mm m−1),
and 130 mm m−1 in the third season.

In the three growing seasons, durum wheat was sown in rows 0.18 m apart by utilizing
200 Kg of seeds per hectare. Nitrogen supply was 60 kg ha−1; in particular, ammonium
sulfate (21% N) and ammonium nitrate (26–27% N) were applied at the beginning of
tillering and at the beginning of stem elongation, respectively.

In this study, the data of I-100% (full irrigation) and I-rainfed treatments were used.
For the growing seasons 2016–2017 and 2017–2018, the data was derived from the trials
described in [8]. The irrigation experiment consisted of nine plots, each 300 m2 in size
(15 m × 20 m). Irrigation was monitored using a smartphone application called Bluleaf [8].
From the booting until the grain-filling stages, irrigation was supplied back to field capacity
each time that the soil water content dropped below the readily available water in the root
zone, considered to be 55% of the total available water. Irrigated plots were equipped with
traditional impact sprinklers (with a discharge rate of 1.5 m3/h) overlaid on the middle of
each plot. Each treatment had its valve and flow meter.

For the season 2018–2019, the trial consisted of a randomized complete block design,
having three irrigation treatments and three replicates per treatment: I-100%, I-50% deficit
irrigation, and I-rainfed. The size of each plot was 100 m2 (10 m × 10 m), having the same
disposition and orientation of the Sentinel 2A pixels.

In season 2016–2017, the total net irrigation amount for I-100 was 203 mm while in
season 2017–2018, it was 248 mm. For the season 2018–2019, the total net irrigation amount
was 72.6 mm for the I-100 treatment and 36.3 mm for I-50.

2.2. Field Observations and Measurements

For the three years of field trials, the crop phenology was registered according to [29].
The starting dates and duration of the most critical phenological stages observed during
the first two growing seasons are reported in [9]. In Table S2, we again report all registered
phenology and the observed data of season 2018–2019.

The soil moisture content was measured in the soil profile by using an FDR (Frequency
Domain Reflectometer) or ‘capacitance’ sensor, the PR2 profile probe (DeltaT Devices Ltd.,
Cambridge, UK). Access tubes were placed at a depth of 1 m in the trials plots.

The leaf area index (LAI), the percentage of green canopy cover (CC), and the above-
ground biomass (B), taken over a surface of 25 cm × 25 cm, were measured approximately
every two weeks at each plot replicate. At the end of each crop cycle, corresponding to
physiological maturity, the final aboveground biomass and grain yield (Y) were measured
on a surface of 1 m2 at the center of each plot. The aboveground biomass was determined
by drying samples at 70 ◦C until they reached constant weight.

LAI was estimated by using the SunScan Canopy Analysis System (Delta-T Devices
Ltd., Cambridge, UK). It measures both the incident photosynthetic active radiation (PAR)
above canopy and the transmitted PAR through the canopy and calculates LAI from the
Beer-Lambert extinction law by considering some major assumptions of both canopy and
transmission of light (incident and diffuse). Three measurements were taken above and
below the canopy in each plot.

The percentage of CC was estimated through zenithal digital RGB images taken
above the canopy periodically in each plot (4 images/plot replicate). The images were
processed using ImageJ software which detects the green vegetation and calculates the
fraction of cover.
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2.3. Satellite Data and Vegetation Indices

The high-resolution multispectral images from Sentinel-2A and 2B of the European
Spatial Agency have been acquired during 2016–2017 and 2018–2019 growing seasons,
respectively. The multi-spectral instrument (MSI) on board of Sentinel-2A/2B captures
data at the spatial resolution of 10, 20 and 60 m over 13 spectral bands with a very high
revisiting time of five days. The Sentinel-2 granules 36SYC Level-1C (processed at the
top-of-atmosphere reflectance), which covers the target area in Lebanon, were acquired
from the Copernicus Open Access Hub (https://scihub.copernicus.eu/).

The SNAP (Sentinels Application Platform) software version 6, developed by ESA
as a Scientific Image Processing Toolbox, was used to process the Sentinel images and
retrieve the vegetation indices required for the analysis. More specifically, the estimated
vegetation indices in SNAP were the following: the Normalized Difference Vegetation
index (NDVI), the Enhanced Vegetation Index (EVI), the Leaf Area Index (LAI), the fraction
of Absorbed Photosynthetically Active Radiation (fAPAR) and the Fractional Vegetation
Cover (FVC). In order to obtain a comparable time series, all indices were calculated based
on atmospherically corrected Level-2A data.

NDVI was calculated using the processor of vegetation radiometric indices within the
thematic land processing in SNAP by considering two Sentinel-2 spectral bands (B4-red
and B8-infrared). The EVI was processed by using the Band Math in SNAP and apply-
ing the equation, as reported in [30]. The value range for EVI is −1 to 1, and it varies
between 0.2 and 0.8 for healthy vegetation. EVI allows one to correct NDVI results for
atmospheric influences and soil background signals, especially in areas of dense canopy. It
is computed as:

EVI = 2.5 ∗ (NIR− R)
(1 + NIR + 6R− 7.5B)

Here NIR is the near-infrared band 8, R is the red band 4, and B is the blue band 2.
LAI, f(APAR) and FVC were calculated using the biophysical processor in SNAP. The

corresponding algorithms require eight Sentinel-2 spectral bands (B3–B7, B8a, B11 and
B12) at 10 and 20 m (pixel size), which were all resampled to 10 m to derive the vegetation
indices. Experimental studies have shown the accuracy of this approach for the estimation
of LAI and other indices. For example, [31] reported that the SNAP biophysical processor
would be applicable for versatile and rapid winter wheat parameter estimation. Finally,
subsetting was also done to decrease both the image size and the processing time, and in
order to cover only the investigated plots. Table S3 reports the Sentinel 2 acquisition dates
used in this study in all years.

The estimated vegetation indices were correlated to the aboveground biomass ob-
tained from field measurements through regression analysis to investigate the best-performing
index. In addition, it was possible to compare LAI and FVC values estimated from remote
sensing to those obtained from field data. This step was very important in understanding
whether FVC would constitute a good vegetation index to be assimilated into AquaCrop,
considering that coupling such an index derived from earth observation with a crop model
would improve in the simulated crop growth and yield.

2.4. AquaCrop Model
2.4.1. Model Description, Calibration, and Validation

AquaCrop (AC) version 6.1 was used in this study. The model simulates crop growth
in terms of biomass and yield in response to water and N inputs. As an indicator of the
canopy size, AC uses the canopy cover (CC) equivalent to the fractional vegetation cover
(FVC) estimated by Sentinel-2 imagery. The model was calibrated using the datasets of
season 2016–2017 under full irrigation and rainfed cultivation. Then, it was validated
with the data of seasons 2017–2018 and 2018–2019. The calibration was done through an
iterative process using the observed phenological stages, measured crop growth variables,
derived growing coefficients, and other parameters from the AquaCrop user manual.

https://scihub.copernicus.eu/
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The model validation is based on comparing observed and simulated data for all
treatments using different datasets from those used for the model calibration. In particular,
simulated and measured final biomass, harvestable yield, cumulative crop evapotranspira-
tion, soil-water content, and canopy cover were compared for full irrigated and rainfed
treatments of season 2017–2018 and season 2018–2019.

2.4.2. Coupling of AquaCrop and Sentinel Data

In this study, the methodology used to assess the coupling of AquaCrop with remote
sensing as a tool to address irrigation management of wheat was based on the integration
of Sentinel-2 crop-derived data with AquaCrop version 6.1. Therefore, FVC estimated by
Sentinel-2 has been sequentially integrated into AquaCrop, by direct insertion, in place of
the canopy cover (CC) simulated by the model. The sequential direct insertion is applied
under the assumption that a continuous update of one crop model state based on remote
observations can reduce the biases induced by the model simplifications of the processes
and environmental conditions influencing the crop growth dynamics. This approach
was also adopted by [15], by integrating Sentinel-2 Imagery data with AquaCrop for the
dynamic assessment of tomato water requirements in Southern Italy.

2.4.3. Statistical Analysis

Some statistical indicators have been used to evaluate and compare the observed
field data against those simulated by AquaCrop or derived from Sentinel 2 images. The
root mean square error (RMSE), the coefficient of variation of the RMSE (CV (RMSE)),
the index of agreement (d_IA), and the Nash–Sutcliffe coefficient (NSE), were applied as
goodness-of-fit parameters to evaluate model performance, or derived vegetation indices
against observed data.

The average difference between experimental data and simulation outputs is described
by the root mean squared error (RMSE) as:

RMSE =

[
N

N

∑
i=1

(Pi −Oi)
2

]0.5

where N is the number of pairs of observed/measured (Oi) and predicted/simulated (Pi)
data.

The coefficient of variation of the RMSE (CV(RMSE)) was applied to normalize the
RMSE to the mean of the observed/measured values (Õ) as:

CV(RMSE) =
RMSE

Õ

The index of agreement (dIA), which represents the ratio between the mean square
error and the “potential error”, was calculated according to [32]:

dIA = 1− ∑n
i=1(Oi + Pi)

2

∑n
i=1 (

∣∣∣Pi − Õ
∣∣∣+ ∣∣∣Oi − Õ

∣∣∣)2

The dIA is a descriptive parameter that varies between 0 and 1, with the value of
1.0 indicating excellent agreement.

Moreover, the Modelling Efficiency (NSE) was defined as:

NSE = 1.0− ∑n
i=1(Oi − Pi)

2

∑n
i=1 (Oi − Õ)

2

This indicates the relative magnitude of the residual variance compared to the mea-
sured data variance [33,34]. According to [8,35], the validity of the model performance
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was considered very good when the probability of fit showed an NSE = 0.9–1, good for
NSE = 0.8–0.899, acceptable for NSE = 0.65–0.799, and unsatisfactory for NSE < 0.65.

3. Results and Discussion
3.1. Relationship between the Sentinel 2—Vegetation Indices and Field Data

Five vegetation indices were obtained from Sentinel-2 data during the growing seasons
2016–2017 and 2018–2019. Their trend is presented for different water treatments, going
from rainfed until well-watered, in Figure 1. In general, the maximum NDVI values ranged
between 0.54 (rainfed) and 0.84 (full irrigation) in the season 2016–2017 and between
0.87 (rainfed) and 0.91 (full irrigation) in 2018–2019. The higher values of NDVI for rainfed
treatments in the last season are due to more significant precipitation explained by the
wetter conditions that prevailed during that season. Similarly, EVI maximum values were
between 0.51 and 0.63 in 2016–2017, while it reached a maximum value of 0.75 for all
treatments in 2018–2019 regardless of their watering conditions. Maximum values of
fAPAR ranged between 0.60 and 0.73 in 2016–2017 and between 0.80 and 0.83 in 2018–2019.
Concerning maximum LAI and FVC, they were between 1.55 and 2.79, and 54% and 70%,
respectively, for rainfed and irrigated treatments in 2016–2017, while they ranged between
3.73 and 3.88, and 76.7% and 78.8%, respectively in 2018–2019. Therefore, it was clear that
most vegetation indices were higher in the 2018–2019 season than in 2016–2017 without a
clear distinction between the values under rainfed or irrigated conditions. This behavior is
closely linked to the higher precipitation amount and absence of water stress in 2018–2019
in respect to 2016–2017, as reported in the Section 2.1.

Regressions were fitted to relate biomass with S2 vegetation indices. Table 2 reports
these relationships. The lowest and highest R2 values (0.12 and 0.85) were found for EVI
and FVC, respectively. In descending order of R2, the indices were ranked FVC, LAI,
fAPAR, NDVI and EVI. The use of EVI for monitoring long-term change of crops is debated.
For example, [36] reported that this index presented some weakness compared to other
vegetation indices; however [24] obtained satisfactory results for predicting yield and
biomass production. Three R2 values were above 0.70, one above 0.40, and one below 0.40.
All simulated Sentinel-2 vegetation indices were fitted to power regression (Table 2). The
results showed that biomass was associated with the vegetation indices. Particularly, FVC
and LAI were highly correlated with biomass. Such findings agree with the study of [37],
who found that LAI was highly correlated to maize biomass. The same was mentioned
in the experiment implemented for the winter wheat crop by [21] where LAI showed a
good correlation between Sentinel-2 estimates and the ground measurements. In addition,
ref. [38] found that coupling FVC derived from satellite data with the AquaCrop model
could provide the crop yield estimates in agreement with field data.

Table 2. Regressions of wheat biomass on Sentinel 2A vegetation indices.

Vegetation Index Regression Models R2 RMSE (t ha−1)

NDVI y = 10.728x1.4315 0.68 2.26
EVI y = 3.8732x0.072 0.12 4.89

fAPAR y = 15.333x2.5657 0.71 1.09
LAI y = 2.7865x0.9011 0.78 1.90
FVC y = 0.0005x2.2673 0.85 1.34

y, biomass (t ha−1); x, vegetation index.
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sons 2016–2017 and 2018–2019. Their trend is presented for different water treatments, 
going from rainfed until well-watered, in Figure 1. In general, the maximum NDVI values 
ranged between 0.54 (rainfed) and 0.84 (full irrigation) in the season 2016–2017 and be-
tween 0.87 (rainfed) and 0.91 (full irrigation) in 2018–2019. The higher values of NDVI for 
rainfed treatments in the last season are due to more significant precipitation explained 
by the wetter conditions that prevailed during that season. Similarly, EVI maximum val-
ues were between 0.51 and 0.63 in 2016–2017, while it reached a maximum value of 0.75 
for all treatments in 2018–2019 regardless of their watering conditions. Maximum values 
of fAPAR ranged between 0.60 and 0.73 in 2016–2017 and between 0.80 and 0.83 in 2018–
2019. Concerning maximum LAI and FVC, they were between 1.55 and 2.79, and 54% and 
70%, respectively, for rainfed and irrigated treatments in 2016–2017, while they ranged 
between 3.73 and 3.88, and 76.7% and 78.8%, respectively in 2018–2019. Therefore, it was 
clear that most vegetation indices were higher in the 2018–2019 season than in 2016–2017 
without a clear distinction between the values under rainfed or irrigated conditions. This 
behavior is closely linked to the higher precipitation amount and absence of water stress 
in 2018–2019 in respect to 2016–2017, as reported in the Section 2.1. 
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LAI and FVC derived indices from Sentinel 2 were also compared to the ground
measurements, as reported in Figure 2. In general, there was a good fit between measured
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data and those derived from S2 images. The regression between measured and S2 data is
presented in Figure 3. The R2 coefficient of 0.79 for canopy cover and 0.77 for LAI explains
the good matching of measured and S2 derived data.
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3.2. Performance of AquaCrop Model to Simulate Winter Wheat Growth and Yield under Different
Water Inputs
3.2.1. AquaCrop Calibration

The AquaCrop parameters for simulating the growth of winter wheat are presented
in Table 3. These values were derived from calibration (c), direct field measurements (m),
and estimations (e) from the dataset of season 2016–2017. Then, the values obtained by
calibration were compared to those provided by the AquaCrop user manual as conservative
parameters, which can be suitable to a wide range of conditions [39].
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Table 3. Crop parameters used for wheat simulations by AquaCrop.

Parameter Description Wheat Calibration Method of Determination

Conservative parameters

Base temperature (◦C) 0 e **
Cut-off temperature (◦C) 26 e

Canopy cover per seeding at 90% emergence (CC0) (cm2 plant−1) 1.5 e
Canopy growth coefficient (CGC) (%/degree-day) 0.0061 c *

Crop coefficient for transpiration at CC = 100% 1.1 c
Canopy decline coefficient (CDC) at senescence (%/degree-day) 0.004 c

Biomass water productivity (WP), normalized for ETo before yield formation (g m−2) 16 e
Biomass water productivity, normalized for ETo during yield formation (% of WP) 100 e

Leaf growth threshold p-upper 0.2 c
Leaf growth threshold p-lower 0.55 c

Leaf growth stress coefficient curve shape 5 c
Stomatal conductance threshold p-upper 0.55 e

Stomata stress coefficient curve shape 0.5 c
Senescence stress coefficient p-upper 0.55 c

Senescence stress coefficient curve shape 2.5 c

Non-conservative parameters

Time from sowing to emergence (GDD) 150 e
Maximum canopy cover (CCx) (%) 82 m ***

Time from sowing to start senescence (GDD) 1422 e
Time from sowing to maturity (GDD) 2451 e
Time from sowing to flowering (GDD) 1100 e

Maximum effective rooting depth, Zx (m) 1 m
Minimum effective rooting depth, Zn (m) 0.3 d ****

Reference harvest index, HIo 45 m
GD range where crop transpiration is affected by cold stress (◦C–day) 0–17.9 c

* c: calibration; ** e: estimation; *** m: measured; **** d: default.

Some of the conservative parameters were within the range proposed in the AquaCrop
user manual (Raes et al., 2009). For example, the canopy growth coefficient (CGC) and
the canopy decline coefficient (CDC) were set at 0.0061 and 0.004 percent per degree day,
respectively, and these values are within the recommended range of 0.004–0.007 percent per
degree day for the former and 0.004 percent per degree day for the latter. However, some
other parameters, such as the water productivity (WP) for biomass, soil water depletion
thresholds for inhibition of leaf growth, stomatal conductance, and the acceleration of
canopy senescence, were different from those given in the AquaCrop user manual. The
measured value of biomass water productivity used in the calibration for our wheat cultivar
was 16 g m−2, whereas the suggested value in the AquaCrop user manual is 15 g m−2.
Nevertheless, the calibrated value is still within the WP range of C3 plants. The parameters
that are cultivar specific or depending on management and environmental conditions were
within the range mentioned in the manual. In general, the results of our calibration match
the wheat parameters reported in the AquaCrop user manual [40]. In addition, most of
the parameters were within the range obtained by [41], who conducted a global sensitivity
analysis of the AquaCrop model for winter wheat under different water treatments in
Beijing, China. Ref. [42] obtained similar ranges of values for the calibration of AquaCrop
for winter wheat grown in Italy.

There was a significant relationship between data predicted by the model and those
measured. The simulated yield varied from 1.92 to 3.70 t ha−1, while the measured yield
varied from 2.46 to 3.62 t ha−1 for rainfed and full irrigation treatments.

Results of observed and simulated values for calibration data sets (Table 4) show that
for biomass, the most considerable differences were found for the treatments under rainfed
conditions (−14.70%), whereas the percentage of deviation under full irrigation treatment
was 0.04%. Also for yield, the largest differences were obtained for rainfed conditions
(−21.83%). The reported percentage of deviation for sunflower yield reached 14.2% and
17.6% for irrigated and rainfed treatments, respectively [43]. For CC, the percentage of
deviation, noted for I-100, was −0.24%, whereas the obtained percentage of deviation for
I-rainfed was −2.62%.
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Table 4. Simulation results for the calibration data set and deviation from measured values.

Calibration Dataset

Variables Measured Simulated % of Deviation

Biomass (t ha−1) I-100 10.7 10.7 0.04
I-rainfed 8.4 7.2 −14.7

Yield (t ha−1) I-100 3.6 3.7 2.1
I-rainfed 2.5 2.0 −21.8

Canopy cover—CC (%) I-100 82.0 81.8 −0.3
I-rainfed 80.2 78.1 −2.6

The performance of the model, using the calibration dataset, was also evaluated for
biomass, yield, CC and soil water depletion (SWD) through statistical indicators. The
statistical indicators are reported in Table 5. The biomass’s RMSE and the CV (RMSE) were
respectively 0.62 and 0.12 t ha−1 under full irrigation conditions, and 1.34 and 0.36 t ha−1

under rainfed conditions. The index of agreement, dIA, and the modeling efficiency, NSE,
were 0.99 and 0.99 for I-100 and 0.96 and 0.95 for I-rainfed. The yield RMSE and the CV
(RMSE) were respectively 0.08 and 0.02 t ha−1 for I-100, and 0.54 and 0.22 t ha−1 for rainfed.

Table 5. Statistical indices derived for evaluating the performance of AquaCrop model in simulating biomass, yield, canopy
cover, and soil water depletion for winter wheat (calibration dataset).

Calibration Dataset

Biomass (t ha−1) Yield (t ha−1) CC (%) SWD (mm)

Statistical Indicators I-100 I-Rainfed I-100 I-Rainfed I-100 I-Rainfed I-100 I-Rainfed

RMSE 0.62 1.34 0.08 0.54 5.74 7.47 12.47 28.76
CV (RMSE) 0.12 0.36 0.02 0.22 0.13 0.11 0.12 0.58

dIA 0.99 0.96 _ _ 0.99 0.98 0.82 0.73
NSE 0.99 0.95 0.99 0.95 0.99 0.98 0.99 0.78

Simulated values of soil water depletion and canopy cover showed a good match with
measured values, as demonstrated by the statistical indicators (Table 5). Going from full
irrigation to rainfed conditions, RMSE, CV (RMSE), dIA, and NSE varied respectively from
12.47 to 28.76 mm, from 0.12 to 0.58 mm, from 0.82 to 0.73 and from 0.99 to 0.78 for soil
water depletion simulations, whereas they varied respectively from 5.74 to 7.47%, from
0.13 to 0.11%, from 0.99 to 0.98 and from 0.99 to 0.98 for canopy cover simulations. The
high RMSE values found for SWD question the robustness of the AquaCrop water balance
module and its reliability to simulate water stress conditions for irrigation management
planning purposes. Most studies on AquaCrop strongly link the model’s performance
under deficient irrigation to the duration and intensity of water stress, occurring during
specific growth stages [11,41,43]. Consequently, the water balance module of the model
should be examined more carefully under drought conditions and in harsh environments,
as it is the case of Lebanon.

3.2.2. AquaCrop Validation

The parameters obtained in model calibration were used for validating the performance
of AquaCrop by using independent data sets (2017–2018 and 2018–2019 growing seasons).

For season 2017–2018, there was a significant relationship between data predicted by
the model and those measured: in fact, the simulated yield varied from 2.59 to 5.15 t ha−1,
while the measured yield varied from 3.08 to 5.63 t ha−1 for rainfed and full irrigation
treatments, respectively. The simulation results and deviation from measured values are
presented in Table 6.
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Table 6. Simulation results for the validation data set and deviation from measured values.

Validation Datasets

Season 2017–2018 Season 2018–2019

Variables Measured Simulated % of Deviation Measured Simulated % of Deviation

Biomass (t ha−1) I-100 10.8 10.4 −3.9 15.0 15.6 3.9
I-50 _ _ _ 14.2 15.4 8.5

I-rainfed 6.8 7.7 13.8 12.2 15.0 23.3
Yield (t ha−1) I-100 5.6 5.1 −9.3 5.3 5.4 1.7

I-50 _ _ _ 4.8 5.2 9.7
I-rainfed 3.1 2.6 −18.9 4.3 5.0 16.1

Canopy cover (%) I-100 75 81.7 8.9 77.3 81.8 5.8
I-50 _ _ _ 77.0 81.8 6.2

I-rainfed 69 80 15.9 76.9 81.8 6.4

In season 2018–2019, although the growing season was characterized by high rainfall,
a total precipitation amount of 825 mm, AquaCrop predicted one irrigation event on
15 May 2019 during the grain filling stage (milk stage). The total net irrigation amount,
as advised by AquaCrop, was 72.6 mm for the I-100 treatment and 36.3 mm for I-50.
Such environmental conditions prevented obtaining substantial differentiation between
treatments for both biomass and yields. The largest differences between observed and
simulated biomass values were observed for the treatments under rainfed conditions
(23.31%), while the percentage of deviation under full irrigation treatment was 3.86%.
The most significant differences between observed and simulated yield values were also
reported for rainfed conditions (16.11%). For CC, the percentage of deviation was 5.78%
for I-100, whereas it was 6.39% for I-rainfed.

The calculated values of statistical indices are reported in Table 7. In the 2017–2018
season, the RMSE and the CV (RMSE) of biomass were respectively 0.67 and 0.13 t ha−1

under full irrigation, 0.92 and 0.26 t ha−1 under rainfed conditions. The dIA and The NSE
were 0.98 and 0.99 for irrigated, 0.98 and 0.96 for rainfed conditions. The yield RMSE
and CV (RMSE) were respectively 1.48 and 0.26 t ha−1 for I-100, and 0.70, 0.23 t ha−1 for
I-rainfed. The NSE were respectively 0.93 and 0.95 confirming the goodness of fit between
measured and simulated values.

Table 7. Statistical indices derived for evaluating the performance of the AquaCrop model in simulating biomass, yield,
canopy cover, and soil water depletion for winter wheat (2017–2018 and 2018–2019 datasets).

Season 2017–2018

Biomass (t ha−1) Yield (t ha−1) CC (%) SWD (mm)

Statistical
Indicators I-100 I-50 I-Rainfed I-100 I-50 I-Rainfed I-100 I-50 I-Rainfed I-100 I-50 I-Rainfed

RMSE 0.67 _ 0.92 1.48 _ 0.7 11.11 _ 21.48 21.93 _ 29.34
CV (RMSE) 0.13 _ 0.26 0.26 _ 0.23 0.21 _ 0.51 0.16 _ 0.32

dIA 0.98 _ 0.98 _ _ _ 0.95 _ 0.77 0.75 _ 0.72
NSE 0.99 _ 0.96 0.93 _ 0.95 0.98 _ 0.86 0.98 _ 0.9

Season 2018–2019

RMSE 1.32 1.36 1.6 0.09 0.46 0.69 6.99 7.16 9.49 10.97 14.33 17.25
CV (RMSE) 0.21 0.22 0.27 0.02 0.1 0.16 0.14 0.14 0.19 0.33 0.4 0.43

dIA 0.99 0.99 0.98 _ _ _ 0.99 0.99 0.98 0.87 0.78 0.83
NSE 0.98 0.98 0.97 0.99 0.99 0.97 0.99 0.99 0.97 0.96 0.94 0.93

The RMSE, CV (RMSE), dIA and NSE varied respectively from 21.93 to 29.34 mm, from
0.16 to 0.32 mm, from 0.75 to 0.72, and from 0.98 to 0.90 for soil water content simulations,
whereas they varied respectively from 11.11% to 21.48%, from 0.21% to 0.51%, from 0.95 %
to 0.77%, and from 0.98% to 0.86% for canopy cover simulations.

In the 2018–2019 season, the RMSE and the CV (RMSE) of biomass were 1.32 and
0.21 t ha−1 under full irrigation, 1.36 and 0.22 t ha−1 under deficit irrigation, 1.60 and
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0.27 t ha−1 for rainfed conditions. The NSE was respectively 0.98, 0.98 and 0.97 for irrigated,
deficit, and rainfed conditions, whereas the dIA were 0.99, 0.99 and 0.98, respectively. The
yield RMSE and the CV (RMSE) were respectively 0.09 and 0.02 t ha−1 for I-100, 0.46 and
0.10 t ha−1 for deficit irrigation, 0.69 and 0.16 t ha−1 for I-rainfed. The NSE were 0.99, 0.99
and 0.97, confirming the goodness of fit between measured and simulated values.

The RMSE and the CV (RMSE) varied respectively from 10.97 to 17.25 mm and from
0.33 to 0.43 mm for soil water content simulations, whereas they varied respectively from
6.99% to 9.49%, from 0.14% to 0.19% for canopy cover simulations. dIA and NSE varied
from 0.83 to 0.87 and from 0.93 to 0.96 for soil water content simulations, and from 0.98 to
0.99 and from 0.97 to 0.99 for canopy cover simulations.

3.3. Results of S2-Derived CC Insertion in AquaCrop

After deriving the CC from S2 images of seasons 2016–2017 and 2018–2019, the maximum
values, as obtained for the different water conditions, were inserted into the AquaCrop
model. The simulations were run for two growing seasons: 2016–2017 and 2018–2019.
Simulated results for biomass, yield, and canopy cover (CC) were again evaluated with
respect to the ground measurements, as presented in Table S4. In the 2016–2017 season,
the largest difference between observed and simulated values for biomass was shown for
the treatment under rainfed conditions (−9.25%), whereas the percentage of deviation
under irrigated treatment was −1.58%. The largest difference between observed and
simulated yield values was also reported for rainfed conditions (−17.07%). The percentage
of deviation, noted for CC of I-100 treatment was−1.34%, whereas the obtained percentage
of deviation for I-rainfed was −5.61%. In the 2018–2019 season, the largest difference
between observed and simulated values for biomass was reported for the treatment under
rainfed condition (18.56%), whereas the percentage of deviation under full-irrigation
treatment was 1.32% and 3.45% for deficit irrigation. The largest difference between
observed and simulated yield values was also reported for rainfed conditions (12.17%),
whereas the percentage of deviation under full irrigation treatment was −0.76% and 4.85%
for deficit irrigation. For CC, the percentage of deviation was 1.9% and −0.8% for I-100 and
I-50, respectively, whereas the obtained percentage of deviation for I-rainfed was −1.29%.
The calculated values of statistical indices are reported in Table 8.

Table 8. Statistical indices derived for evaluating the performance of AquaCrop model in simulating biomass, yield, canopy
cover, and soil water depletion for winter wheat (2016–2017 and 2018–2019 datasets) after S2-CC assimilation.

2016–2017 Dataset

Biomass (t ha−1) Yield (t ha−1) CC (%) SWD (mm)

Statistical
Indicators I-100 I-50 I-Rainfed I-100 I-50 I-Rainfed I-100 I-50 I-Rainfed I-100 I-50 I-Rainfed

RMSE 1.06 _ 0.48 0.05 _ 0.34 4.45 _ 5.65 24.45 _ 21.96
CV (RMSE) 0.2 _ 0.14 0.3 _ 0.24 0.09 _ 0.13 0.27 _ 0.16

dIA 0.98 _ 0.99 _ _ _ 0.99 _ 0.98 0.82 _ 0.84
NSE 0.98 _ 0.99 0.91 _ 0.96 1 _ 0.99 0.93 _ 0.98

2018–2019 Dataset

RMSE 1.15 1 1.26 0.04 0.23 0.42 5.28 4.42 7.17 10.86 14.43 17.54
CV (RMSE) 0.18 0.16 0.21 0.01 0.05 0.12 0.11 0.09 0.15 0.33 0.4 0.44

dIA 0.99 0.99 0.99 _ _ _ 0.99 0.99 0.98 0.87 0.77 0.74
NSE 0.99 0.99 0.98 1 1 0.99 0.99 0.99 0.99 0.96 0.94 0.93

Figure 4 shows a comparison between the percentage of deviation of simulations in
respect to measured data for biomass, yield, and CC, with and without S2-CC integration
into AquaCrop. The figure clearly shows that, in season 2018–2019, after assimilating the
S2-CC into AquaCrop, the percentage of deviation between simulated and measured data
is decreased, confirming that remote sensing data would offer a great potential for crop
yield prediction and irrigation monitoring.
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Overall, the insertion of remote sensing data into crop models would present an
opportunity for crop yield forecasting. In fact, [21] obtained similar findings after inte-
grating LAI in the EPIC model providing an improvement in wheat yield estimation and
indicated that the combination framework must be tested under different environmental
conditions before being applied on a larger scale. Ref. [22] presented an approach for as-
similating FVC for wheat grown in Belgium into AquaCrop, resulting in a RMSE for yield
of 0.8 t ha−1. In the present study, the RMSE was much lower for wheat grown in Lebanon,
i.e., 0.34 to 0.42 t ha−1 under rainfed conditions and 0.04 to 0.05 t ha−1 under irrigated
conditions. Coupling AquaCrop and satellite-derived Fractional Vegetation Cover also
offered a good potential for maize grown prediction in Belgium under rainfed conditions,
with biomass RMSE of 0.7 t ha−1 [11].

It is important to establish a robust integration approach of remote sensing derived
data into crop models to increase the estimation accuracy of crop biomass and yield. This
issue was raised by different authors, among them [37], who reported that the estimation
accuracy for maize yield in China was improved when using a double-variable data
assimilation approach (by assimilating FVC and biomass) into AquaCrop (RMSE for
biomass dropped from 2.51 to 1.44 tons ha−1) as compared to use of a single-variable data
assimilation approach (only FVC). In our study, the simulation accuracy of AquaCrop after
integrating the satellite-derived CC was improved by 40% for yield prediction. Such results
agree with the findings of [23], who reported a 26% to 36% improvement in wheat yield
simulation accuracy after combining AquaCrop with derived parameters from remote
sensing data. Similarly, [44] found that AquaCrop’s capability to simulate maize yield
was improved by 12% after integrating CC derived from remotely sensed NDVI. A robust
assimilation approach would also improve the irrigation water requirement predictions [15],
as investigated in Southern Italy on the tomato crop. Ref. [23] also demonstrated that maize
grown in China was improved by 20% in regional crop water consumption and by 26–36%
in regional yield when coupling AquaCrop and remote sensing. Recent studies generated
more evidence on the development of near-real-time irrigation scheduling approaches by
integrating of in situ soil moisture data and crop evapotranspiration data derived from
satellite images. Such approach was tested by [45] on a tomato crop grown in Canada.

Finally, coupling AquaCrop and remote sensing could be an effective and promising
method of crop model upscaling once achieving a robust integration framework.
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4. Conclusions

The potential of the AquaCrop model to simulate biomass and yield of winter wheat
in a semi-arid Mediterranean region was successfully assessed. Moreover, the gathered
experiences support the operational use of spectral inputs for irrigation scheduling and
simulation of crop development and growth in the Mediterranean. In this study, plenty
of new opportunities are promoted by the use of available satellite FVC data at the field
scale. Combined with crop growth models, monitoring vast regions of agricultural fields
is possible, and the performance of existing yield forecasting models is improved. More
investigation and additional data are needed to establish a robust integration network
under different environmental conditions and water management practices.
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