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ABSTRACT

Context. The observer peculiar motion produces boosting effects in the anisotropy pattern of the considered background with fre-
quency spectral behaviours related to its frequency spectrum.
Aims. We study how the frequency spectrum of the background isotropic monopole emission is modified and transferred to the fre-
quency spectra at higher multipoles, `. We performed the analysis in terms of spherical harmonic expansion up to a certain value of
`max, for various models of background radiation, spanning the range between the radio and the far-infrared.
Methods. We derived a system of linear equations to obtain the spherical harmonic coefficients and provide the explicit solutions up
to `max = 6. These are written as linear combinations of the signals at N = `max + 1 colatitudes. We take advantage of the symmetry
property of the associated Legendre polynomials with respect to π/2, which allows for the separation of the system into two subsys-
tems: (1) for ` = 0 and even multipoles and (2) for odd multipoles. This improves the accuracy of the solutions with respect to an
arbitrary choice of the adopted colatitudes.
Results. We applied the method to different types of monopole spectra represented in terms of analytical or semi-analytical functions,
that is, four types of distortions of the photon distribution function of the cosmic microwave background and four types of extra-
galactic background signals superimposed onto the cosmic microwave background’s Planckian spectrum, along with several different
combinations of these types. We present our results in terms of the spherical harmonic coefficients and of the relationships between
the observed and the intrinsic monopole spectra, as well as in terms of the corresponding all-sky maps and angular power spectra.
For certain representative cases, we compare the results of the proposed method with those obtained using more computationally de-
manding numerical integrations or map generation and inversion. The method is generalized to the case of an average map composed
by accumulating data taken with sets of different observer velocities, as is necessary when including the effect of the observer motion
relative to the Solar System barycentre.
Conclusions. The simplicity and efficiency of the proposed method can significantly alleviate the computational effort required for
accurate theoretical predictions and for the analysis of data derived by future projects across a variety of cases of interest. Finally,
we discuss the superposition of the cosmic microwave background intrinsic anisotropies and of the effects induced by the observer
peculiar motion, exploring the possibility of constraining the intrinsic dipole embedded in the kinematic dipole in the presence of
background spectral distortions.

Key words. diffuse radiation – cosmic background radiation – methods: analytical

1. Introduction

The peculiar motion of an observer relative to an ideal ref-
erence frame at rest with respect to the cosmic background
in a given frequency band, produces boosting effects in the
anisotropy patterns at low multipoles with frequency spectral
behaviours related to the spectrum of the isotropic monopole
emission. The largest effect is on the dipole, that is, on the
anisotropy at the ` = 1 multipole, which is mainly attributed
to the solar system barycentre motion. The study of the dipole
anisotropy spectrum is an alternative way to the achievement
of absolute measurements for extracting information about the
background monopole spectrum. This approach was originally
proposed by Danese & De Zotti (1981) within the framework of
cosmic microwave background (CMB) spectral distortions that
possibly occurred in the cosmic plasma at different epochs. This
method has been exploited by Balashev et al. (2015) in the con-

text of future CMB anisotropy missions and, in particular, by
De Zotti et al. (2016) with the aim of improving the charac-
terization of the cosmic infrared background (CIB) spectrum.
Numerical simulations have been performed to assess the impact
of instrumental performance, potential residuals from imper-
fect foreground subtraction, and relative calibration uncertain-
ties in the reconstruction of the types of signals described above
(Burigana et al. 2018). This differential approach has been inves-
tigated to be applied to the analysis of the redshifted 21 cm line
(Slosar 2017) and of its diurnal pattern in drift-scan observa-
tions (Deshpande 2018). Recent predictions of the cosmic dipole
from four types of imprints that are expected from (or associ-
ated with) cosmological reionization – the diffuse free-free (FF)
emission, the Comptonization distortion, the redshifted 21 cm
line, and the radio extragalactic background, along with com-
binations of these types – have been presented by Trombetti &
Burigana (2019).
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In this work, we carry out an analysis of the effect of
the observer peculiar motion on the frequency spectra of the
monopole and of the anisotropy patterns at higher multipoles for
the monopole component of various types of background radi-
ation, ranging from the radio to the far-infrared (far-IR). For a
blackbody spectrum, the amplitude of this effect decreases as β`
at increasing `, where β � 1 is the module of the dimensionless
peculiar velocity of the observer, which is defined by the vector
β = u/c, c being the speed of light.

In general, the vector β is the sum of an almost constant
component, βC, that is due to the motion of the Solar System
barycentre with respect to the cosmic background and of a time
varying component, βV = βV(t), which is due to the motion of
the observer relative to the Solar System barycentre reference
frame. For ground-based or sub-orbital experiments, βV is given
by the combination of the motions of the Earth around the Solar
System barycentre (βES ' 10−4) and of the experimental equip-
ment on the Earth’s surface (βEE ' 1.7 × 10−6 for an experi-
ment located at the Earth equator). For past, planned, and pro-
posed CMB space missions, βV is given by the combination of
the motion of the Earth or of the second Lagrangian point of
the Sun-Earth system (L2) around the Solar System barycentre
(βL2 ' 1.01 βES) and of the motion of spacecraft around the Earth
or around L2, according to the adopted trajectory. For example,
the typical spacecraft velocity around L2 is βL ' 1.7 × 10−6

for a Lissajous ‘orbit’ with a ‘radius’ of '3 × 105 km described
over a timescale of around six months. We note that the Solar
System motion around the Galactic centre and the presence of
local Universe gravitational fields imply time variations of β, but
they can be neglected within the typical duration, τS, of a survey.
For example, in the approximation of a uniform circular motion
of the Solar System around the Galactic centre, with a rotation
period P = 2π/ω ' 2.4×108 yr and a velocity vSG ' 220 km s−1,
that is, βSG ' 7.3 × 10−4, the relative variation of the veloc-
ity at a timescale of τS ' 5 yr is ∆vSG/vSG = ∆βSG/βSG '

ω2 · (vSG/ω) · τS/vSG = ωτS ' 1.3 × 10−7.
For numerical estimates, we will typically assume that the

CMB dipole is due to velocity effects only and we neglect the
modulation of β introduced by the contribution of βV. After
the correction for the spacecraft motion around the Solar
System barycentre, the nominal CMB dipole amplitude according
to the Planck 2015 results (Planck Collaboration I 2016; Planck
Collaboration V 2016; Planck Collaboration VIII 2016) is Adip =
(3.3645 ± 0.002) mK. When using the Low Frequency Instru-
ment alone (Planck Collaboration II 2020), the most recent anal-
ysis of the Planck 2018 results gives an almost identical value
of Adip as in the 2015 release. On the other hand, when includ-
ing, again, the High Frequency Instrument, the analysis of the
Planck 2018 results gives Adip = (3.36208 ± 0.00099) mK
(Planck Collaboration III 2020; Planck Collaboration I 2020),
which is a slightly lower value. These results are clearly com-
patible within the errors. Based on a joint analysis (Fixsen 2009)
of the data from the Far Infrared Absolute Spectrophotometer
(FIRAS) on board the Cosmic Background Explorer (COBE)
and from the Wilkinson Microwave Anisotropy Probe (WMAP),
we adopt T0 = (2.72548 ± 0.00057) K for the current CMB
effective temperature in the blackbody spectrum approximation,
where aT 4

0 gives the current CMB energy density with a =

8πI3k4/(hc)3, I3 = π4/15, k and h the Boltzmann and Planck con-
stants. We use the velocity vC = (369.82 ± 0.11) km s−1 given
in Table 3 of Planck Collaboration I (2020), that is, β = βC =
vC/c ' 1.2336 × 10−3 ' Adip/T0, to characterise the veloc-
ity of the Solar System barycentre with respect to the cosmic
background.

The main contribution to the modulation of β coming from
βV(t), which produces an effect amounting to '8.1% of the
global signal, is derived from the component of the observer
motion due to the revolution of the Earth or of L2 around the
Solar System barycentre (see above estimates).

We study the effect of peculiar motion in terms of spherical
harmonic expansion up to a certain value of `max. In this way,
we introduce a relative error in the prediction of the effect at a
given ` that strongly decreases with `max. Neglecting the contri-
butions from higher orders, the dipole anisotropy spectrum was
estimated as the difference between the signal measured in the
direction of motion and in its perpendicular direction (Danese &
De Zotti 1981), namely, in terms of a very simple linear com-
bination of the signals in two specific directions. In this work,
we show how this concept can be generalized to derive the fre-
quency behaviour of the anisotropy pattern up to higher multi-
poles. We provide both a recipe and explicit solutions that can
be directly used for accurate and swift theoretical predictions of
the individual multipole patterns and of the global pattern, allow-
ing us to bypass the need for more computationally demanding
approaches that are based on delicate numerical integrations or
on map generation and inversion.

In Sect. 2, we introduce the adopted formalism and the set of
equations we aimed to solve. We provide the explicit equations
and solutions up to `max = 6 in Sect. 3 and `max = 4 in Sect. 5
in order to point out some general properties of the solutions. In
Sects. 4 and 6, we work out these solutions for the particular case
of a blackbody spectrum to make clear their simple link with
the contributions coming from the various orders of β. In some
cases, we show their equivalence with the corresponding explicit
exact solution at the order of β corresponding to `max. In Sects. 7
and 8, we discuss the solutions up to low `max, that is, `max = 1
and 2, derived using just two or three colatitudes. Some remarks
linking the general properties of the found solutions at various
`max with the monopole spectrum integration and differentiation
are given in Sect. 9. The main applications and results of the pro-
posed method are presented in Sect. 10 for eight specific types
of background: we give concise presentations of the monopole
spectrum models adopted in this study, we describe the main fea-
tures of the found solutions and, for two very different cases, we
compare them with the results based on a numerical integration.
Some applications to combinations of signals are discussed in
Sect. 11. In Sect. 12, we briefly present a set of results related
to all-sky maps and angular power spectra, also for the purpose
of comparison with previous analyses based on map generation
and inversion. In Sect. 13, we discuss how the developed method
can be directly generalized from the case of maps obtained with
a constant observer velocity to the case of maps derived from the
average of data taken with a set of different observer velocities,
as, for example, in the case of β modulated by βV(t). In Sect. 14,
we focus on the global pattern at microwave frequencies, dis-
cussing the superposition of the CMB intrinsic anisotropies and
of the effects induced by the observer peculiar motion. The pos-
sibility of constraining the intrinsic dipole embedded in the kine-
matic dipole in the presence of CMB spectral distortions is then
discussed in Sect. 15. Finally, in Sect. 16, we draw our main
conclusions. Some technical aspects are provided in the three
sections of the appendix.

2. Theoretical framework and formalism

The peculiar velocity effect on the frequency spectrum can be
evaluated on the whole sky using the complete description of
the Compton-Getting effect (Forman 1970). This is based on the
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Lorentz invariance of the photon distribution function. In this
work, we are interested in the effects induced on the monopole
(or global) signal that, by definition, is isotropic in an ideal ref-
erence frame at rest with respect to the CMB or, more gener-
ally, to the cosmic background under consideration. In principle,
the CMB and the other cosmic backgrounds provide informa-
tion on processes that possibly occurred at different epochs or
that are differently weighted for a range of redshift shells. Thus,
the above ideal reference frame should correctly refer to the cor-
responding cosmic phase.

At a given ν, the photon distribution function, ηBB/dist, for the
considered type of spectrum needs to be computed with the fre-
quency multiplied by the product (1− n̂ ·β)/(1−β2)1/2. The nota-
tion ‘BB/dist’ stands for a blackbody spectrum or for any type
of non-blackbody signal (or for combinations of signals). This
accounts for all the possible sky directions, which are defined by
the unit vector n̂, relative to the peculiar velocity of the observer,
which is defined by the vector β in the reference frame at rest
with respect to the considered cosmic background. This includes
all the orders in β and the link with the geometrical properties
induced at each multipole. We study the effect in terms of equiv-
alent thermodynamic temperature, Tth(ν), defined as the temper-
ature of the blackbody having the same η(ν) at the frequency ν,

Tth(ν) =
hν
k

1
ln(1 + 1/η(ν))

· (1)

The observed signal map is then given by (Burigana et al.
2018)

T BB/dist
th (ν, n̂,β) =

xT0

ln(1 + 1/(η(ν, n̂,β))BB/dist)
, (2)

where η(ν, n̂,β) = η(ν′) with ν′ = ν(1 − n̂ · β)/(1 − β2)1/2,
x = hν/(kTr) and Tr = T0(1 + z) are the redshift invariant dimen-
sionless frequency and the redshift-dependent effective temper-
ature of the CMB.

The unit vector n̂ is associated to the polar coordinates θ
(colatitude) and φ (longitude). The function T BB/dist

th (ν, n̂,β) =

T BB/dist
th (ν, θ, φ,β) can be expanded in spherical harmonics. We

adopt a reference system with the z axis parallel to the observer
velocity and we can then simply replace β with β in the above
dependencies. Thus,

T BB/dist
th (ν, θ, φ, β) =

`max∑
`=0

∑̀
m=−`

a`,m(ν, β)Y`,m(θ, φ), (3)

where Y`,m(θ, φ) are the spherical harmonics related to the asso-
ciated Legendre polynomials, Pm

` (cos θ), and the coefficients
a`,m(ν, β) contain information on the background spectrum and
the observer velocity.

In the adopted reference system, the isotropy of the back-
ground monopole, or, equivalently, of η, implies that T BB/dist

th
depends on θ but not on φ. Thus, in Eq. (3), we can take only
the terms with m = 0 and in this case, Y`,m(θ, φ) = P̃m

` (cos θ),
where P̃m

` (cos θ) are the renormalized associated Legendre poly-
nomials:

P̃m
` (cos θ) =

√
2` + 1

4π
(` − m)!
(` + m)!

Pm
` (cos θ). (4)

In general, for a real function, the coefficients of the spherical
harmonics expansion with m > 0 are related to the coefficients
with m < 0 by the relation a∗`,m = (−1)m a`,−m, where the index ∗

denotes the complex conjugation. We note that for this problem
and with the adopted reference system with the z axis parallel
(or antiparallel) to the observer velocity, we are interested only
in the non-vanishing coefficients with m = 0, but, in general, we
can also see that the coefficients a`,m with m , 0 do not vanish.
The publicly available tools allow us to efficiently compute the
a`,m passing from a reference system to another (see Górski et al.
2005).

Formally, the coefficients a`,m(ν, β) can be computed through
an inversion of Eq. (3):

a`,m(ν, β) =

∫ π

θ=0

∫ 2π

φ=0
T BB/dist

th (ν, θ, φ, β)e−imφP̃m
` (cos θ) sin θ dθ dφ

=

∫ π

θ=0

∫ 2π

φ=0

[
T BB/dist

th (ν, θ, φ, β) − T BB/dist,rest
th (ν)

]
(5)

× e−imφP̃m
` (cos θ) sin θ dθ dφ + arest

`,m(ν),

where T BB/dist
th is evaluated through Eq. (2) and m = 0. In the last

part of Eq. (5), arest
`,m(ν) =

√
4πT BB/dist,rest

th (ν) and T BB/dist,rest
th (ν)

are evaluated in the background rest frame, that is, these are
the intrinsic spherical harmonics expansion coefficients and the
intrinsic (isotropic) background monopole expressed in equiva-
lent thermodynamic temperature. For this problem, arest

`,m(ν) does
not vanish only for ` = 0. This form in Eq. (5) is useful in the
numerical computation (see also Sect. 10.1) because the inte-
grand function becomes the difference between the equivalent
thermodynamic temperatures in the reference frames in motion
and at rest with respect to the background. For a general back-
ground spectrum, this approach requires a delicate and compu-
tationally demanding integration over θ. For a small β, it could
be difficult to achieve the extreme precision needed to charac-
terize the fine and small details of spectral features. We can
instead consider Eq. (3) with m = 0 for a set of N directions,
namely, of colatitudes θi with i = 0,N − 1, to construct a lin-
ear system of N equations in the N unknowns a`,0(ν, β), with
` = 0,N − 1, that can be solved given the corresponding N val-
ues of T BB/dist

th (ν, θi, φ, β), provided that the determinant of the
system coefficient matrix does not vanish. The solutions for the
unknowns a`,0(ν, β) can be then written as linear combinations
of N signals, T BB/dist

th (ν, θi, φ, β), that are evaluated for a given
background monopole at N colatitudes.

With this simple scheme, we can fully characterize the
observed signal map T BB/dist

th (ν, n̂,β) up to the desired multipole
component `max = N − 1. Let us assume, as a rule of thumb,
that the amplitude of this effect decreases at increasing multi-
pole as β`·p, with p ≈ 1. The value appropriate to the case of a
blackbody spectrum is p = 1, as mentioned in Sect. 1, while, in
general, the effective scaling with ` is frequency-dependent and
related to the monopole spectrum shape, as discussed in next
sections. Considering a spherical harmonic expansion up to `max
leads to neglect the contributions from ` > `max. Thus, given the
above scaling, the relative error in the computation of the effect
at a given ` ≤ `max is, at most, on the order of β(`max−`+ j)·p. For
a generic choice of the N colatitudes, we simply have j = 1.
Since β is on the order of 10−3, adopting `max = 6, we expect
to achieve an extremely high numerical accuracy that is suffi-
cient for any application even in the very distant future; whereas,
setting `max = 4 can be adequate for predicting the correspond-
ing multipole patterns as part of the analysis in forthcoming and
planned (or proposed) surveys since no relevant error is intro-
duced by neglecting the contributions at higher multipoles. In
general, an accuracy up to any desired order can be then achieved
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with this approach by just computing T BB/dist
th in only a relatively

small number of sky directions, N = `max + 1.
We note that Y0,0 =

√
1/(4π) and that for ` = 0, and for

even `, the associated Legendre polynomials P0
`
(cos θ) are sym-

metric with respect to θ = π/2, whereas for odd `, they vanish
at θ = π/2 and are antisymmetric with respect to θ = π/2. This
suggests that the linear system of N equations using θ = π/2
and pairs of colatitudes symmetric with respect to θ = π/2 are
expected satisfy the following properties: (i) for θ = π/2, all the
coefficients multiplying a`,0 are null for odd `; (ii) for each pair
of colatitudes – if ` is even, the coefficient multiplying a`,0 is the
same, whereas, it is the opposite result for odd `.

As made evident in the next sections, these properties can be
used to significantly simplify the explicit solution of the system
because they allow us to combine the equations into two separate
subsystems: (1) (N − 1)/2 + 1 equations for a`,0, with ` = 0 and
even ` and (2) (N − 1)/2 equations for a`,0 with odd `. For even
`max, a choice of odd N = `max + 1 colatitudes θi that satisfies
the above symmetry implies j = 2 (instead of 1) for even ` in
the scaling, β(`max−`+ j)·p, of the relative error of the method (see
also the discussion at the end of Appendix A). For odd `max, the
system can be built with N = `max +1 colatitudes θi as above, but
avoiding the inclusion of π/2. The system can be split into two
separate subsystems of N/2 equations: (1) for ` = 0 and even
` and (2) for odd `; and in this case, j = 2 for odd ` (see also
Sect. 7 and the discussion at the end of Sect. 8). This property
allows us to achieve a significant improvement in accuracy with
respect to a generic choice of the N colatitudes θi.

3. Explicit solutions up to `max = 6

Explicitly expanding T BB/dist
th in spherical harmonics up to `max =

6, we get

T BB/dist
th = a0,0

√
1

4π

+ a1,0

√
3

4π
cos θ

+ a2,0

√
5

4π

(
3
2

cos2 θ −
1
2

)
+ a3,0

√
7

4π

(
5
2

cos3 θ −
3
2

cos θ
)

(6)

+ a4,0

√
9

4π

(
35
8

cos4 θ −
15
4

cos2 θ +
3
8

)
+ a5,0

√
11
4π

(
63
8

cos5 θ −
35
4

cos3 θ +
15
8

cos θ
)

+ a6,0

√
13
4π

(
231
16

cos6 θ −
315
16

cos4 θ +
105
16

cos2 θ −
5

16

)
,

where we omit, for simplicity, the dependence of T BB/dist
th on ν, θ

and β and the dependencies of a`,0 on ν and β.
To write the linear system of seven equations, we are able

to choose among infinite possibilities, and the explicit form of
the system (but not the solution up to the adopted maximum
multipole) depends on the specific choice. Among the possible
choices satisfying the symmetry properties described above, we
selected a set of colatitudes θi such that the values of cos θi are
rational numbers or just involve

√
2 in order to simplify the alge-

bra: θi = 0, π/4, π/3, π/2, (2/3)π, (3/4)π, and π.

After a series of calculations, we derived the corresponding
linear system. We obtain

T BB/dist
th (θ = 0) =

√
1

4π
a0,0 +

√
3

4π
a1,0 (7)

+

√
5

4π
a2,0 +

√
7

4π
a3,0 +

√
9

4π
a4,0

+

√
11
4π

a5,0 +

√
13
4π

a6,0,

T BB/dist
th (θ = π/4) =

√
1

4π
a0,0 +

√
2

2

√
3

4π
a1,0 (8)

+
1
4

√
5

4π
a2,0 −

√
2

8

√
7

4π
a3,0 −

13
32

√
9

4π
a4,0

−
17
√

2
64

√
11
4π

a5,0 −
19

128

√
13
4π

a6,0,

T BB/dist
th (θ = π/3) =

√
1

4π
a0,0 +

1
2

√
3

4π
a1,0 (9)

−
1
8

√
5

4π
a2,0 −

7
16

√
7

4π
a3,0 −

37
128

√
9

4π
a4,0

+
23
256

√
11
4π

a5,0 +
331
1024

√
13
4π

a6,0,

T BB/dist
th (θ = π/2) =

√
1

4π
a0,0 + 0 · a1,0 (10)

−
1
2

√
5

4π
a2,0 + 0 · a3,0 +

3
8

√
9

4π
a4,0,

+ 0 · a5,0 −
5
16

√
13
4π

a6,0

T BB/dist
th (θ = (2/3)π) =

√
1

4π
a0,0 −

1
2

√
3

4π
a1,0 (11)

−
1
8

√
5

4π
a2,0 +

7
16

√
7

4π
a3,0 −

37
128

√
9

4π
a4,0

−
23
256

√
11
4π

a5,0 +
331
1024

√
13
4π

a6,0

T BB/dist
th (θ = (3/4)π) =

√
1

4π
a0,0 −

√
2

2

√
3

4π
a1,0 (12)

+
1
4

√
5

4π
a2,0 +

√
2

8

√
7

4π
a3,0 −

13
32

√
9

4π
a4,0

+
17
√

2
64

√
11
4π

a5,0 −
19

128

√
13
4π

a6,0,

T BB/dist
th (θ = π) =

√
1

4π
a0,0 −

√
3

4π
a1,0 (13)

+

√
5

4π
a2,0 −

√
7

4π
a3,0 +

√
9

4π
a4,0

−

√
11
4π

a5,0 +

√
13
4π

a6,0.

Equations (7)–(13) constitute the linear system that is to be
solved; and the determinant of the coefficients of the system
matrix, '−0.303, does not vanish. We can solve the system using
the methods of elimination and substitution.

As anticipated, we can combine the above equations to split
the system into two subsystems. By adding the left and right
sides of Eqs. (7) and (13), of Eqs. (8) and (12), and of Eqs. (9)
and (11), we get three equations which, complemented using
Eq. (10), form a linear system involving only the four unknowns
a`,0 with ` = 0 and even `. We can solve it by substitution.
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Equation (10) allows us to express 2
√

1/(4π)a0,0 as a combina-
tion of T BB/dist

th (θ = π/2), a2,0, a4,0, and a6,0 to be put in the other
three equations. From the first one, we then express a2,0 as a
combination of T BB/dist

th (θ = 0), T BB/dist
th (θ = π/2), T BB/dist

th (θ =
π), a4,0, and a6,0 to be put in the two other remaining equa-
tions. We then represent a4,0 as a combination of T BB/dist

th (θ = 0),
T BB/dist

th (θ = π/4), T BB/dist
th (θ = π/2), T BB/dist

th (θ = (3/4)π),
T BB/dist

th (θ = π), and a6,0, which allows us to derive first the solu-
tion for a6,0:

a6,0 =
64

693

√
4π
13

[(
T BB/dist

th (θ = 0) + T BB/dist
th (θ = π)

)
(14)

− 6
(
T BB/dist

th (θ = π/4) + T BB/dist
th (θ = (3/4)π)

)
+ 8

(
T BB/dist

th (θ = π/3) + T BB/dist
th (θ = (2/3)π)

)
− 6T BB/dist

th (θ = π/2)
]
.

As suggested in the introduction, a6,0 is written in terms of a lin-
ear combination of the set of values of T BB/dist

th computed for the
seven adopted colatitudes. With substitution, we subsequently
derive the solution for a4,0, a2,0 and, finally, for a0,0:

a4,0 =
8

385

√
4π
9

[
9
(
T BB/dist

th (θ = 0) + T BB/dist
th (θ = π)

)
(15)

−10
(
T BB/dist

th (θ = π/4) + T BB/dist
th (θ = (3/4)π)

)
−16

(
T BB/dist

th (θ = π/3) + T BB/dist
th (θ = (2/3)π)

)
+34T BB/dist

th (θ = π/2)
]
,

a2,0 =
1

693

√
4π
5

[
121

(
T BB/dist

th (θ = 0) + T BB/dist
th (θ = π)

)
(16)

+396
(
T BB/dist

th (θ = π/4) + T BB/dist
th (θ = (3/4)π)

)
−352

(
T BB/dist

th (θ = π/3) + T BB/dist
th (θ = (2/3)π)

)
−330T BB/dist

th (θ = π/2)
]
,

a0,0 =

√
4π

630

[
29

(
T BB/dist

th (θ = 0) + T BB/dist
th (θ = π)

)
(17)

+120
(
T BB/dist

th (θ = π/4) + T BB/dist
th (θ = (3/4)π)

)
+64

(
T BB/dist

th (θ = π/3) + T BB/dist
th (θ = (2/3)π)

)
+204T BB/dist

th (θ = π/2)
]
.

Subtracting left and right sides of Eqs. (7) and (13), of
Eqs. (8) and (12), and of Eqs. (9) and (11) we get three equations
that form a linear system involving only the three unknowns a`,0
with odd `. From the difference between the first of these equa-
tions and the second equation multiplied by

√
2 and the differ-

ence between the first equation and the third equation multiplied
by 2, we can write a system for a3,0 and a5,0. We first derive a5,0

a5,0 =
32
189

√
4π
11

[(
T BB/dist

th (θ = 0) − T BB/dist
th (θ = π)

)
(18)

−3
√

2
(
T BB/dist

th (θ = π/4) − T BB/dist
th (θ = (3/4)π)

)
+4

(
T BB/dist

th (θ = π/3) − T BB/dist
th (θ = (2/3)π)

)]

and then, by substitution, a3,0 and a1,0

a3,0 =
2

135

√
4π
7

[
13

(
T BB/dist

th (θ = 0) − T BB/dist
th (θ = π)

)
(19)

+15
√

2
(
T BB/dist

th (θ = π/4) − T BB/dist
th (θ = (3/4)π)

)
−56

(
T BB/dist

th (θ = π/3) − T BB/dist
th (θ = (2/3)π)

)]
,

a1,0 =
1

210

√
4π
3

[
29

(
T BB/dist

th (θ = 0) − T BB/dist
th (θ = π)

)
(20)

+60
√

2
(
T BB/dist

th (θ = π/4) − T BB/dist
th (θ = (3/4)π)

)
+32

(
T BB/dist

th (θ = π/3) − T BB/dist
th (θ = (2/3)π)

)]
.

We note that the structure of the solutions for a`,0 for ` = 0,
and even `, involving the sums of T BB/dist

th at pairs of colatitudes
symmetric with respect to π/2 and T BB/dist

th at π/2, as well as the
structure of the solutions for odd `, involving the differences of
T BB/dist

th at pairs of colatitudes symmetric with respect to π/2,
reflect the symmetry and antisymmetry properties that are dis-
cussed at the end of Sect. 2, together with the corresponding
implications for the system solution accuracy.

The solutions expressed in Eqs. (14)–(20) can be compared
with each of the Eqs. (7)–(13) for a given colatitude θi: as
expected, the sum of products of the various coefficients that
multiply a`,0, for ` = 0, 6, in the equation for T BB/dist

th (θi) with
the coefficients in Eqs. (14)–(20) that multiply T BB/dist

th (θi) gives
exactly one. Remarkably, except for θi = π/2, where only ` = 0
and the even multipoles contribute to T BB/dist

th , for all the other
colatitudes θi the above sum is equally contributed for one half
by ` = 0 and by the even multipoles and for one half by the
odd multipoles. This is another property related to the symmetry
with respect to π/2 of the set of colatitudes adopted.

4. Solutions for a blackbody up to `max = 6

Let us consider the specific case of the CMB, assumed to ide-
ally exhibit a blackbody monopole spectrum with an effective
temperature, T0, in the CMB rest frame. In this case, the photon
distribution function is

ηBB(ν) = ηBB(x) =
1

ex − 1
· (21)

Equation (2) then gives the well-known expression

T BB
th (ν, θ, φ, β) =

xT0

x′
=

T0(1 − β2)1/2

1 − βcosθ
, (22)

with x′ = hν′/(kTr), highlighting that T BB
th (ν, θ, φ, β) does not

depend on φ nor on ν.
The observed CMB effective temperature averaged over the

full sky, T0,obs, is given by

T0,obs =
1

4π

∫ π

θ=0

∫ 2π

φ=0

T0(1 − β2)1/2

1 − βcos θ
sin θ dθdφ. (23)

For an observer at rest with respect to the CMB, β = 0 and
then the substitution of the integration variable, θ, with a new
variable, w = cos θ, obviously gives T0,obs = T0 and implies
that in the expansion represented by Eq. (3), as specified by
Eq. (6), the only non-vanishing contribution to T0,obs comes
from a term associated to the multipole coefficient a0,0. Since
Y0,0 =

√
1/(4π), a0,0 = T0

√
4π.
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For an observer in motion with respect to the CMB, β , 0
and T0,obs can be calculated by simply substituting the integra-
tion variable, θ, with w = 1 − βcos θ. We get

T0,obs =
1
2

(1 − β2)1/2T0
1
β

ln
1 + β

1 − β
, (24)

as already reported in Lucca et al. (2020) (see also Chluba 2011;
Dai & Chluba 2014). By replacing ln[(1 + β)/(1 − β)] with its
expansion in Taylor’s series up to β7, that is, with 2[β+ (1/3)β3 +
(1/5)β5 + (1/7)β7], we find:

T0,obs =
1
2

(1−β2)1/2T0 ·2 · [1+ (1/3)β2 + (1/5)β4 + (1/7)β6]. (25)

We now specify the coefficients, a`,0, given by Eqs. (14)–(20) to
the blackbody case using Eq. (22) to compute T BB

th at the seven
considered colatitudes. After solving the algebra, we get

aBB
6,0 =

128
231

√
4π
13

(1 − β2)1/2T0 ·
β6

(1 − β2)(2 − β2)(4 − β2)
, (26)

aBB
4,0 =

16
385

√
4π
9

(1 − β2)1/2T0 ·
44β4 − 17β6

(1 − β2)(2 − β2)(4 − β2)
, (27)

aBB
2,0 =

2
21

√
4π
5

(1 − β2)1/2T0 ·
56β2 − 50β4 + 5β6

(1 − β2)(2 − β2)(4 − β2)
, (28)

aBB
0,0 =

1
2

√
4π(1 − β2)1/2T0 (29)

·
16 − (68/3)β2 + (118/15)β4 − (204/315)β6

(1 − β2)(2 − β2)(4 − β2)
,

and

aBB
5,0 =

64
63

√
4π
11

(1 − β2)1/2T0 ·
β5

(1 − β2)(2 − β2)(4 − β2)
, (30)

aBB
3,0 =

4
45

√
4π
7

(1 − β2)1/2T0 ·
36β3 − 23β5

(1 − β2)(2 − β2)(4 − β2)
, (31)

aBB
1,0 =

√
4π
3

(1 − β2)1/2T0 ·
8β − (46/5)β3 + (71/35)β5

(1 − β2)(2 − β2)(4 − β2)
· (32)

In the above expressions, the factor (1 − β2)1/2T0 clearly
comes from Eq. (22) while the three factors in the denomina-
tor come from the choice of the pairs of colatitudes θ sym-
metric to π/2, that have been set to 0 and π, π/4 and (3/4)π,
π/3, and (2/3)π. We observe also that, because of the adopted
`max = 6 and the separation of the system into two subsystems,
the solutions for aBB

6,0 and aBB
5,0 (see Eqs. (26) and (30)) do not

show at numerator additional terms coming from higher multi-
poles, while they appear in the solutions for aBB

`,0 for ` ≤ 4 (see
Eqs. (27)–(29), (31) and (32)).

It is evident that the coefficients, aBB
`,0 , do not depend on θ.

Thus, the substitution of the integration variable θ with w =
cos θ, in the expansion represented by Eq. (3) again gives T0,obs
and implies that the only non-vanishing contribution comes from
a term associated to the multipole coefficient aBB

0,0 . An expansion
in Taylor’s series up to β6, gives 1/(1 − β2) = 1 + β2 + β4 + β6,
1/(2 − β2) = (1 + β2/2 + β4/4 + β6/8)/2, and 1/(4 − β2) =
(1 + β2/4 + β4/16 + β6/64)/4. It is then simple to verify that, at
the same order in β, Eq. (29) gives exactly the result expressed
by Eq. (25), as is required, in principle.

Equation (5) allows us to analytically derive the a`,0(ν, β) for
any ` for relatively simple dependencies of T BB

th (ν, θ, φ, β), as in
the case of the blackbody spectrum, namely, for Eq. (22). The
form of the integrand in θ involves only the function sin θ/(1 −
βcos θ) multiplied by polynomials in cos θ and when substituting
the integration variable θ with w = 1 − βcos θ, the integrand
consists only of functions as 1/w and powers of w. We omit the
tedious calculation at ` ≥ 2. Instead, for ` = 1, we get:

aBB
1,0 = 2π(1 − β2)1/2T0

∫ π

θ=0

sin θ
1 − βcos θ

√
3

4π
cos θ dθ (33)

= 2π

√
3

4π
(1 − β2)1/2T0

1
β2

[
ln

1 + β

1 − β
− 2β

]
,

where, by replacing ln[(1 +β)/(1−β)] with its expansion in Tay-
lor’s series up to β7, gives:

aBB
1,0 =

√
4π
√

3(1 − β2)1/2T0[β/3 + β3/5 + β5/7]. (34)

Performing a Taylor’s series expansion up to β6 for 1/(1 − β2),
1/(2 − β2) and 1/(4 − β2), it is simple to verify that at the same
order in β, Eq. (32) for aBB

1,0 gives precisely the result expressed
by Eq. (34).

Finally, we remember that in Sect. 3 we discussed deriving
both a0,0 and a1,0 by substitution in the last step of the calculation
to solve the corresponding linear subsystem. Thus, the consisten-
cies discussed above for T0,obs and aBB

1,0 at the adopted order also
represent a further verification of the derived algebraic solutions.

5. Explicit solutions up to `max = 4

For many applications, a computation up to `max = 4 suffice
to get the relevant information. We then provide here simpler
solutions based on N = 5 equations using the set of colatitudes
0, π/4, π/2, (3/4)π and π. This also allows us to explicitly focus
on some of the mentioned properties of the proposed method.

We construct a system formed only by Eqs. (7), (8), (10), (12)
and (13) ignoring the terms associated to a5,0 and a6,0, and we
again solve it with the methods of elimination and substitution in
a way similar to that described in Sect. 3. The solutions are

a4,0 =
8

35

√
4π
9

[(
T BB/dist

th (θ = 0) + T BB/dist
th (θ = π)

)
(35)

−2
(
T BB/dist

th (θ = π/4) + T BB/dist
th (θ = (3/4)π)

)
+2T BB/dist

th (θ = π/2)
]
,

a2,0 =
1

21

√
4π
5

[
5
(
T BB/dist

th (θ = 0) + T BB/dist
th (θ = π)

)
(36)

+4
(
T BB/dist

th (θ = π/4) + T BB/dist
th (θ = (3/4)π)

)
−18T BB/dist

th (θ = π/2)
]
,

a0,0 =

√
4π

30

[(
T BB/dist

th (θ = 0) + T BB/dist
th (θ = π)

)
(37)

+8
(
T BB/dist

th (θ = π/4) + T BB/dist
th (θ = (3/4)π)

)
+12T BB/dist

th (θ = π/2)
]
.
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Next, we have

a3,0 =
2
5

√
4π
7

[(
T BB/dist

th (θ = 0) − T BB/dist
th (θ = π)

)
(38)

−
√

2
(
T BB/dist

th (θ = π/4) − T BB/dist
th (θ = (3/4)π)

)]
,

a1,0 =
1
10

√
4π
3

[(
T BB/dist

th (θ = 0) − T BB/dist
th (θ = π)

)
(39)

+4
√

2
(
T BB/dist

th (θ = π/4) − T BB/dist
th (θ = (3/4)π)

)]
.

While the structure of the solutions expressed by Eqs. (35)–
(39) is analogous to the structure of Eqs. (15)–(17), (19)
and (20), the different algebraic coefficients reflect the different
choice adopted for the set of colatitudes.

6. Solutions for a blackbody up to `max = 4

Specifying the coefficients, a`,0, given by Eqs. (35)–(39) to the
blackbody case (see Eq. (22)), we compute T BB

th at the five con-
sidered colatitudes and we obtain

aBB
4,0 =

16
35

√
4π
9

(1 − β2)1/2T0 ·
β4

(1 − β2)(2 − β2)
, (40)

aBB
2,0 =

2
21

√
4π
5

(1 − β2)1/2T0 ·
14β2 − 9β4

(1 − β2)(2 − β2)
, (41)

aBB
0,0 =

√
4π

30
(1 − β2)1/2T0 ·

60 − 70β2 + 12β4

(1 − β2)(2 − β2)
, (42)

and

aBB
3,0 =

4
5

√
4π
7

(1 − β2)1/2T0 ·
β3

(1 − β2)(2 − β2)
, (43)

aBB
1,0 =

√
4π
3

(1 − β2)1/2T0 ·
2β − (9/5)β3

(1 − β2)(2 − β2)
· (44)

In this case (`max = 4), the solutions for aBB
4,0 and aBB

3,0 do not
show, in terms of the numerator, additional higher multipoles
terms, as they appear at ` ≤ 2. The algebraic coefficients appear-
ing in Eqs. (40)–(44) and in Eqs. (27)–(29), (31) and (32) are
different, but these sets of equations give exactly the same solu-
tions when the ratios of their polynomials in β are computed up
to the order of β4. Analogously, Eq. (42) gives for T0,obs the same
result of Eqs. (25) and (44) is equivalent to Eq. (34) when they
are computed up to the same order of power in β.

7. Explicit solutions up to `max = 2 and 1

It is helpful to write the solutions for low values of `max.
From the N = 3 equations at the colatitudes 0, π/2 and π

(Eqs. (7), (10), and (13)), ignoring the terms associated to a`,0
for ` > 2, we get

a2,0 =
1
3

√
4π
5

[(
T BB/dist

th (θ = 0) + T BB/dist
th (θ = π)

)
(45)

−2T BB/dist
th (θ = π/2)

]
,

a1,0 =
1
2

√
4π
3

[(
T BB/dist

th (θ = 0) − T BB/dist
th (θ = π)

)]
, (46)

a0,0 =

√
4π
6

[(
T BB/dist

th (θ = 0) + T BB/dist
th (θ = π)

)
(47)

+4T BB/dist
th (θ = π/2)

]
.

Using only N = 2 equations at the colatitudes 0 and π
(Eqs. (7) and (13)), neglecting the terms at ` > 1, we have

a1,0 =
1
2

√
4π
3

[(
T BB/dist

th (θ = 0) − T BB/dist
th (θ = π)

)]
, (48)

a0,0 =

√
4π
2

[(
T BB/dist

th (θ = 0) + T BB/dist
th (θ = π)

)]
. (49)

With N = 2 equations but at the colatitudes 0 and π/2
(Eqs. (7) and (10)), which is clearly not symmetric with respect
to π/2, instead we get:

a1,0 =

√
4π
3

[(
T BB/dist

th (θ = 0) − T BB/dist
th (θ = π/2)

)]
, (50)

a0,0 =
√

4π
[(

T BB/dist
th (θ = π/2)

)]
. (51)

8. On dipole estimations based on two colatitudes

As proposed by Danese & De Zotti (1981), a suitable and obser-
vationally intuitive approximation for the dipole spectrum can be
expressed in terms of the difference of T BB/dist

th in the direction of
motion and in its perpendicular direction.

Equations (7) and (10) allow us to express this difference
in terms of a combination of the coefficients a`,0(ν, β) up to
`max = 6:

∆0,π/2T BB/dist
th =

√
3

4π
a1,0 +

3
2

√
5

4π
a2,0 +

√
7

4π
a3,0 (52)

+
5
8

√
9

4π
a4,0 +

√
11
4π

a5,0 +
21
16

√
13
4π

a6,0 .

Neglecting the contributions from ` > 1, Eqs. (50) and (52) are
equivalent. We can also express the semi-difference in T BB/dist

th
measured in the direction of motion and in its opposite direction
using Eqs. (7) and (13)

1
2

∆0,πT
BB/dist
th =

√
3

4π
a1,0 +

√
7

4π
a3,0 +

√
11
4π

a5,0 (53)

and in leaving out the terms at ` > 1, Eq. (53) is equivalent to
Eq. (48).

The estimation of a1,0(ν, β) through the simple difference of
T BB/dist

th in only two directions can be performed using the two
colatitudes θ = 0 and θ = π to automatically suppress the contri-
butions from ` = 2 (and from higher even `), as discussed at the
end of Sect. 2. The same holds for any other pair of colatitudes
symmetric with respect to π/2 (as can be derived, for example,
by combining Eqs. (8) and (12) or Eqs. (9) and (11)). The solu-
tions presented in Sect. 3 can instead be used to correct for the
contributions from the odd terms at ` = 3 and 5 (and from the
terms at even `, when using Eq. (52)).
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9. Solutions for a`,0 and spectrum integration or
differentiation

Equation (5) shows that the solution for a given a`,0 is an integral
of T BB/dist

th over θ. Since β is very small, when θ spans in the
interval [0, π], around π/2, the values of T BB/dist

th in the integrand
come from frequency values in a small interval around ν/(1 −
β2)1/2 (see Eq. (2) and the relation between ν and ν′), making
the integral sensitive to the local variation of T BB/dist

th . Formally,
the solutions expressed by Eqs. (14)–(20) and (35)–(39) can be
regarded as definitions of sets of weights assigned to a small
number of values of function T BB/dist

th in a given set of colatitudes,
or corresponding frequencies, to compute the integrals that give
the coefficients a`,m in Eq. (5).

To a first-order approximation, the dipole spectrum induced
by the observer peculiar velocity is directly proportional to the
first logarithmic derivative of the photon occupation number,
η(ν), with respect to the frequency, ν (Danese & De Zotti 1981).
This concept can be generalized to higher multipoles. Let us con-
sider the partial derivative of Eq. (5) with respect to the fre-
quency, ν. According to Leibniz’s rule, when performing the
differentiation under the integral sign, a further multiplicative
factor involving the product, β cos θ, enters in the integral over
θ, other than factors depending on the form of η(ν). As is evi-
dent from Eq. (6), a further power of cos θ appears passing from
` to ` + 1 in the associated Legendre polynomials and, conse-
quently, in the integrand function of a`,0 (see Eq. (5)). Thus, the
subsequent a`,0(ν) at increasing ` is tightly related to the sub-
sequent derivatives of η(ν) with respect to ν, or in other words,
their frequency behaviours are particular sensitive to the local (in
frequency space) monopole spectrum variation up to increasing
derivative order.

It is interesting to note certain properties of the coeffi-
cients (or weights) in Eqs. (14)–(20), (35)–(39), (45)–(47), (48)
and (49) that are related to the separation of odd and even mul-
tipoles in the system solution. As already discussed, this separa-
tion appears when we adopt sets of colatitudes θ symmetrically
located around π/2. The central weight, applied to θ = π/2, is
zero for odd ` but not for even `. For angles θ symmetric with
respect to π/2, the weights are opposite for odd ` and equal for
even `. The sum of the weights vanishes, except for ` = 0: in this
case, the sum is exactly unit, when divided by the ‘normaliza-
tion’ factor,

√
4π (see also Eq. (6)). These properties are identical

to those satisfied by the weights for the centred approximations
at a grid point for the generation of finite difference formulas
on arbitrarily spaced grids for any order of derivative (Fornberg
1988, 1998). Furthermore, we note that the relative weights in
Eqs. (45), (46), and (48) are equivalent to the relative weights for
the centred approximations at a grid point for the second and first
order of derivative, the relative weights in Eq. (49) are equiva-
lent to the relative weights for the centred approximations at the
halfway point for the zero order of derivative, while the rela-
tive weights in Eqs. (50) and (51) are equivalent to the relative
weights for the one-sided approximations at a grid point for the
first and zero order of derivative. The different level of approxi-
mation in the estimate of a1,0 via Eqs. (52) and (53), neglecting
terms at ` > 1, is clearly related to the different accuracies of
the one-sided and centred scheme for numerical differentiation.
Finally, the relative weights for a0,0 in Eq. (47) are not equiv-
alent to relative weights for the zero order of derivative of the
schemes mentioned above. This is of increasing evidence in the
weights of the solutions at `max > 2. Remarkably, they do not sat-
isfy the sign alternation appearing in the weights of the centred

approximations at a grid point of finite difference formulas mov-
ing from the central node to the more external nodes. Indeed,
they store the relations between the a`,0 at different ` and the tem-
peratures at the adopted set of colatitudes that originates from
the system solution at the corresponding `max (this is analogous
to the ‘mixing’ of derivatives discussed above).

10. Monopole spectrum models and single signal
results

The method described can be applied to any type of signal and to
combinations of signals, provided that they are summed in terms
of additive quantities, such as the photon distribution function,
η, or the antenna temperature,

Tant(ν) =
hν
k
η(ν). (54)

In this work, we consider eight different types of monopole spec-
trum that can be represented in terms of analytical or semi-
analytical functions.

We first focus on four types of signals characterized by a
CMB-distorted photon distribution function, ηdist(ν) that is dif-
ferent from the blackbody, ηBB(ν), at the present temperature T0.
We then consider four types of extragalactic background super-
imposed onto the CMB blackbody spectrum. We give only a con-
cise description of the various models, referring to the literature
for further information. On the other hand, we report the equa-
tions relevant for a clear connection with Sect. 14.

We first consider the signals that are more relevant (or essen-
tially relevant) at low frequencies (radio domain) and then those
that are relevant over a very wide frequency range (up to the far-
IR) or more important at increasing frequency. We compare the
results based on the proposed method (the solutions in Sect. 3)
with the computation based on direct numerical integration (see
Eq. (5) and the discussion in Sect. 10.1). For simplicity, we
perform the comparison (see also Appendix A) only for two
representative cases, which were chosen because they are very
different with regard to the spectrum features.

The results are presented in terms of the following quantities:
– The difference, ∆Tth, between the equivalent thermody-

namic temperature of the intrinsic monopole spectrum for the
adopted model and the CMB present temperature T0.

– The ratio, R = (a0,0(ν, β)/
√

4π)/Tth(ν), between the equiv-
alent thermodynamic temperature of observed (see Eq. (6)) and
intrinsic monopole, expressed in terms of the difference ∆R =
R − RBB, where RBB ' (1 − 2.5362 × 10−7) is the same ratio but
for the case of the blackbody, ηBB(ν), at the present temperature
T0 (see Eqs. (23)–(25) and the discussion in Sect. 4).

– The coefficients a`,0(ν, β) from ` = 1 to `max = 6 (see
Eqs. (14)–(16) and (18)–(20)) expressed in terms of their differ-
ence with the blackbody case (see Eqs. (26)–(28) and (30)–(32)).

10.1. Possible non-equilibrium imprint at low frequencies

An important extragalactic background signal that is much larger
than the CMB background predicted for a blackbody spec-
trum at an equilibrium temperature in agreement with FIRAS
results is observed at radio frequencies, in particular, below a
few GHz (see e.g., Dowell & Taylor 2018). A signal excess
could be also present at '3.3 GHz, as claimed by Singal et al.
(2011) on the basis of the second generation of the Absolute
Radiometer for Cosmology, Astrophysics, and Diffuse Emis-
sion (ARCADE 2) data. Models based on contributions by faint
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T. Trombetti et al.: Observer motion and background spectrum from monopole to higher multipoles

Fig. 1. ∆Tth, ∆R and ∆a`,0 from ` = 1 to `max = 6 for the considered non-equilibrium models. Solid lines (or dots) correspond to positive (or
negative) values. Green and light blue lines are essentially superimposed up to ` = 4, where only one of the two lines can be appreciated. Their
difference multiplied by a factor F to have values compatible with the adopted range is displayed by the blue lines. Yellow lines refer to the nominal
integration error quoted by the routine D01AJF, again multiplied by the factor F. See also the legend and the text.

astrophysical sources, on interactions between dark matter (DM)
and baryons, or on their combinations have been invoked to
explain this background, possibly together with the pronounced
absorption profile of the 21 cm redshifted line signal (see also
Sect. 10.4), which has also been claimed by Bowman et al.
(2018); see, for example, Seiffert et al. (2011), Barkana (2018),
Muñoz & Loeb (2018), Ewall-Wice et al. (2018) and Mirabel
(2019) (see also Subrahmanyan & Cowsik 2013; Hills et al.
2018; Sharma 2018).

Baiesi et al. (2020) proposed an alternative explanation of
the signal excess in the low frequency background, involving
a mechanism of stochastic frequency diffusion in the perspec-
tive of non-equilibrium statistical mechanics. The model implies
a modification of the standard Kompaneets equation (Kompa-
neets 1957), explicitly considered by the authors in the limit
that includes only the scattering, and a relaxation of the Ein-
stein detailed balance relation. The resulting abundance of low
frequency photons can be described by a stationary solution of
the photon distribution function in the form:

η(ν) =
1

exp
[∫ ν

dν′γ(ν′)/D(ν′)
]
− 1

=
1

eψ(ν) − 1
, (55)

where γ and D are frequency dependent friction and diffusion
terms and the function ψ(ν) can be approximated by

ψ(ν) =
hν

kT?

(ν/ν0)α

1 + (ν/ν0)α
· (56)

Subtracting from the global extragalactic background signal the
contribution by extragalactic radio sources, for instance assum-
ing the model by Gervasi et al. (2008a) with an amplification fac-
tor of '1.3 in the resulting background (see also Sect. 10.5), and
comparing the residual background with their almost complete
collection of cosmic background absolute temperature data, they
found: ν0 ' 0.4 GHz for α = 3 (and T? = T0 to fit high fre-
quency data), ν0 ' 0.35 GHz, and α ' 3.36 using both ν0 and α
as fit variables.

In Fig. 1, we show ∆Tth, ∆R and the coefficients a`,0(ν, β)
for ` = 1, 6, expressed in terms of ∆a`,0, derived for the two
sets of best-fit parameters according to the solutions in Sect. 3
and in one case, also on the basis of Eq. (5). The computa-
tions were performed in quadruple precision. We first carried
out some tests with a simple Gaussian quadrature scheme (Press
1992), using various accuracy parameter values and point num-
bers (e.g., with the accuracy parameter (EPS) set to 10−9 and
2048 points), and compare the result with the explicit analytical
solution for a blackbody: we find unreliable results above ` = 3
(or above ` = 4 provided that Eq. (5) is written as in the last
equality). We then performed the numerical integration using
the very accurate and efficient routine D01AJF of the Numerical
Algorithms Group (NAG) Numerical Library, available only in
double precision, setting integration accuracy parameters to the
smallest values and increasing the number of sub-intervals used
by the routine and the related workspace allocation. However,
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we verified that splitting the integral in terms of sums of inte-
grals over subsets of the integration intervals does not improve
the accuracy at all.

There is very good agreement between the results found with
the routine D01AJF and the solutions in Sect. 3 with `max = 6
(particularly at lower multipoles, where the lines are superim-
posed and indistinguishable). Their differences are compatible
with a combination of higher order terms, that is, beyond ` = 6,
and integration errors, that are missing in the solutions in Sect. 3
and present in the numerical results, respectively. The two types
of differences clearly appear, respectively, at lower frequencies,
where the signal is higher and the relative integration error is
lower, and at higher frequencies, where the signal is lower and
the relative integration error is higher. We report also the nominal
integration error quoted by the routine D01AJF: the comparison
with the above differences suggests that this error is likely very
conservative. In Appendix A, we provide some results derived
adopting a much larger value of β that implies much larger sig-
nals, relatively higher contributions from higher multipoles, as
well as relatively lower numerical integration errors: the analy-
sis clearly supports the above interpretation.

Figure 1 shows that the typical power law shape of the
intrinsic monopole spectrum, subsequent to the subtraction
of the blackbody at the present temperature T0, is displayed
also at higher multipoles, as already discussed in Trombetti &
Burigana (2019) for the dipole. Remarkably, we find that the
ratio, R, between observed and intrinsic monopole, ∆R in Fig. 1,
is not frequency independent, as in the case of a blackbody, but
exhibits a frequency dependence related to the assumed intrin-
sic monopole spectrum. At low frequencies, below ∼1 GHz, the
values of ∆R are positive and with amplitudes comparable to
|RBB − 1| or even larger.

10.2. Comptonization distortion and free-free diffuse
emission

Many types of sources of photon and energy injections in cosmic
plasma generates Comptonization distortions (Zel’dovich et al.
1972) via electron heating, and in ionizing the matter, they also
produce FF distortions. Although these signatures can be gen-
erated both before (see e.g., Chluba & Sunyaev 2012) and after
the cosmological recombination epoch (see e.g., Stebbins & Silk
1986; Danese & Burigana 1994), the cosmological reionization
associated with the early formation phases of bound structures is
the most remarkable source of these distortions. Two key param-
eters quantify the amplitudes of these imprints that for a given
model, are tightly coupled. They are the Comptonization param-
eter, u, proportional to the global fractional energy exchange
between matter and radiation in the cosmic plasma (for small
distortions u ' (1/4)∆ε/εi), and the FF distortion parameter,
yB(x), defined by integrals over the relevant redshift interval. On
the other hand, even in the context of the reionization process,
a variety of astrophysical mechanisms can contribute to deter-
mine the final distortion levels (see e.g., De Zotti et al. 2016;
Burigana et al. 2018, and references therein). The resulting dis-
torted photon distribution function is well approximated by

ηFF+C ' ηi + u
x/φi ex/φi

(ex/φi − 1)2

(
x/φi

tanh[x/(2φi)]
− 4

)
+

yB(x)
x3 , (57)

where ηi is the photon occupation number at the dissipation pro-
cess initial time denoted with the subscript i. Neglecting other
processes, ηi can be assumed to have a Planckian distribution at

the initial temperature defined by φi = φ(zi) = (1 + ∆ε/εi)−1/4 '

1 − u, that is, ηi = 1/(ex/φi − 1).
The global Comptonization distortion depends linearly on

matter density, thus, assuming a uniform medium is not critical
for computing u. Conversely, bremsstrahlung depends quadrat-
ically on matter density and, in the presence of a substantial
intergalactic medium (IGM) matter density contrast, the FF dis-
tortion is amplified with respect to the case of a homogen-
eous medium (Cooray & Furlanetto 2004; Ponente et al. 2011;
Trombetti & Burigana 2014) by a factor of '1 + σ2(z), that is,
Ω2

b(z) → Ω2
b,homog(1 + σ2(z)), with σ2(z) as the baryonic matter

variance related to the thermal properties of the DM particles.
Following Trombetti & Burigana (2019), we consider two

pairs of different FF and Componization distortion models to
identify a plausible range of possible distortions. We first con-
sider the ionization history of Gnedin (2000), resulting in a
Thomson optical depth τ that is fully consistent with recent
Planck results, along with a fixed cut-off value kmax = 100. We
coupled it with two different levels of Comptonization distortion,
characterized by u = 10−7, which is very close to that derived in
Burigana et al. (2008) for the Gnedin (2000) model and corre-
sponds to an almost minimal energy injection consistent with
the current constraints on τ, and by u = 2 × 10−6, a value that
accounts for possible additional energy injections by a broad set
of astrophysical phenomena.

At long wavelengths, λ = c/ν & λ0 = 1.5 cm, yB
is well-described by a linear dependence on log λ, ylin

B '

alinlog λ + blin, while at λ = c/ν . λ0 a quadratic dependence,
yquad

B ' aquadlog2 λ + bquadlog λ + cquad, works better. The coeffi-
cients alin and blin are given in Appendix C of Trombetti &
Burigana (2014): for the adopted model alin ' 3.292 × 10−9,
blin ' 2.070×10−9. To allow for continuous derivatives of yB also
at frequencies around the transition between the two regimes,
thus avoiding to introduce spurious oscillations in the resulting
a`,0, we need to properly join the two representations. Combin-
ing them with exponential weights,

yB = ylin
B (1 − e−(λ/λ0)d

) + yquad
B e−(λ/λ0)d

, (58)

with d = 3/2, is suitable to this purpose. A best-fit (see Table C.1
of Trombetti & Burigana 2014) gives aquad ' −4.657 × 10−10,
bquad ' 1.210 × 10−9, cquad ' 2.841 × 10−9.

Larger FF distortions are expected from the integrated contri-
bution of an ensemble of ionized halos at substantial redshifts, as
in the model by Oh (1999) that predicts a value of yB ∼ 1.5×10−6

at ν ∼ 2 GHz. We then consider a second pair of models rescaling
the above FF representation to yB(2 GHz) = 1.5 × 10−6, coupled
with Comptonization distortions with u = 10−7 or 2 × 10−6.

In general, the frequency behaviour of yB is significantly less
model dependent than its overall amplitude. A power law repre-
sentation of yB with a single amplitude parameter is adopted, for
simplicity, in Sect. 14. In this approximation

yB(ν) ' AFF (ν/GHz)−ζ , (59)

where, assuming ζ ' 0.15, suitable values of AFF at low fre-
quencies (several MHz. ν. some GHz) are respectively AFF '

7.012 × 10−9 and 1.664 × 10−6 (Trombetti & Burigana 2019).
Assuming the same slope but values of AFF multiplied by
a proper factor, f , offers a reasonable approximation also at
30 GHz. ν. 100 GHz (on average we find f ∼ 0.578, while it
ranges between '0.550 and '0.596). Of course, a better power
law fit can be found jointly varying AFF and ζ according to the
considered frequency range. As examples, for the first model
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Fig. 2. ∆Tth, ∆R and ∆a`,0 from ` = 1 to `max = 6 for the considered combined Comptonization and diffuse FF distortion models. Solid lines (or
dots) correspond to positive (or negative) values. See also the legend and the text.

at 10 MHz. ν. 1 GHz (or at 30 GHz. ν. 100 GHz) we find
AFF ' 7.225 × 10−9 and ζ ' 0.143 (or AFF ' 5.236 × 10−9 and
ζ ' 0.214). The adopted intrinsic monopole models are shown
in Fig. 2 (top-left panel) in terms of ∆Tth.

The results in Fig. 2 are derived multiplying yB in Eq. (58) by
a damping function, exp(−(λ/λ1)d)exp(−(λ/λ2)d), which is rele-
vant at very short wavelengths (λ1 = 0.09 cm and λ2 = 0.05 cm,
corresponding to ' 333 GHz and 600 GHz) to make the results
at ν & 400 GHz dependent essentially only on the Comptoniza-
tion term. This does not appreciably affect the results shown in
the various panels of Fig. 2 at ν . 400 GHz. On the other hand,
while a better theoretical characterization of the FF emission at
very high frequencies is required for a proper estimate in this
context, we note that at ν & 400 GHz the signal associated to the
CIB, discussed in Sect. 10.7, dominates over the other terms at
any multipole.

The differences, ∆a`,0, derived for these models are posi-
tive at low frequencies, where the FF term dominates, and neg-
ative at high frequencies, where the Comptonization prevails.
The transition from the FF to the Comptonization regime, which
ranges from about 3 GHz to about 300 GHz, depends on the rel-
ative amplitude of the two parameters yB and u. This general-
izes the result already found by Trombetti & Burigana (2019)
for the dipole: in particular, the transition frequency between the
two regimes clearly increases with `, increasing from a maxi-
mum value of ∼100 GHz for ` = 1 to a maximum value around

∼350 GHz for the highest values of `. Again, the approximate
power law shape of the intrinsic monopole spectrum at low fre-
quencies is maintained at higher multipoles.

The ratio between observed and intrinsic monopole is
frequency-dependent (see top-right panel of Fig. 2) and at low
frequencies, that is, below ≈0.1 GHz, ∆R can be comparable in
amplitude to |RBB − 1| or even larger, mainly depending on the
level of the FF diffuse emission.

10.3. Bose-Einstein-like distortion

Bose-Einstein-like distortions can be produced by a variety
of early processes, including unconventional heating sources,
which could occur before the end of the phase of kinetic equi-
librium between radiation and matter. Under near-equilibrium
conditions, the stationary solution of the standard Kompaneets
equation including only Compton scattering is a Bose-Einstein
(BE) photon distribution function (Sunyaev & Zel’dovich 1970):

ηBE =
1

exe+µ − 1
, (60)

with a frequency independent chemical potential, µ; here xe =
x/φ(z), φ(z) = Te(z)/Tr = φBE(µ), with Te(z) the electron temper-
ature. For mechanisms intrinsically involving a negligible pho-
ton number density production or absorption, µ is related to the
fractional energy exchanged in the plasma during the interaction,
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∆ε/εi, where the subscript i denotes the process initial time. For
small distortions, φBE ' (1−1.11 µ)−1/4 and, for an almost instan-
taneous process, µ ' 1.4∆ε/εi at the end of the dissipation phase.
Photon production processes, such as bremsstrahlung and dou-
ble (or radiative) Compton emission, are particularly efficient at
low frequencies, making the chemical potential dependent on the
frequency, µ = µ(x) (Sunyaev & Zel’dovich 1970; Illarionov &
Sunyaev 1974; Danese & De Zotti 1980). In combination with
photon diffusion by Compton scattering, they tend to decrease
the value of µ.

At high frequencies, xe & 1, the relaxation to a BE stationary
solution can be achieved for processes that have occurred at red-
shifts of z & zp, corresponding to a time Comptonization param-
eter of ye & yp ' 1/4 (Danese & De Zotti 1980; Burigana et al.
1991a), where ye =

∫ 1+z
1 [texp/tC][d(1+z′)/(1+z′)] and where texp

is the cosmic expansion time and tC = [1/(neσTc)][mec2/(kTe)]
is the timescale for the achievement of the kinetic equilibrium,
with ne as the density of free electrons, me the electron mass,
and σT the Thomson cross-section. At z . zp, if the dissipation
mechanism is concluded, the evolution of the photon distribu-
tion function is mainly due to photon production processes that
significantly affect the low-frequency spectral region up to the
recombination epoch. Aside from this effect, a longer time is
needed for the photon distribution function relaxation towards
the final spectrum at low frequencies, xe . 1; it can be achieved
for processes occurred at redshifts z & z1 corresponding to
ye & y1, with y1 ' 5 for small distortions (Burigana et al. 1991a).
Here, we define, using µ0, the high frequency asymptotic value
of µ at z1, which substantially identifies the end of the kinetic
equilibrium phase. For the above reasons, the observational con-
straints on the chemical potential are typically referred to µ0, the
constraints on µ = µ(z) at higher redshifts being derived theo-
retically through (semi-)analytical formulas or numerical meth-
ods (see e.g., Burigana et al. 1991b), according to the consid-
ered problem. The limits on µ(z) can be significantly relaxed at
increasing redshifts, and the constraints on ∆ε/εi before the ther-
malization redshift (when even large distortions can be erased)
are then set by cosmological nucleosynthesis. The current upper
limit on µ0 is mainly derived from FIRAS data at λ . 1 cm,
|µ0| < 9 × 10−5 at the 95% confidence level (Fixsen et al.
1996), although jointly recovering early and late spectral dis-
tortion parameters and including measurements at longer wave-
lengths can marginally change this constraint (see e.g., Nord-
berg & Smoot 1998; Salvaterra & Burigana 2002; Gervasi et al.
2008b; Seiffert et al. 2011).

While a value of µ0 ' few× 10−5 cannot be excluded by cur-
rent data, the existence of much smaller BE-like distortions is
predicted as a consequence of two unavoidable processes. The
dissipation of primordial perturbations at small scales (Hu et al.
1994; Chluba et al. 2012a), generates a positive chemical poten-
tial with values of µ0 between ∼10−9 and 10−7, mainly depending
on the shape of spectrum of the primordial scalar perturbation,
a wider range being achieved in some inflation models varying
the amplitude of primordial perturbations at very small scales
(Chluba et al. 2012b) that are not constrained by current CMB
anisotropy data. The faster decrease of the matter temperature
relative to the radiation temperature in an expanding Universe
generates, instead, a negative chemical potential, because of the
interaction of CMB photons with colder electrons, with an abso-
lute value '3×10−9 (Chluba & Sunyaev 2012; Sunyaev & Khatri
2013).

According to the above discussion, we consider just three
values of µ0: 1.4 × 10−9, 1.4 × 10−5, and −2.8 × 10−9. We adopt

here an updated implementation of the semi-analytical repre-
sentation of BE-like distortions, suitable also at low frequen-
cies, as proposed by Danese & De Zotti (1980) and described
in detail in Burigana et al. (1995). We assume a cold DM plus
cosmological constant (ΛCDM) model with the set of para-
meters based on the last Planck data release and derived in
Planck Collaboration VI (2020) including CMB power spectra in
combination with CMB lensing reconstruction (see their Table 2,
column labelled ‘TT, TE, EE+lowE+lensing’). We adopt a
universe with a Hubble constant, H0 = 67.36 km s−1 Mpc−1, cos-
mological constant (or dark energy) and non-relativistic mat-
ter density parameters ΩΛ = 0.6847, Ωm = 0.3153, Ωb
[H0/(100 km s−1 Mpc−1)]2 = 0.02237 (implying a baryon density
Ωb = 0.0493017), and, according to the standard model, an
effective number of relativistic neutrinos Neff = 3.046. In prin-
ciple, the fine accounting of the relativistic neutrinos contribu-
tion to the expansion rate in the presence of an energy injection
should also require the specification of the heating redshift, zh,
particularly for zh � z1 when µ could be significantly larger than
µ0 (Burigana et al. 1991a): for simplicity, we treat this aspect in
numerical estimates as in the case equivalent to zh ' z1. We
also assume φ(zh) ' φ(z1) = φBE(µ0). The cosmic expansion
time, texp, and the relevant rates depend on these parameters,
that play the major role in determining the spectrum shape. We
compute the bremsstrahlung term according to Karzas & Latter
(1961), Rybicki & Lightman (2008) and Burigana et al. (1991a)
but using, in its range of validity, the polynomial fitting formula
for the non-relativistic exact Gaunt factor derived by Itoh et al.
(2000) (see also Chluba et al. 2020a for recent improvements).
We separately compute the contributions from ionized hydro-
gen (H+) and helium (He++ and He+), counting accordingly the
overall fraction of free electrons, given the helium mass fraction
( fHe = 0.2454). We calculate the double Compton rate in the
elastic limit according to Lightman (1981) and Thorne (1981),
and using the cross-section by Gould (1984).

Considering the relevance of double Compton at high red-
shifts, we also include the correction factor, Cmr, for mildly
relativistic thermal plasma in the soft photon limit, Cmr '

1/[1 + 14.6kTr/(mec2)], introduced by Chluba et al. (2007).
In Appendix B, we provide a fitting formula that, in the limit
of very small distortions, can be used to compute the dou-
ble Compton Gaunt factor at a precision level better than
'0.1−0.2% also at x & 1. Finally, replacing the simple approx-
imation of full ionization up to the hydrogen recombination
with the introduction of the redshifts (∼6 × 103 and ∼2 ×
103) at which He++ and He+ disappear, resulting into a ∼two-
steps helium recombination, introduces only a small correction
(.0.2%) in the final spectrum computation. The above details
enter in the computation of the key redshifts z1 and zp (respec-
tively, '5.38 × 105 and '1.21 × 105 with the adopted parame-
ters), in the frequency-dependent optical depth of the universe
for absorption, yabs =

∫ 1+z
1 [texp/tabs][d(1 + z′)/(1 + z′)] (see

Burigana et al. 1995), and in the characteristic dimensionless
frequency, xc, which quantifies the low-frequency damping of
the chemical potential, µ(x) = µ0 exp (−xc/xe), xc being defined
by tabs(z1) = tC(z1), where tabs is the absorption timescale for
photon production processes. For our purposes, a simple Gaus-
sian quadrature scheme is accurate and efficient enough for com-
puting the relevant integrals over z (we find advantageous to
work with a logarithmic integration variable), while the NAG
routine D01AJF can provide a better performance. The Brent’s
method (Press 1992) is suitable to solve the equation for xc
(found to be '4.86 × 10−3 with the adopted parameters), given
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Fig. 3. ∆Tth, ∆R, and ∆a`,0 from ` = 1 to `max = 6 for the considered BE-like distortion models. The inset in the top-right panel shows separately
the case with the highest value of µ0, which cannot be appreciated in the main panel as it is targeted to much lower values of µ0, in order to
appreciate the extremely similar spectral shape of the red and green lines. Except in the top-right panel where ∆R is shown in linear scale, solid
lines (or dots) correspond to positive (or negative) values. See also the legend and the text.

bracketing guesses based on the simple low frequency limit
approximation.

The intrinsic monopole spectra so obtained for the three
adopted values of µ0 are shown in Fig. 3 (top-left panel) in terms
of ∆Tth. As expected, the amplitude of |∆Tth| is proportional to
|µ0| and, for µ0 < 0, we find a spectrum shape, ∆Tth, opposite
in sign with respect to the case µ0 > 0. It is interesting to note
the plateau at extremely low frequencies and the presence of two
characteristic changes of sign in ∆Tth, corresponding to the well-
known excess (or decrement) of signal of the BE-like spectrum
with respect to the blackbody at temperature T0 at low and high
frequencies and the remarkable decrement (or excess) at inter-
mediate frequencies for positive (or negative) values of µ0. These
sign changes also appear in the differences ∆a`,0 (see Fig. 3),
but at two characteristic frequencies significantly increasing at
increasing `. We note that the sign change at the higher of the two
characteristic frequencies occurs at ν > 1 THz for ` ≥ 4 and just
for this reason it disappears in the corresponding plots. In addi-
tion, two further sign changes appear at each increase of an even
multipole. They are located at frequencies between the smaller
of the two above characteristic frequencies and the plateau at
extremely low frequencies. Again, this pattern of sign changes is
symmetric with respect to the sign of µ0. These are remarkable
features of the BE-like spectrum: they are almost independent of

the value of µ0, while their behaviour at low frequencies depend
on the underlying cosmological parameters.

In Fig. 3, ∆R is displayed in the top-right panel. Over the
whole frequency range, it is characterised by a module propor-
tional to |µ0| and much smaller than |RBB − 1| even for values of
|µ0| not far from FIRAS limits. Again, ∆R depends on frequency.
For BE-like distortions, the shape of ∆R is again symmetric with
respect to the sign of µ0, with a well-defined maximum (or min-
imum) located between two minima (or two maxima), clearly
defined at lower frequencies and less pronounced at higher fre-
quencies, for µ0 > 0 (or µ0 < 0).

10.4. 21 cm redshifted line

The 21 cm line corresponds to the spin-flip transition in the
ground state of neutral hydrogen. This signal is described as the
offset of the 21 cm brightness (i.e. antenna) temperature from the
background temperature, Tback, along the observed line of sight
at a frequency ν that, because of cosmic expansion, is related to
the rest frame frequency, ν21 cm = c/(21 cm), by ν = ν21 cm/(1+z).
Tback is usually assumed equal to Tr but, in general, it could
include potential distortions and other radiation backgrounds. It
depends on the evolution of the gas spin temperature, TS, which
represents the excitation temperature of the 21 cm transition, of
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Fig. 4. ∆Tth, ∆R and ∆a`,0 from ` = 1 to `max = 6 for the EDGES profile of redshifted 21 cm line (summed in intensity with the CMB blackbody).
Solid lines (or dots) correspond to positive (or negative) values. Red and green lines are essentially superimposed at any `. Their difference,
multiplied by a factor F to have values compatible with the adopted range, is displayed by the blue lines. Yellow lines refer to the nominal
integration error quoted by the routine D01AJF, again multiplied by the factor F. See also the legend and the text.

the fraction of neutral hydrogen, on the Hubble function, H(z),
on Ωm, on the matter density contrast, and on the comoving gra-
dient of the line-of-sight component of the comoving velocity
(Furlanetto et al. 2006). If TS < Tback (or TS > Tback), the gas is
seen in absorption (or in emission). Since the signal detected at a
given frequency corresponds to a specific redshift, the 21 cm line
provides a tomographic view of the cosmic evolution. A rich set
of 21 cm redshifted line models has been studied in Cohen et al.
(2017), resulting in an wide envelope of predictions for T 21 cm

ant (ν).
In this work, we consider only the pronounced absorption

profile, with an almost symmetric U-shape centred at (78 ±
1) MHz, which was recently found by Bowman et al. (2018)
based on an analysis of the data from the Experiment to Detect
the Global EoR Signature (EDGES). The absorption feature was
found to have an amplitude of 0.5+0.5

−0.2 K and a spread of the pro-
file with a full width at half-maximum of 19+4

−2 MHz. These data
support the presence of an ionizing background by 180 million
years after the Big Bang and a phase of gas heating above the
radiation temperature less than 100 million years later (Bowman
et al. 2018). The explanation of the 21 cm redshifted line sig-
nal found by EDGES might require a substantial cooling of the
IGM gas or an additional high-redshift extragalactic radio back-
ground, or a combination of them (see e.g., the references at the
beginning of Sect. 10.1). The authors provide a suitable analyti-

cal representation of the EDGES absorption profile in terms of a
flattened Gaussian characterized by a set of best-fit parameters,
and we adopt here their expression of T 21 cm

ant (ν).
The signals considered in Sects. 10.1–10.3, referring to

intrinsic CMB spectral distortions, already include the contribu-
tion of the unperturbed CMB spectrum. In this section (as well as
in Sects. 10.5–10.7), we are considering signals that are superim-
posed onto the CMB, assumed without spectral distortions, and
we then add (in terms of η) the CMB blackbody at the current
temperature T0 to T 21 cm

ant (ν) to construct the global signal to be
studied as in previous sections.

We compute the coefficients a`,0(ν, β) with the method
described in Sect. 3 and, for comparison, also on the basis of
Eq. (5), as in Sect. 10.1. The results are shown in Fig. 4.

We note the consistency between the results based on the
integral given by Eq. (5) and our approach: the agreement is
excellent up to `max = 6 (the green and red the lines are indistin-
guishable). Again, their differences are compatible with a com-
bination of higher order terms, that is, beyond ` = 6, and inte-
gration errors, that are only present in the numerical results. The
two types of differences clearly appear, respectively, where the
signal is higher and the relative integration error is lower, and
where the signal is lower and the relative integration error is
higher. The latter point is also evident from the comparison with

A75, page 14 of 31

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/202038845&pdf_id=4


T. Trombetti et al.: Observer motion and background spectrum from monopole to higher multipoles

the nominal integration error quoted by the routine D01AJF.
Remarkably, except for the numerical integration uncertainty,
the spectral shape of the differences is very similar for all the
odd, as well as the even multipoles because they mainly come
from the contribution from ` = 7 and from ` = 8, respec-
tively. In Appendix A, we repeat this analysis adopting a much
larger value of β, that implies much larger signals, relatively
higher contributions from higher multipoles and relatively lower
numerical integration errors: the result clearly supports the above
interpretation.

It is interesting to note the complexity, increasing with `,
of the features displayed in Fig. 4: they include the alternation
of increasing and decreasing behaviours, the number of relative
minima and maxima, and the changes of the sign of ∆a`,0.

Here, the result for ∆a1,0 corrects the dipole spectrum pub-
lished in Trombetti & Burigana (2019), expressed there in terms
of ∆0,π/2T BB/dist

th (see Eq. (52)), where, for EDGES, the profile
T 21 cm

ant (ν) was accounted in equivalent thermodynamic (not in
antenna) temperature. This mere oversight significantly affected
only the very small values of ∆0,π/2T BB/dist

th , making the wings a
bit steeper they are.

We note that the frequency, right above 70 MHz, correspond-
ing to the change of sign of ∆a1,0 is shifted at slightly larger
values in the case of ∆a3,0 and ∆a5,0, while for the even multi-
poles it corresponds to a well-defined minimum that falls in the
middle of a positive interval of the ∆a`,0 profile. The size of this
frequency interval decreases as ` increases; the same holds, in
the case of odd multipoles, for the interval identified by the two
signs changes around the above minimum. Also, the increasing
with ` of the number of sign changes in ∆a`,0 implies that, at fre-
quencies outside the above interval, the size of each frequency
range with unchanged sign of ∆a`,0 decreases with `. These are
remarkable features of the considered model.

Remarkably, ∆R (see top-right panel of Fig. 4), again
exhibits a frequency dependence related to the assumed intrinsic
monopole spectrum: it is positive in the inner frequency range,
almost corresponding to the plateau of the absorption feature,
and negative in the profile wings. In particular, |∆R| is compa-
rable to or, typically, greater than |RBB − 1|, across most of the
relevant frequency range.

10.5. Extragalactic radio background

An important radio background is produced by extragalactic
sources. Differently from most of the signals discussed in pre-
vious sections, which are of intrinsically diffuse origin, this
background, as well as those discussed in Sects. 10.6 and 10.7,
results from the integrated contribution of discrete sources. With
galactic surveys able to reach increasingly deeper flux den-
sity levels, it is possible to resolve a large fraction of this
background. In spite of this, an observationally diffuse resid-
ual background comes from faint sources below the survey
detection limits. Other than intrinsically interesting, this extra-
galactic background needs to be accurately known in order
to understand the reionization imprints correctly. Remarkably,
these classes of signals may also be tightly related. A notable
extragalactic radio background is evident in, for example, the
radio data by Dowell & Taylor (2018) and it was proposed by
Seiffert et al. (2011) to explain the signal excess claimed by
ARCADE 2.

We exploit several simple analytical representations of
the extragalactic radio background. According to Trombetti &

Burigana (2019), we assume the best-fit power-law model,

T Back
ant (ν) ' 18.4 K (ν/0.31GHz)−2.57, (61)

by Seiffert et al. (2011).
A careful analysis and prediction of the extragalactic source

radio background between 0.151 and 8.44 GHz, also including
different source detection thresholds, was carried out by Ger-
vasi et al. (2008a). We consider their best-fit single power-law
model for the extragalactic source background signal, multiplied
by a factor of 1.3 in order to approximately account for a larger
contribution that is, ultimately, likely ascribed to the emerging
of star-forming galaxies and radio-quiet active galactic nuclei
at fainter flux densities. Indeed, the Lockman Hole Project and
deep Low Frequency Array (LOFAR) imaging of the Boötes
field support a certain flattening of differential number counts,
N′(ν), at 1.4 GHz below ≈100 µJy (Prandoni et al. 2018) and at
0.15 GHz below ≈1 mJy (Retana-Montenegro et al. 2018). This
may suggest an increase in N′(ν) of a factor of ∼2 with respect
to the estimate of Gervasi et al. (2008a) at the faint flux densi-
ties and a ∼30% increase in the extragalactic radio background,
which is proportional to

∫ S max

S min
S N′(ν)dS . We then adopt

T Back
ant (ν) ' 1.3 × 0.88 K (ν/0.61 GHz)−2.707. (62)

Gervasi et al. (2008a) provided also an empirical analytical
fit function of N′(ν) that can be used to estimate the remaining
residual extragalactic radio background when a certain source
detection threshold, S max, is assumed. According to Trombetti
& Burigana (2019), we exploit their differential number counts
assuming S max = 50 nJy, which almost corresponds to typical
detection limits of the ultra deep reference continuum surveys
planned for the Square Kilometre Array (SKA; Prandoni & Sey-
mour 2015). We consider the above factor of ∼2 to be applied
to N′(ν) by Gervasi et al. (2008a) at faint flux densities (we then
label this case as a ‘High-radio background residual’) and fit the
results found in the frequency range considered by the authors to
find the corresponding estimate of the remaining residual extra-
galactic radio background,

T Back
ant (ν) ' A (ν/GHz)−2.65, (63)

with A ' 4.7 mK. Different choices of S max mainly reflects into
the value of A.

As in previous section, we add (in terms of η) the CMB
blackbody at the current temperature T0 to these radio back-
ground models to construct the global signal. The intrinsic
monopole spectra are shown in Fig. 5 in terms of ∆Tth (top-left
panel) with the derived coefficients a`,0(ν, β).

The typical power law shapes of the considered intrinsic
monopole spectra, after the subtraction of the blackbody at the
present temperature T0, are also maintained at higher multipoles
and the same holds for their relative amplitudes, as already noted
in Trombetti & Burigana (2019) for the dipole.

Again, ∆R exhibits a frequency dependence that is related to
the assumed intrinsic monopole spectrum. At low frequencies,
below ∼1 GHz, ∆R can have an amplitude comparable to |RBB−1|
or even larger.

10.6. Extragalactic millimetre background

The extragalactic radio source populations that mainly contribute
to the radio and to the millimetre background are very different.
Whereas steep-spectrum radio sources, particularly at high flux
densities, are most important at radio frequencies, extragalactic
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Fig. 5. ∆Tth, ∆R, and ∆a`,0 from ` = 1 to `max = 6 for the two considered extragalactic radio background models and an estimate of extragalactic
radio source background signal for an assumption of source contribution subtraction (summed in intensity with the CMB blackbody). Solid lines
(or dots) correspond to positive (or negative) values. See also the legend and the text.

compact sources with an almost flat, or possibly inverted, spec-
trum (primarily blazars, flat spectrum radio quasars, and BL Lac-
ertae sources, where are not fully considered in Sect. 10.5) become
increasingly relevant at wavelengths shorter than a few centime-
tres. They can be directly extracted by analyzing CMB maps. The
products (Planck Collaboration VII 2013; Planck Collaboration
XXVI 2016; Planck Collaboration XLV 2016; Planck Collabora-
tion LIV 2018) from the Planck mission, complemented by the
available ground-based data (see e.g., Mocanu et al. 2013) and,
in the far-IR, via Herschel (see e.g., López-Caniego et al. 2013)
observations, provide crucial information for the characterization
of their number counts (De Zotti et al. 2015) (see also De Zotti
et al. 2005; Tucci et al. 2011), while a substantial progress at
fainter flux densities is expected from the next-generation space
missions and deeper multi-frequency ground-based surveys (see
e.g., De Zotti et al. 2018, and references therein).

We exploit their differential number counts, N′(ν), includ-
ing both steep and flat spectrum sources, to estimate the cor-
responding millimetre background, ∝

∫ S max

S min
S N′(ν)dS , for which

we find a power-law approximation, as in Sect. 10.5. We sim-
ply extrapolate the power law behaviours of the differential
number counts at the lowest available flux density ranges to
fainter flux densities. The (currently uncertain) characterization
of N′(ν) at much fainter flux densities is relatively less relevant
for the estimate of the global background than for the estimate
of the residual millimetre background derived given a certain

source detection threshold S max. We consider two assumptions
of S max, namely: (1) 10 mJy (labeled as ‘Intermediate millime-
tre background residual’), a value that is similar to those typ-
ically considered for next-generation space missions; and (2)
100 µJy (labelled as ‘Low millimetre background residual’), rep-
resenting an estimate of the potential improvement achievable
with SKA while considering frequency extrapolation uncertain-
ties from deep radio surveys to millimetre bands.

As expected due to the spectral shapes of the sources that
are more relevant at millimetre wavelengths, we find a back-
ground spectrum slightly flatter in the millimetre than in the
radio, with slopes (of the spectrum expressed in antenna tem-
perature) between '−2.10 and −2.62, depending on the specific
number counts model (with steeper spectra found for the num-
ber counts by Tucci et al. 2011) and also on the adopted source
detection threshold.

For current numerical estimates we consider, for simplicity,
a single slope based on number counts consistent with Planck
results from 30 GHz to 857 GHz. We adopt:

T mm
ant (ν) ' A (ν/GHz)−2.19, (64)

with A ' 32.4 mK for the millimetre background spectrum
and '17.3 mK or '8.93 mK for residual millimetre background
derived for S max = 10 mJy or S max = 100 nJy, respectively. We
construct the global signal by adding (in terms of η) the CMB
blackbody at the current temperature T0.

Our results are shown in Fig. 6. The flattening of ∆Tth at
ν ∼ 200 GHz and its increasing at higher frequencies are due to
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Fig. 6. ∆Tth, ∆R, and ∆a`,0 from ` = 1 to `max = 6 for the considered millimetre background model from extragalactic radio sources and estimates
of extragalactic source millimetre background signal for two assumptions of source contribution subtraction (summed in intensity with the CMB
blackbody). Solid lines (or dots) correspond to positive (or negative) values. See also the legend and the text.

the representation in terms of equivalent thermodynamic temper-
ature. We note the different behaviours of ∆a`,0 at odd and even
multipoles, and the (minimal) increase with ` of the frequency
where for odd `, the change of sign of ∆a`,0 occurs, or for even
`, the minimum of ∆a`,0 is located.

Figure 6 reports the coefficients a`,0(ν, β) for ` = 1, 6,
expressed in terms of ∆a`,0, derived using the solutions given in
Sect. 3. The typical power law shapes of the considered intrinsic
monopole spectra, after the subtraction of the blackbody at the
present temperature, T0, that are evident in the figure at low fre-
quencies, are kept also at higher multipoles and the same holds
for their relative amplitudes, as already noted in Trombetti &
Burigana (2019) for the dipole.

∆R exhibits a dependence on the frequency as well as on
the assumed intrinsic monopole spectrum: it is positive and its
frequency shape and minimum location are in line with the
behaviours of ∆a`,0 at even multipoles. On the other hand, the val-
ues of |∆R| are less than |RBB − 1| even at the highest frequencies.

Finally, we note that, despite the fact that the estimate of
the extragalactic radio source background in the radio and at
millimetre wavelengths, approximated respectively by Eqs. (62)
and (64), are based on different models, the results found at
∼20 GHz, a frequency in the middle between the maximum and
the minimum frequency of the approximations elaborated in the
previous section and in this one, agree within a factor of two or
better, as shown by the comparison between Figs. 5 and 6.

10.7. Cosmic infrared background

A precise analysis of CIB spectrum, which is still not well
known, can provide a better understanding of the dust-obscured
star-formation phase of galaxy evolution.

In spite of its absolute calibration precision of 0.57 mK,
the FIRAS characterization of CIB amplitude and shape still
presents a substantial uncertainty. According to Fixsen et al.
(1998), a suitable analytic representation in terms of photon dis-
tribution function of the CIB spectrum at the present time, can
be expressed by

ηCIB =
c2

2hν3 ICIB(ν) =
I0 (ν/ν0)kF

exCIB − 1
=

I0 (xCIB/x0,CIB)kF

exCIB − 1
, (65)

where ν0 = c/(100 µm) ' 3 THz and xCIB = hν/(kTCIB). The
best-fit to FIRAS data gives kF = 0.64 ± 0.12, TCIB = (18.5 ±
1.2) K and I0 = (1.3 ± 0.4) × 10−5 (Fixsen et al. 1998), I0 set-
ting the CIB spectrum amplitude. In the last equality of Eq. (65),
x0,CIB = hν0/(kTCIB) ' 7.78 (implying xCIB ' 7.78 × ν/ν0). The
current uncertainty on CIB spectrum amplitude is quite high,
with 1σ accuracy of about 30%. Indeed, the direct determina-
tion of the CIB spectrum is hard to obtain as it requires absolute
intensity measurements and is limited by foreground signals.

We construct the global signal by adding ηCIB with the pho-
ton distribution function of the CMB blackbody at the current
temperature T0 and consider three simple cases corresponding
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Fig. 7. ∆Tth, ∆R, and ∆a`,0 from ` = 1 to `max = 6 for the considered CIB models (summed in intensity with the CMB blackbody). Solid lines (or
dots) correspond to positive (or negative) values. See also the legend and the text.

to the above best-fit and 1σ limits of I0. The results are shown
in Fig. 7 in terms of ∆Tth, ∆R, and ∆a`,0. As shown by the com-
parison of Fig. 7 with Figs. 1–6 and anticipated in Sect. 10.2, the
signal associated to the CIB, strongly increasing with frequency,
at ν & 400 GHz dominates over the other extragalactic contribu-
tions at any multipole.

As has already been found for extragalactic millimetre back-
ground, we note the different behaviours of ∆a`,0 at odd and even
multipoles and, in the frequency range between '100 GHz and
'200 GHz, the increase with ` of the frequency where, for odd
`, the change of sign of ∆a`,0 occurs or, for even `, the shape of
∆a`,0 shows a clear steepening. At the highest frequencies, where
the power law approximation of the intrinsic monopole spectrum
breaks down and the spectrum changes its behaviour approach-
ing its maximum, the shapes of ∆a`,0 show remarkable features.
They are located at frequencies that decrease as ` increases: for
example, for ` = 2 or 6 they occur at frequencies larger than
∼800 GHz or than ∼500 GHz.

Here, ∆R (top-right panel of Fig. 7) assumes positive val-
ues that are much smaller than |RBB − 1| at ν . 400 GHz, but
significantly increase with ν at ν & 400 GHz and become com-
parable to or larger than |RBB − 1| at ν & 700 GHz, achieving a
maximum at a frequency '800−850 GHz that slightly increases
as I0 decreases.

11. Signal combination results

As already states previously in this paper, the method described
in Sects. 2–9 and applied in Sect. 10 to specific emissions can

be also used to predict the signatures expected from the desired
combinations of signals, provided that they are summed in terms
of additive quantities. A discussion of the imprints on the dipole
spectrum left by combinations of backgrounds associated to cos-
mological reionization and relevant in the radio can be found in
Trombetti & Burigana (2019). Of course, the number of the pos-
sible combinations of the models discussed in Sect. 10 is high.
Here, we consider a couple of cases that are relevant at millime-
tre and sub-millimetre wavelengths.

We combine the model of Comptonization plus diffuse FF
distortion with the highest values of u and yB with an astrophys-
ical background, namely, the adopted millimetre background
model from extragalactic radio sources, an estimate of its resid-
ual signal given an assumption of source detection threshold
(the ‘Low millimetre background residual’), and the best-fit CIB
spectrum. The global signal is constructed by adding the photon
distribution functions associated to the considered astrophysical
background (Eqs. (64) or (65)) and to the Comptonization plus
diffuse FF distortion (Eq. (57)), that already contains the initial
unperturbed CMB spectrum, ηi. The results based on the solu-
tions given in Sect. 3 are shown in Figs. 8 and 9 in terms of ∆Tth,
∆R, and ∆a`,0.

From these figures (see also Figs. 2, 6, and 7), it is possible to
appreciate that at the frequencies where a certain component is
much stronger than the other, that component also dominates in
the combined signal, but this simplification does not hold where
the components have comparable amplitudes.

The comparison of Fig. 8 with Figs. 2 and 6 shows that the
millimetre background, as well as its residual for the assumed
source detection threshold, dominates above a frequency of
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Fig. 8. ∆Tth, ∆R, and ∆a`,0 from ` = 1 to `max = 6 for the sum of the considered millimetre background model from extragalactic radio sources or
an estimate of its residual signal for an assumption of source detection threshold plus a combined Comptonization and diffuse FF distortion model.
Solid lines (or dots) correspond to positive (or negative) values. See also the legend and the text.

∼500 GHz, with only a very little dependence on `. Below
a frequency ranging from few tens of GHz to ∼100 GHz the
millimetre background and the considered model of Comp-
tonization plus diffuse FF distortion give comparable effects: in
particular, the millimetre background and the diffuse FF dis-
tortion have also similar power law behaviours (see Eqs. (59)
and (64)). As a result, the difference of considering the mil-
limetre background or its residual is more evident in the spec-
tral shapes of their combinations, affecting, respectively, less or
more the frequency where the spectra exhibit their sign change,
that occurs at frequencies slightly higher than in the case of pure
Comptonization plus diffuse FF distortion. The Comptonization
distortion is, instead, clearly appreciable at intermediate frequen-
cies, its characteristic plateau appearing in all the ∆a`,0.

The comparison of Fig. 9 with Figs. 2 and 7 shows analogous
results. The CIB dominates over the Comptonization distortion
above a frequency that ranges from ∼100 GHz to ∼200 GHz,
slightly increasing with `. Below that frequency, the Comp-
tonization distortion emerges and the combined spectral shapes
become flatter. They show also a remarkable change of sign at
even ` from Figs. 2–6, where ∆a`,0 is positive for the CIB and
negative for the Comptonization distortion. This does not occur
for ∆Tth where the contributions from CIB is slightly larger than
that from Comptonization, and for ∆R, that is positive in both the
cases. At further decreasing frequencies, the FF diffuse emission
emerges, and, consequently, the ∆a`,0 exhibit, at even and odd `,
the typical shapes already found in that case at the lowest fre-

quencies as well as the typical change of sign corresponding to
the transition from the range dominated by the FF term to that
dominated by the Componization term. The frequency of this
transition is only slightly larger than that found in the case of
pure Comptonization plus diffuse FF distortion. This frequency
shift is significantly smaller than that found above, which com-
bines the Comptonization plus diffuse FF distortion with the mil-
limetre background, because of the smaller additional contribu-
tion from the CIB at low frequencies.

Of course, the details in the above considerations depend also
on the assumed model parameters. We discuss above some cases
where the combined contribution from different signals may give
not trivial effects. In general, refinements in modelling specific
signals and combinations or couplings of them can be included
in our method to improve the quality of the results.

12. Maps and angular power spectra

Having evaluated the coefficients a`,0, it suffices then to compute
the corresponding maps and angular power spectra. Here, we
report just a few examples, also for comparison with the results
presented in Burigana et al. (2018), which are based on map gen-
eration and inversion performed with the great set of publicly
available tools implemented in the Hierarchical Equal Area and
isoLatitude Pixelization of the sphere (HEALPix; Górski et al.
2005). Here, we adopt the same pixelization scheme to gener-
ate the maps using the a`,0 coefficients: working in real space,
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Fig. 9. ∆Tth, ∆R, and ∆a`,0 from ` = 1 to `max = 6 for the sum of considered best-fit CIB model plus a combined Comptonization and diffuse FF
distortion model. Solid lines (or dots) correspond to positive (or negative) values. See also the legend and the text.

based on Eq. (6), we immediately get the map for each mul-
tipole component in the reference system with the z axis par-
allel to the observer velocity. They can be also simply com-
puted in any other reference system (e.g., in Galactic coor-
dinates) given the angle of a pixel direction with respect to
the observer velocity direction. Here, we generate the maps
with nside = 1024, corresponding to a pixel linear size of
'3.44 arcmin.

We show the maps for ` = 3 and 6 in the case of a BE-
like distortion with the maximum value of µ0 (see Sect. 10.3), of
a pure Comptonization distortion with the maximum value of u
(see Sect. 10.2) and of the best-fit CIB spectrum (see Sect. 10.7).
The three adopted frequencies, different for each type of signal,
are selected to allow us to make an almost direct comparison
with the maps displayed in Burigana et al. (2018) and to appre-
ciate how the method presented here is suitable for a fast map
computation, very precise up to the desired order, even where
the relevant signal is weak and, in principle, more sensitive to
numerical uncertainty. The maps (see Fig. 10) are indeed very
clean and without numerical artifacts up to the highest ` thanks
to the adopted analytical approach; each multipole pattern obvi-
ously reflects the corresponding scaling, see Eq. (6), and, in par-
ticular, for odd multipoles the maximum and minimum values of
each map are equal in module.

Given the map, we can use publicly available tools, such as
the anafast facility of HEALPix, to compute the corresponding
angular power spectrum and the a`,m coefficients in any reference
system (see Goldstein 1984, and also Appendix C, for explicit

formulas to transform the a`,m under rotation). Indeed, for the
considered problem, the a`,m with m , 0 do not vanish in refer-
ence systems with the z axis not parallel to the observer velocity
direction. On the other hand, since the angular power spectrum,
C`, is an invariant under rotation of the reference system, we can
compute it simply working in the reference system with the z
axis parallel to the observer velocity direction, where the a`,m
with m , 0 vanish, and the coefficients a`,0 are evaluated as in
the previous sections

C`(ν, β) =

m=∑̀
m=−`

a2
`,m(ν, β)

2` + 1
=

a2
`,0(ν, β)

2` + 1
· (66)

In Fig. 11, we only report the result derived for some of the con-
sidered models for ` from 1 to 4. We plot the quantity:

∆a2
`,0(ν, β)

2` + 1
=

[adist
`,0 (ν, β) − aBB

`,0 (β)]2

2` + 1
· (67)

Equation (67) gives the angular power spectrum of the map
obtained from the difference between the map produced in
a given model (i.e. for a CMB distorted spectrum or for an
astrophysical background spectrum summed with the blackbody
spectrum at the current temperature T0) and the map obtained
for the blackbody spectrum at the current temperature T0.

There is a good agreement with the results reported by Buri-
gana et al. (2018) – but in the frequency range between 60 and
600 GHz considered for the Cosmic Origins Explorer (COrE) in
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Fig. 10. Examples of maps at two specific multipoles in the reference system with the z axis parallel to the observer velocity (left column)
and in Galactic coordinates (central and right columns). According to Planck Collaboration I (2020), we adopt l = 264.021◦ and b = 48.253◦
for the dipole direction in Galactic coordinates. We display the temperature pattern for a BE-like distortion with µ0 = 1.4 × 10−5 (top row), a
Comptonization distortion with u = 2 × 10−6 (central row) and the CIB distribution function with best-fit amplitude value I0 = 1.3 × 10−5 added
to the blackbody one (bottom row), minus the temperature pattern coming from the blackbody. The considered frequency and multipole is given
above each map. Maps are in equivalent thermodynamic (or CMB) temperature.

Fig. 14 (for the CIB) and in Fig. 12 (for BE and Comptonization
distortions). As expected, the central panels of Fig. 11, that span
from the radio to the sub-millimetre, show that the replacement
of the pure BE spectrum with a BE-like spectrum and the inclu-
sion of FF diffuse emission, which is not included in Burigana
et al. (2018), is remarkable at lower frequencies (given the high
FF model considered here, a little effect is already appreciable at
the lowest frequencies of the COrE range, see also Fig. 2).

The signals more relevant at low and high frequencies are
displayed in terms of ∆a2

`,0/(2`+ 1) in the top and bottom panels
of Fig. 11, respectively. All the well-defined minima of the vari-
ous lines displayed in Fig. 11 correspond to the changes of sign
of ∆a`,0 (see Figs. 2–4 and 6–7), but not in the case of the min-
imum at '80 MHz with respect to the EDGES profile at ` = 2
and 4 (appearing in the top panels of Fig. 11, which correspond
to the positive minima at the same `’s in Fig. 4).

Finally, we remark that the values of ∆a2
`,0/(2` + 1) at the

minima corresponding to the sign changes of ∆a`,0 (as well as
the values of ∆a`,0) should, in principle, go to zero at the corre-
sponding frequencies; typically, this does not appear in the plots
merely because of their frequency discretization.

13. Varying observer velocity

As discussed in Sect. 1, the observer velocity β = βC + βV(t)
is modulated by the time dependent component βV that, in real
measurements, mainly comes from the revolution of the Earth or
of L2 around the Solar System barycentre (βV ' βES ' βL2 '

10−4 ' 0.081 β). The formalism and the general properties of
the solutions presented in previous sections hold for any choice

of β. Thus, we can consider a relatively small time interval, ∆ti,
around a certain instant ti, in which the time variation of βV can
be neglected and β can be considered as a constant. For example,
in a time interval ∆ti ' 1 h, the relative change of β, which is
given by ∆β/β ' (∆βV/βV)(βV/β) ' ω∆ti (βV/β) ' 0.0058%,
is about one order of magnitude smaller than the current relative
uncertainty on βC, given the period of the main modulation P =
2π/ω = 1 yr.

In a time interval, ∆ti, only a certain fraction of the sky
can be observed. The detailed pattern of the sequence of the
observed sky positions is defined by the so-called scanning strat-
egy, or observational strategy, which is specific of each consid-
ered experiment. Let us define, using Mi(ν, θ′i ,βi), the all-sky
map given by Eq. (6), where β is replaced by βi = β(ti) =
βC + βV(ti) and the colatitude θ is replaced by the angle θ′i =
θ′i (βi, θ, φ) = arccos[(n̂ · βi)/βi] between βi and a sky direction
corresponding to the unit vector n̂ defined by the colatitude θ and
the longitude φ in any adopted reference system, S . The spheri-
cal harmonic coefficients to be used in Eq. (6) are given in Sect. 3
for `max = 6 (or, alternatively, in Sect. 5 for `max = 4 or in Sect. 7
for `max = 2 or 1).

The experiment scanning strategy defines the sequence of
pointing maps, Pi(ti, θ, φ), on a pixelized sky at the times ti, with
i = 1, n and n = τS/∆ti where τS is the survey duration: if
the direction defined by θ and φ is observed in the interval ∆ti
then Pi = 1, otherwise Pi = 0. The averaged map correspond-
ing to a survey based on a set of observer velocities βi is then
given by:

M(ν, θ, φ) =

n∑
i=1

Mi(ν, θ′i ,βi) · Pi(ti, θ, φ)
N(θ, φ)

, (68)
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Fig. 11. Angular power spectrum of the maps obtained from the difference between the maps produced in the various models and the map obtained
for spectrum corresponding to the blackbody at the current temperature T0. See also the legend and the text.

where N(θ, φ) is the global number of observer velocities βi for
which the direction defined by θ and φ is observed.

As discussed in Sect. 2, we need to compute the signal in
only `max + 1 directions to predict the map up to `max, and
the number of signal evaluations required by Eq. (68) is then
Nev,`max = (`max + 1) n = (`max + 1) τS/∆ti. Of course, the map
M(ν, θ, φ) can be directly computed through Eqs. (1) and (2)
using β = βC + βV(t) at each time, without applying the dis-
cretization associated to the choice of the time interval ∆ti. In
this case, since the receiver sampling time, τsamp, is typically
much smaller than ∆ti, the required number of signal evalua-
tions, Nev,d = τS/τsamp, is much larger than Nev,`max . The ratio,
rev = Nev,`max/Nev,d, between the required number of signal eval-
uations in the two cases is rev = τsamp(`max +1)/∆ti � 1. In order
to properly compare the computing times in the two approaches,
we evaluate this ratio discretizing β = βC+βV(t) according to the
choice of ∆ti also in the direct scheme based on Eqs. (1) and (2).
Thus, Nev,d reduces to Nev,d = Ni,pixτS/∆ti, where Ni,pix is the
number of sky pixels observed in the time interval ∆ti, and we
obtain rev = (`max + 1)/Ni,pix (again, rev � 1).

The method based on Eq. (68) is particularly advantageous
when applied to scanning strategies designed for future CMB
missions that foresee the use of a huge number of receivers at
the focal surface of a wide field of view telescope. The scan-
ning strategies typically foreseen for these missions involve
fast spacecraft spin axis precessions, in order to achieve in
a short time a large sky coverage and to observe sky pixels

with many orientations during the survey to improve the qual-
ity of map making results and of polarization analyses (see e.g.,
Delabrouille et al. 2018; Natoli et al. 2018).

Since θ′i depends on βi, θ and φ, Eq. (68) implies that the time
varying component βV(t) will introduce in the map M(ν, θ, φ) a
further modulation along θ and φ, which is superimposed onto
the main pattern, even if we choose a reference frame S with
the z axis parallel to the constant component βC. Although the
details of this modulation depend on the experiment scanning
strategy, its amplitude amounts to ∼βV/β ∼ 8.1% of the main
signal due to the constant velocity component.

For a given model, fixing the other parameters and neglect-
ing the terms in β(`+2) and beyond, the differences of the spher-
ical harmonic coefficients ∆a`,0 scale proportionally to β`, that
is, ∆a`,0(β) ' ∆a`,0(βC) (β/βC)` at the leading order. This prop-
erty comes from the separation of the system into even and odd
multipoles (see Sects. 2–7) and is explicit in the formulas found
for the blackbody spectrum (see Sects. 4 and 6). The compari-
son of the results displayed in Figs. 1 and 4 with those reported
in Figs. A.1 and A.2 where the velocity is multiplied by a fac-
tor 100 and 10, respectively, also suggests this scaling, providing
that the signal is sufficiently smooth in frequency and except for
smearing effects where the signal rapidly changes. We verified
this property in our numerical results varying β within a ±10%
because of the contribution of βV, namely, for realistic devia-
tions of β from βC. This feature can further speed up the com-
putation of Mi(ν, θ′i ,βi) because it allows a fast estimation of the
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contribution of the time varying component of the velocity over
two consecutive multipole patterns, for example, in the case of
the dipole and quadrupole, as useful in many applications.

14. Global pattern

In general, the global sky pattern is a combination of intrin-
sic anisotropies and of the anisotropies induced by the peculiar
observer motion. We focus here on the diffuse cosmic signals
more relevant in the microwaves, where the intrinsic (mainly of
primordial nature) anisotropies are better studied and the back-
ground frequency spectrum can be modelled in terms of small
deviations from a blackbody.

Working within a reference frame at rest with respect to the
background, in a given sky direction identified by θ and φ the
frequency dependent equivalent thermodynamic temperature can
be seen as a function of an effective temperature and of a set of
P distortion parameters p j with j = 0, P − 1

Tth(ν, θ, φ) = Tth(ν,TBB(θ, φ), p j(θ, φ)). (69)

Since both fluctuations and distortions are small, TBB(θ, φ) ∼ T0
and p j(θ, φ) ∼ 0 and we can expand Tth in Taylor’s series around
these values. At linear order

Tth(ν, θ, φ) = (Tth)0 +

(
∂Tth

∂TBB

)
0

(TBB − T0) +

P−1∑
j=0

(
∂Tth

∂p j

)
0

p j

= T0 +

(
∂Tth

∂η

∂η

∂TBB

)
0

(TBB − T0)

+

P−1∑
j=0

(
∂Tth

∂η

∂η

∂p j

)
0

p j, (70)

where ()0 denotes that the quantities are evaluated at TBB(θ, φ) =
T0 and p j(θ, φ) = 0, that is, for a blackbody with effective tem-
perature T0. Expanding the temperature fluctuation (TBB(θ, φ) −
T0) and the distortion parameters p j(θ, φ) in spherical harmonics
with coefficients aBB,`,m and a j,`,m, we have

Tth(ν, θ, φ) = aBB,0,0Y0,0 +

P−1∑
j=0

a j,0,0Y0,0

(
∂Tth

∂η

∂η

∂p j

)
0

(71)

+

`max∑
`=1

∑̀
m=−`

aBB,`,mY`,m

(
∂Tth

∂η

∂η

∂TBB

)
0

+

P−1∑
j=0

`max∑
`=1

∑̀
m=−`

a j,`,mY`,m

(
∂Tth

∂η

∂η

∂p j

)
0
,

where aBB,0,0Y0,0 = T0 and a j,0,0Y0,0 = p̄ j are the average of
TBB(θ, φ) and p j(θ, φ) over the full sky. Although not necessary,
we adopt here for simplicity a reference system with the z axis
parallel to the observer velocity in order to avoid rotations in
the following considerations (see Eq. (84)). In the right-hand
side of Eq. (71), the first line represents the (possibly distorted)
monopole spectrum, the second line the intrinsic temperature
fluctuations, the third line the intrinsic fluctuations of the dis-
tortion parameters and (see Eq. (1))

∂Tth

∂η
=

hν
k

1
η (1 + η) ln2(1 + 1/η)

, (72)

implying that (see Eq. (21)):(
∂Tth

∂η

)
0

= T0
(ex − 1)2

x ex , (73)

and the functions (∂η/∂p j)0 ( j = 0, P − 1) depend on the type of
distortion. Equation (71) shows that the spectral shape of each
distortion term in the monopole spectrum (added to T0) and of
the fluctuations of the corresponding distortion parameter is the
same, but they are weighted differently depending on the coeffi-
cients a j,`,m.

Next, we consider, in the case of distorted spectra, the deriva-
tives ∂η/∂p j and ∂η/∂TBB. In the case of a BE distortion (see
Eq. (60)) with a frequency independent chemical potential µ0
(i.e. neglecting for simplicity the spectrum modifications intro-
duced by considering a BE-like distortion that are relevant at
lower frequencies), and for small values of µ0, with the approxi-
mation φBE ' (1−1.11µ0)−1/4 we have

∂η

∂µ0
'

ehν/(kTBB)/φBE+µ0

(ehν/(kTBB)/φBE+µ0 − 1)2 ·

(
1.11

4
hν

kTBBφBE
φ4

BE − 1
)
, (74)

∂η

∂TBB
'

1
TBB

ehν/(kTBB)/φBE+µ0 hν/(kTBB)/φBE

(ehν/(kTBB)/φBE+µ0 − 1)2 , (75)

implying(
∂η

∂µ0

)
0
'

ex[(1.11/4)x − 1]
(ex − 1)2 , (76)(

∂η

∂TBB

)
0
'

1
T0

x ex

(ex − 1)2 · (77)

We derive now ∂η/∂p j and ∂η/∂TBB in the case of a Comp-
tonization distortion with a small Comptonization parameter u
and an initial Planckian spectrum, ηi with φi ' 1 − u (see
Eq. (57)), combined with a FF distortion with yB approxi-
mated by yB ' ÃFFx−ζ with ÃFF = AFF[(h/k) (GHz/TBB)]ζ '
0.5456 AFF (see Eq. (59)). In principle, also the slope parameter
ζ or, for the more general description in Eq. (58), an alternative
set of five parameters could be included in the set of distortion
parameters p j. For simplicity, we include in the p j only the most
relevant emission amplitude parameter in the power law approx-
imation. In the derivatives below, we report only the terms that
will not vanish when specified at p j = 0. The terms that are not
multiplied by u in ∂η/∂u give

∂η

∂u
= −

[hν/(kTBB)] ehν/(kTBB)/φi/φ2
i

(ehν/(kTBB)/φi − 1)2

+
hν/(kTBB)/φi ehν/(kTBB)/φi

(ehν/(kTBB)/φi − 1)2

(
hν/(kTBB)/φi

tanh[hν/(kTBB)/(2φi)]
− 4

)
,

(78)

and we get(
∂η

∂u

)
0

= −
x ex

(ex − 1)2 +
x ex

(ex − 1)2

(
x

tanh(x/2)
− 4

)
, (79)

while

∂η

∂ÃFF
'

(
hν

kTBB

)−(3+ζ)

, (80)

implying(
∂η

∂ÃFF

)
0
' x−(3+ζ). (81)

The terms that are not multiplied by u nor by ÃFF in ∂η/∂TBB
give

∂η

∂TBB
'

1
TBB

ehν/(kTBB)/φi hν/(kTBB)/φi

(ehν/(kTBB)/φi − 1)2 , (82)
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implying, again,(
∂η

∂TBB

)
0
'

1
T0

x ex

(ex − 1)2 · (83)

Formally, in Eqs. (74), (75), (78), (80), and (82), TBB,
µ0, φBE(µ0) and φi(u) refer to a given sky direction identi-
fied by θ and φ. However, their relations with θ and φ van-
ish when they are specified for TBB = T0 and p j = 0 as in
Eqs. (76), (77), (79), (81), and (83), where indeed x = hν/(kT0).

In general, we have ((∂Tth/∂η)(∂η/∂TBB))0 = 1, as evident
also from Eqs. (73), (77), and (83); the coefficients aBB,`,m are
then the usual spherical harmonic expansion coefficients defin-
ing the CMB temperature anisotropies. Considering both the
effects induced by the observer peculiar motion on the monopole
and the intrinsic anisotropies, working in the observer reference
system with the z axis parallel to the observer velocity, we can
combine Eqs. (3) and (71) to derive a global anisotropy pattern

Tth(ν, θ, φ, β) =

`max∑
`=1

∑̀
m=−`

aBB,`,mY`,m

(
∂Tth

∂η

∂η

∂TBB

)
0

(84)

+

P−1∑
j=0

`max∑
`=1

∑̀
m=−`

a j,`,mY`,m

(
∂Tth

∂η

∂η

∂p j

)
0

+

`max∑
`=0

∑̀
m=−`

a`,m(ν, β)Y`,m(θ, φ),

where the coefficients a`,m(ν, β) are given in Sect. 3 (or in
Sect. 5); we omitted here the first line of the right-hand side of
Eq. (71) to obviously avoid a double counting of the monopole
that is already included in the term with ` = 0 of the last line,
where the effect of the observer motion with respect to a frame
at rest with the CMB is also taken into account. The focus in
this work on the analysis at low multipoles of the effects caused
by the observer motion on the isotropic monopole component,
neglects the Doppler and aberration effects on the anisotropies,
that is, on the first and second lines of the right-hand side of
Eq. (84). These effects couple multipoles ` to ` ± n, particu-
larly in the correlation between ` and ` ± 1 (Challinor & van
Leeuwen 2002; Burles & Rappaport 2006; Kosowsky & Kahni-
ashvili 2011; Amendola et al. 2011; Chluba 2011; Dai & Chluba
2014), a property that has been used to independently constrain
β. The effects are indeed more important at high multipoles: their
main information comes from ` & 100, where many modes can
be exploited (Burigana et al. 2018) (see Planck Collaboration
LVI 2020 for a recent application to Planck data based on the
modulation of the thermal Sunyaev-Zel’dovich effect (Chluba
et al. 2005; Notari & Quartin 2016)).

We can rewrite the coefficients a`,m(ν, β) as

a`,m(ν, β) = ∆a`,m(ν, β) + aBB
`,m(β), (85)

where aBB
`,m(β) refer to the case of a blackbody spectrum and

∆a`,m(ν, β) = a`,m(ν, β)−aBB
`,m(β) depend on the type of considered

distortion.

15. Intrinsic dipole versus kinematic dipole

We focus here on the dipole anisotropy. Including both the effect
induced by the observer peculiar motion on the monopole and
the intrinsic anisotropies, and using a reference system with the

z axis parallel to the observer velocity, the global dipole pattern
is characterized by the coefficients:

aglob
1,m (ν, β) = ∆a1,m(ν, β) + aBB

1,m(β) + aBB,1,m +

P−1∑
j=0

ã j,1,m(ν), (86)

where

ã j,1,m(ν) = a j,1,m

(
∂Tth

∂η

∂η

∂p j

)
0

(87)

and ∆a1,m(ν, β) = 0, aBB
1,m(β) = 0 for m , 0. In these equations, the

superscript ‘BB’ refers to observer peculiar motion effects while
the subscript ‘BB’ refers to intrinsic anisotropies. The coeffi-
cients ∆a1,0(ν, β) and ã j,1,m(ν) (through ((∂Tth/∂η)(∂η/∂p j))0),
that are related to the type of distortion, do not vanish only in
the presence of deviations from a Planckian spectrum.

The typical amplitude of the coefficients ∆a1,0(ν, β) is of the
order of aBB

1,0 (β), that is, of ≈ βT0, multiplied by the amplitude of
the monopole spectral distortion, ∆Tth (see the first two left pan-
els from the top in Figs. 2 and 3). The coefficients a j,1,m charac-
terize the fluctuations of the different types of distortion at ` = 1
and then depend significantly on the specific mechanism and
not only on the corresponding average distortion parameter and
spectral shape. Global spectral distortions are still unobserved,
as well their fluctuations (obviously except for the Sunyaev-
Zel’dovich effect on galaxy clusters), and it is then reasonable
to assume ã j,1,m(ν) < aBB,1,m.

Assuming Gaussian random temperature fluctuations, the
coefficients aBB,1,m are expected to have zero mean and variance
given by the angular power spectrum C` at ` = 1. Currently, C1
is unknown, but it is typically predicted to be of the order of the
temperature anisotropy intrinsic quadrupole C2. Constraining the
intrinsic anisotropy power at ` = 1 is difficult, but very interesting
in the context of future CMB surveys (see Yasini & Pierpaoli 2017
for a method based on the exploitation the leakage of the intrin-
sic dipole into the CMB monopole and quadrupole and Meerburg
et al. 2017 for an analysis based on the observation of the small
scale temperature fluctuations that result from gravitational lens-
ing). This topic is related to the power at low multipoles, and in
particular, to the low power of the quadrupole discovered by the
COBE Differential Microwave Radiometer (DMR; Wright et al.
1996; Hinshaw et al. 1996) and then confirmed by WMAP (Ben-
nett et al. 2013; Hinshaw et al. 2013) and Planck (Planck Collab-
oration V 2020). Reconstructing the intrinsic anisotropy power
at very low multipoles is very important for inflationary models
(see Planck Collaboration X 2020 for recent constraints) predict-
ing power suppression at large scales (see e.g., Vilenkin & Ford
1982; Starobinskij 1992; Bridle et al. 2003; Contaldi et al. 2003;
Efstathiou 2003; Sinha & Souradeep 2006) and for their connec-
tion with universe geometry and topology (see e.g., Linde 1995,
2003; Gratton et al. 2002; Ellis et al. 2002; Lasenby & Doran
2004; Levin 2002).

In general, the amplitudes of the coefficients aBB,1,m are sig-
nificantly smaller than the amplitude of the coefficient aBB

1,0 (β),
the observed dipole being dominated by the Doppler effect asso-
ciated to our peculiar motion with respect to the CMB. In the
absence of deviations from a Planckian spectrum, ã j,1,m(ν) = 0
and ∆a1,0(ν, β) = 0, and any (relatively minor) frequency inde-
pendent contribution from aBB,1,0 is degenerate with aBB

1,0 (β). The
same holds for aBB,1,m with m , 0 because the sum of dipole
terms is still a dipole and, for a Planckian spectrum, it is possi-
ble to find a rotation of the reference system that jointly drops
the terms with m , 0 at all frequencies (see Appendix C). Thus,
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the peculiar motion Doppler effect alone does not allow to dis-
tinguish the intrinsic dipole from the kinematic dipole, at least
in the absence of a very accurate measure of β provided by other
methods.

Now, we consider the presence of deviations from a Planck-
ian spectrum. The only frequency dependent terms in Eq. (87)
are ∆a1,0(ν, β) and ã j,1,m(ν).

Let us assume, as a first simple case (A), that the very large
angular scale fluctuations of the spectral distortion parameters
are very small in amplitude, namely ã j,1,m(ν) � ∆a1,0(ν, β).
Thus, in the adopted reference system, the only relevant fre-
quency dependence in the dipole pattern is for m = 0 and comes
from ∆a1,0(ν, β), while any different choice of the z axis, that is,
not parallel (or not antiparallel) to the observer velocity, would
imply that the same frequency dependence is polluted in the
dipole at m , 0.

In a more general case (B), when we relax the above assump-
tion, that is, for a non-negligible frequency dependent contri-
bution from ã j,1,m(ν), the situation is a bit more complex, but
conceptually not so different (in particular for given prescrip-
tions of the coefficients ã j,1,m(ν)). In the adopted reference sys-
tem, a frequency dependence related only to the fluctuations of
the spectral distortions would appear at m , 0, and the com-
bination of the different frequency dependencies related to the
peculiar motion effect and to the fluctuations of the spectral dis-
tortions, properly weighted, would appear at m = 0. For a refer-
ence system with the z axis not parallel (or not antiparallel) to the
observer velocity these frequency dependencies are polluted in
the dipole at any m, in a way related to the underlined frequency
spectra.

Let us assume that the intrinsic dipole and the kinematic
dipole are not aligned (the opposite is possible by chance, but
it is very unlikely).

In case (A), one can search for a reference system that drops
(or, more realistically, minimize in a statistical sense) the fre-
quency dependence of the coefficients, aglob

1,m for m , 0, implying

that its z axis is parallel to β. The components, aglob
1,m , with m , 0

are then to be ascribed only to the intrinsic temperature fluctu-
ation terms, aBB,1,m, and although the contribution from aBB,1,0
remains hidden in the larger term, aBB

1,0 (β), the squares of the

components, aglob
1,m , with m , 0, allow us to provide an estimate

of the intrinsic dipole angular power spectrum, C1, although with
a slightly larger cosmic variance because this estimate is based
on only two, instead than three, coefficients. We note that (see
Eq. (84)) similar considerations apply in the limit of that approx-
imation, also for ` > 1, allowing us to exploit a larger number of
modes m. On the other hand, because ∆a`,m(ν, β) (see Eq. (85))
decreases as β`, the information from ` > 1 does not add relevant
constraints in this scheme.

In case (B), relaxing the assumption ã j,1,m(ν) � ∆a1,0(ν, β),
it is possible to search for a reference system that drops, or min-
imize, the difference of the frequency dependence of the coef-
ficients, aglob

1,m , with m , 0, with the behaviour expected from
the terms, ã j,1,m(ν), related to the fluctuations of the distortion
parameters (see Eqs. (86) and (87)), added with the intrinsic
temperature fluctuation terms, aBB,1,m. We also note that the fre-
quency dependencies of ã j,1,m(ν) and ∆a1,0(ν, β), although dif-
ferent, are physically connected, being related to the types of
involved distortions, and this property can be exploited in the
joint analysis of the modes with m = 0 and m , 0, helping, at
m , 0, the discrimination between ã j,1,m(ν) and aBB,1,m.

Therefore, in the presence of spectral distortions, a very care-
ful multifrequency analysis of the dipole pattern, namely, of the

frequency behaviour of its spherical harmonic expansion coeffi-
cients, can be used, at least in principle, to set constraints on the
intrinsic dipole embedded in the kinematic dipole.

We note that the inclusion of the time variation of β (see
Sect. 13), although requiring specific implementations, does not
conceptually modify the above considerations since it is possible
to split the sky area observed in a survey into a proper set of sky
areas, each one observed in a shorter time interval and, hence,
with a negligible variation of β, without reducing the global sta-
tistical information contained in the survey.

16. Discussion and conclusion

The peculiar motion of an observer with respect to the cos-
mic background in a certain frequency band produces boosting
effects in the background anisotropy pattern. In this work, we
studied how the frequency spectrum of the background isotropic
monopole emission is modified and transferred to the frequency
spectra of the patterns at higher multipoles. We performed the
analysis in terms of spherical harmonic expansion for various
models of background radiation, ranging from the radio to the
far-infrared.

Adopting a reference frame with the z axis parallel to the
observer motion direction allows us to simplify the problem
since it is thanks to this choice that only the spherical harmonic
coefficients a`,m with m = 0 do not vanish. We derive the system
of linear equations to obtain the a`,m up to a desired value of `max.
For each observational frequency, the a`,m are written as linear
combinations of the signals at the set of frequencies correspond-
ing to the chosen N = `max +1 colatitudes θi (Sect. 2). We explic-
itly write the system and provide the solutions up to `max = 6, as
well as for other smaller values of `max. The symmetry property
of the associated Legendre polynomials with respect to θ = π/2
is used to separate the system into two subsystems, one for ` = 0
and even multipoles and the other for odd multipoles, improving
the solutions accuracy with respect to an arbitrary colatitudes
choice (Sects. 3–8). We apply these solutions to the case of a
blackbody and verify their agreement with the exact analytical
solutions for ` = 0 and ` = 1 at the order in β related to `max
(Sects. 4 and 6).

The structure of the solutions is discussed and compared with
respect to the general properties of monopole spectrum integra-
tion and differentiation (Sect. 9). The coefficients of the solutions
can be regarded as sets of weights assigned to a small number of
function evaluations, according to adopted order of accuracy, to
compute the integrals that define the a`,m coefficients. The coef-
ficients of these solutions exhibit remarkable symmetry proper-
ties. Some of these properties are the same of the ones shown by
the weights used in finite difference formulas to compute numer-
ical derivatives. The implicit mixing of the spectrum derivatives
in the solutions is reflected by the absence of that sign alternation
property of the weights which appears in finite difference formu-
las. Indeed, the frequency behaviours of the a`,m coefficients are
particular sensitive to the local monopole spectrum variation in
a way characterized by derivative orders increasing with `.

We applied the method to some models for different types
of monopole spectra that can be represented in terms of analyti-
cal or semi-analytical functions (Sects. 10 and 11), namely: four
types of CMB distorted photon distribution functions, that is,
a non-equilibrium imprint at low frequencies, Comptonization,
FF, and BE-like distortions; four types of extragalactic back-
ground signals, that is, 21 cm redshifted line, radio, and millime-
tre backgrounds from extragalactic sources, CIB, superimposed
onto the CMB Planckian spectrum; some combinations of signal
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relevant at millimetre and sub-millimetre wavelengths, that is,
Comptonization and FF distortions combined with millimetre
background from extragalactic sources or with CIB.

For each model, we show the intrinsic monopole spec-
trum in terms of the difference, ∆Tth(ν), between the equiva-
lent thermodynamic temperature for the model and the present
CMB temperature T0. Our results are presented in terms of:
(i) the difference ∆R(ν, β) = R(ν, β) − RBB(β), where R(ν, β) =

(a0,0(ν, β)/
√

4π)/Tth(ν) and RBB(β) are the ratios between the
equivalent thermodynamic temperature of observed and intrin-
sic monopole for the model and for the blackbody at the present
temperature T0; (ii) the differences ∆a`,0(ν, β) between the spher-
ical harmonic coefficients computed for the model, a`,0(ν, β), and
for the blackbody, a`,0(β); we also present (iii) all-sky maps and
(iv) angular power spectra (Sect. 12) directly derived from the
spherical harmonic coefficients, for some representative cases.

The results are in excellent agreement with those based
on more computationally demanding numerical integrations
or map generation and inversion (Sects. 10 and 12; see also
Appendix A), and even more accurate. The method could be
obviously implemented for any `max, however, since β is of the
order of 10−3 and the coefficients a`,0(ν, β) scale approximately
as β`, the solutions presented for `max = 6 allows us to achieve
an extremely high accuracy that is sufficient for any application
even in the very distant future. We provide also explicit solutions
for `max = 4 that are fully adequate for the analysis of forthcom-
ing and proposed surveys. The only accuracy limitation of the
proposed scheme derives from neglecting the contributions from
higher multipoles, the largest relative errors appearing at `max
from `max + 2 and at `max − 1 from `max + 1: the relative errors
are very small even at ` . `max, while, remarkably, they are fully
negligible at the lowest multipoles.

The high number of possible model combinations may result
in a variety of signatures in the global signal expected by cos-
mological plus astrophysical backgrounds. The simplicity and
computational efficiency of the proposed method can signifi-
cantly alleviate the computational effort needed for theoretical
predictions and for the comparison with data from future projects
for a plethora of cases of interest. These include, for exam-
ple, signal combinations or possible differences between vec-
tors β that could refer to specific backgrounds or that appear
when the observer velocity variation is taken into account
(Sect. 13).

We discuss the main features found for the considered back-
ground models at the various multipoles in wide frequency
ranges. All the patterns at different multipoles are related to the
observer peculiar motion, although with a signal amplitude that
decreases with `. Thus, they exhibit, both in the whole sky and
in different sky regions, spatial correlations at different angular
length scales and well-defined geometrical properties, that are
related each other, and this would improve their joint analysis
that can be optimized considering the observational method and
specifications of a given project. As discussed in Trombetti &
Burigana (2019) for the dipole in the radio domain, the analy-
sis does not necessarily require the mapping of the entire sky
or of a very large fraction of it. Future radio surveys, and in
particular the excellent resolution and sensitivity offered by the
SKA (Dewdney et al. 2016) for a variety of scientific themes
(see e.g., Weltman et al. 2020) can be used to investigate the
spectra of the multipoles patterns at low frequencies. In general,
the ultra-precise comprehension and subtraction of the Galactic
foreground emission is likely to act as the most difficult problem
in cosmological analyses at large angular scales.

Finally, we move on to a discussion of the superposition of
the CMB intrinsic anisotropies and of the effects induced by
the observer peculiar motion focussing on their different fre-
quency behaviours in the presence of CMB spectral distortions
(Sect. 14). We find that they can be used, at least in principle, to
set constraints on the intrinsic dipole embedded in the kinematic
dipole, through a very careful multifrequency analysis of the cor-
responding spherical harmonic expansion coefficients (Sect. 15;
see also Appendix C). Detailed studies, object of future works,
can clarify the feasibility of this approach and, possibly, the
required specifications.

In general, the above considerations do not strictly rely on
the direct absolute determination of the monopole spectrum.
Thus, although they come with challenges, these studies can, in
principle, be pursued with an anisotropy project, such as the Lite
(Light) satellite for the studies of B-mode polarization and Infla-
tion from cosmic background Radiation Detection (LiteBIRD;
Matsumura et al. 2014) or a mission like COrE (Delabrouille
et al. 2018; de Bernardis et al. 2018) or the Probe of Inflation
and Cosmic Origins (PICO; Hanany et al. 2019), provided that
an extremely accurate relative and inter-frequency calibration
and suppression of systematic effects are achieved (Natoli et al.
2018).

Clearly, the most advantageous observational chance is
offered by the next generation of CMB space missions designed
to perform ultra-accurate temperature measurements of the
whole sky with a highly precise absolute calibration and a rela-
tively high resolution mapping over a wide set of frequencies, as
for example, in the Primordial Inflation Explorer (PIXIE; Kogut
et al. 2011, 2016), in the Polarized Radiation Imaging and Spec-
troscopy Mission (PRISM; André et al. 2014), and, as in more
recent proposals, to the National Aeronautics and Space Admin-
istration (NASA; Chluba et al. 2019a), to the Indian Space
Research Organisation (ISRO; CMB Bharat1), and to the Euro-
pean Space Agency (ESA; Delabrouille et al. 2019; Chluba et al.
2019b). These projects have the advantage of measuring the fre-
quency spectrum of the relevant multipole patterns – starting
from the monopole.
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Appendix A: Numerical tests with amplified
observer velocity

In Sects. 10.1 and 10.4, we compare, for two very different cases,
the results based on the solutions described in Sect. 3 and on
a direct numerical integration (see Eq. (5)) to find differences
that are compatible with a combination of higher order terms,
that is, beyond ` = 6, and integration errors, the latter becoming
more relevant at increasing ` and decreasing signals, in connec-
tion with the low value of the observer velocity, β.

To better clarify this aspect, we perform the same type of
comparison, but adopting a much larger value of β, in order to
exploit much larger signals and relatively higher contributions
from higher multipoles and to deal with relatively lower numer-
ical integration errors. Here, we reconsider the cases of the non-

equilibrium model and of the EDGES profile of redshifted 21 cm
line, but assuming a value of β arbitrarily amplified respectively
by a factor 100 and 10, this choice being motivated by their dif-
ferent signal amplitudes in their relevant frequency ranges.

We report the results for ∆a`,0 found using the equations in
Sect. 3 and the Eq. (5) for ` = 1, 6, as well as the results based on
Eq. (5) for ` = 7 and 8. They are shown in Figs. A.1 and A.2. As
expected, and as evident from the figures, such higher values of
β imply a strong reduction of the relative numerical integration
error, making feasible an accurate computation of ∆a`,0 at larger
`. Thus, the differences at ` = 1, 6 between the results found
with the two methods come essentially only from higher order
terms, neglected in the equations of Sect. 3, that are obviously
dominated by the contributions from ` = 7 at odd multipoles
and from ` = 8 at even multipoles.

Fig. A.1. ∆a`,0 for the considered non-equilibrium model (ν0 ' 0.35 GHz and α ' 3.36), assuming a value of β multiplied by a factor 100; ` ranges
from 1 to `max = 6 in the case of the solutions described in Sect. 3 and up to 8 in the case of numerical integration (with the routine D01AJF)
based on Eq. (5). Solid lines (or dots) correspond to positive (or negative) values. Green and red lines are essentially superimposed up to ` = 6.
Their difference, multiplied by a factor F to have values compatible with the adopted range, is displayed by the blue lines. Yellow lines refer to the
nominal integration error quoted by the routine D01AJF, again multiplied by the factor F. See also the legend and the text.
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We note that the order of magnitude of ∆a7,0 (or of ∆a8,0) is
equal to the order of magnitude of the differences between the
results found with the two methods at odd (or even) multipoles.
The spectral shapes of ∆a`,0 in the case of the non-equilibrium
model are featureless, reflecting the original power law shape of
the monopole spectrum when expressed in terms of ∆Tth. Con-
versely, the spectral shapes of ∆a`,0 in the case of the EDGES
profile are rich in features, increasing in number at increasing
`. Remarkably, the spectral shape of the differences between the
results found with the two methods reflects the spectral shape of
∆a7,0 (or of ∆a8,0) at odd (or even) multipole.

As discussed in Sect. 2, the above properties derive from
the separation of the system in two subsystems, one at odd `

the other at even `, associated to the adoption of a set of colati-
tudes symmetric with respect to π/2 (plus π/2). This suppresses
in each a`,0 at odd (or even) ` the contribution of the multi-
pole immediately larger than maximum odd (or even) multi-
pole considered in the system solution (see also, for compar-
ison, the discussion in Sect. 7). This is particularly important
in practice for the ‘robustness’ of the accuracy of the solu-
tions presented in this work, suitable for the real (low) value
of β, and especially in the case of spectra rich in features for
which changes of sign of ∆a`,0 and extremely low values of
∆a`,0 may occur at different frequencies for different `, possibly
enhancing the relative contribution of the missing higher order
terms.

Fig. A.2. Same as in Fig. A.1, but for the EDGES profile of redshifted 21 cm line (summed in intensity with the CMB blackbody) and assuming a
value of β multiplied by a factor 10. See also the legend and the text.
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Appendix B: Double Compton Gaunt factor

As anticipated in Sect. 10.3, here we provide an improved
approximation for the double Compton Gaunt factor (see also
Ravenni & Chluba 2020; Chluba et al. 2020b for recent stud-
ies) in the elastic limit, suitable for small BE-like distortions.
Writing the double Compton term according to Burigana et al.
(1995), and accounting separately in the rate for the correction
factor, Cmr, for mildly relativistic thermal plasma in the soft pho-
ton limit (Chluba et al. 2007), the double Compton Gaunt factor
can be written as (Burigana et al. 1991a)

gDC(xe) =

∫ ∞
2xe

x′4e [1 + η(x′e − xe)] η(x′e)
[
w F(w)

2

]
dx′e∫ ∞

0 [1 + η(x′e)] η(x′e) x′4e dx′e
, (B.1)

where

w
F(w)

2
=

1
2

(1 − w) (B.2)

×

[
1 + (1 − w)2 +

w2(1 + w2)
(1 − w)2 + w4 + w2(1 − w)2

]
,

with w the ratio between the frequencies of the created and inci-
dent photons, 0 ≤ w ≤ 1/2 and wF(w)/2 → 1 as w → 1 (Gould
1984). For a (pure) BE spectrum with a frequency independent
chemical potential µ and equilibrium temperature TBE = Teq =

[h/(4k)]
∫ ∞

0 (1 + η)ην4dν/
∫ ∞

0 ην3dν (Peyraud 1968; Zel’dovich
& Levich 1969), the integral at denominator in Eq. (B.1) is sim-
ply 4I3 f (µ), with f (µ) =

∫ ∞
0 ηBE(xe)x3

edxe/I3, I3 = π4/15 and
f (µ)→ 1 in the Planckian limit µ→ 0. Thus, for a pure BE spec-
trum only the integral at numerator of Eq. (B.1) needs a numeri-
cal computation. We have performed this calculation using both
a Gaussian quadrature scheme (Press 1992) and the NAG rou-
tine D01AJF, adopting a very large upper integration limit (set to
500, to have a good estimation also at very high frequencies) and
working with a dimensionless frequency in logarithmic space as
integration variable. We first consider the case of a blackbody
spectrum and compare the results of two methods (see Fig. B.1):
clearly, they are in excellent agreement. We then consider the
case of a (pure) BE spectrum with µ0 = 1.4 × 10−5, the largest
value considered in this work. The relative differences between
gDC computed for this case and in the case of a blackbody spec-
trum are less than few ×10−2% in the whole frequency range, and
obviously it decreases for decreasing values of µ0. Although the
very low frequencies give only a little relative contribution to the
integral, a similar comparison for a BE-like spectrum is in princi-
ple a bit more difficult, because the spectrum at low frequencies
depends also on gDC. On the other hand, the above difference
represents a good upper limit estimation also when applied to
a BE-like spectrum with the same high frequency asymptotic
value of µ0, because a BE-like spectrum differs from the black-
body less than a pure BE spectrum.

An approximation for gDC(xe) which, as explicitly stated by
the authors, works well only at low frequencies, where the rate
is higher, was found by Burigana et al. (1991a)

g̃DC(xe) ' e−xe/2. (B.3)

Of course, for very small distortions xe ' x. In the limit µ � 1,
Chluba & Sunyaev (2012) found the approximation

ĝDC(x) ' e−2x (B.4)

× [1 + (3/2)x + (29/24)x2 + (11/16)x3 + (5/12)x4].

Fig. B.1. Comparison between the results of various approximations
and accurate numerical integrations of Eq. (B.1). The bottom-right
inset gives the numerical result derived with the NAG routine D01AJF
with a relative accuracy of 10−12 in the case of the blackbody spec-
trum. The main plot reports the per cent difference of various esti-
mations of Eq. (B.1) with respect to the NAG D01AJF result for the
blackbody spectrum: the approximation presented here (Current, see
Eq. (B.5)); the NAG D01AJF result but for a pure BE spectrum with
µ0 = 1.4 × 10−5 (BE); the approximations reported in Burigana et al.
(1991a) (BB-BDD, see Eq. (B.3)) and in Chluba & Sunyaev (2012)
(BB-CS, see Eq. (B.4)); the numerical result derived with a Gaussian
quadrature scheme (Press 1992) with the accuracy parameter (EPS) set
to 10−9 and 2048 points in the case of the blackbody spectrum. Solid
lines (or dots) correspond to positive (or negative) values. The top-left
inset displays the same results of the main plot, but in a restricted fre-
quency range and with a linear scale on the y-axis. See also the legend
and the text.

Figure B.1 shows the relative accuracies of these two formulas.
The latter works significantly better than the former at x & 0.3,
providing a little improvement at smaller frequencies (the two
approximations clearly agree to first order in Taylor’s series for
small x). On the other hand, an error at some % level still remains
when using Eq. (B.4) at x > 1.

We then search for a better description of the numerical
result. Considering the very good accuracy of Eq. (B.4) at low
frequencies, we consider the following expression:

gDC(x) ' ĝDC(x) 10P(X) e−(x̂/x)m
+ ĝDC(x)[1 − e−(x̂/x)m

], (B.5)

where X = log10x, P(X) is a polynomial of a certain degree
d, x̂ and m are a dimensionless frequency and an exponent.
P(X) modifies the approximation represented by ĝDC(x) to better
describe the numerical results at high frequencies, while x̂ and
m define the exponential weights to assure a smooth transition
from low to high frequencies, around x̂. We fit our numerical
results (for instance, the ones derived with the D01AJF routine)
for gDC(x) in the Planckian limit to find the values of x̂, m, d,
varying them on a simple three dimensional grid, and of the best-
fit polynomial coefficients. We find m = 1.6, x̂ = 0.23, d = 17
and the following polynomial coefficients, from the power of
order 0 to the power of order d:

+1.137720 × 10−3, −2.949735 × 10−2, −5.578415 × 10−2,

+3.212930 × 10−2, +8.794246 × 10−2, −4.492392 × 10−3,

−5.746682 × 10−2, −1.277239 × 10−2, +1.573671 × 10−2,

+7.068248 × 10−3, −9.391122 × 10−4, −1.073426 × 10−3,
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−1.716636 × 10−4, +8.114468 × 10−6, −4.003431 × 10−7,

−1.886616 × 10−6, −3.587674 × 10−7, −2.055208 × 10−8.

The accuracy of this approximation is also displayed in Fig. B.1:
it is always better than '1% and better than '0.1−0.2% in the
whole relevant frequency range.

Appendix C: Reference system rotation and dipole
terms with m , 0

Let us consider a real field, T (θ, φ), defined by the spherical har-
monics coefficients A`,m in a given reference system, S , with
polar coordinates θ and φ, that is:

T (θ, φ) =

`max∑
`=0

∑̀
m=−`

A`,mY`,m(θ, φ), (C.1)

and another reference system S ′, with coordinates θ′ and φ′, that
is defined, with respect to S , by the Euler angles αE, βE, γE. The
range of αE and γE is defined modulo 2π radians: we adopt the
range [0, 2π] (but another widely adopted choice is, for example,
[−π, π]). The range of βE covers π radians: we adopt the range
[0, π] (but it could be, for example, [−π/2, π/2]). In the reference
system S ′

T (θ′, φ′) =

`max∑
`=0

∑̀
j=−`

D`, jY`, j(θ′, φ′), (C.2)

where D`, j are the corresponding (rotated) spherical harmonics
coefficients. According to Goldstein (1984)

D`, j =
∑̀

m=−`

Q`,m, jA`,m, (C.3)

where

Q`,m, j = (−1)`−m
(

2`
` + m

)1/2( 2`
` + j

)−1/2

i j−m ei(mαE+ jγE)

× cosm+ j(βE/2) sin j−m(βE/2) Jm+ j, j−m
l− j (−cos βE); (C.4)

here i2 = −1 and J s,t
r (z) are the Jacobi polynomials

J s,t
r (z) =

1
2r

r∑
k=0

(
r + s

k

) (
r + t
r − k

)
(z − 1)r−k (z + 1)k (C.5)

expressed in explicit polynomial form. For r = 0, we simply
have J s,t

0 (z) = 1.
Defining A1,0 = a1,0, A1,1 = b1,1 + i c1,1 (and, for symmetry,

A1,−1 = −b1,1 + i c1,1), after some algebra one gets

Re(D1,1) =

√
2

2
a1,0 sin βE sin γE (C.6)

+
1 + cos βE

2
[b1,1 cos (αE + γE) − c1,1 sin (αE + γE)]

+
1 − cos βE

2
[b1,1 cos (αE − γE) − c1,1sin (αE − γE)],

Im(D1,1) = −

√
2

2
a1,0 sin βE cos γE (C.7)

+
1 + cos βE

2
[b1,1 sin (αE + γE) + c1,1 cos (αE + γE)]

−
1 − cos βE

2
[b1,1 sin (αE − γE) + c1,1 cos (αE − γE)].

A rotation of the reference system S → S ′, that is, a set of
Euler angles αE, βE, γE, that makes D1,1 = 0 = D1,−1 or, equiv-
alently, for which the whole dipole signal is along the z′ axis
of the S ′ reference system, does not depend on the choice of the
angle γE that specifies the (last) rotation around the z′ axis. Thus,
setting for simplicity γE = 0, the condition D1,1 = 0 is satisfied
for

b1,1 cosαE − c1,1 sinαE = 0 (C.8)

and

−

√
2

2
a1,0 sin βE + cos βE[c1,1 cosαE + b1,1 sinαE] = 0. (C.9)

Equations (C.8) and (C.9) imply

sinαE =

√
2

2
tan βE

a1,0 b1,1

b2
1,1 + c2

1,1

= ±
b1,1√

b2
1,1 + c2

1,1

, (C.10)

cosαE =

√
2

2
tan βE

a1,0 c1,1

b2
1,1 + c2

1,1

= ±
c1,1√

b2
1,1 + c2

1,1

, (C.11)

where the last equalities of Eqs. (C.10) and (C.11) come from
the obvious condition sin2 αE + cos2 αE = 1 that gives

tan βE = ±

√
2 (b2

1,1 + c2
1,1)

a1,0
; (C.12)

the sign is related to the orientation of the (starting) reference
system, S , with respect to the dipole pattern.

Finally, simply considering that the angular power spectrum,
C`, is invariant under rotation, for ` = 1, we have

√
C1 =

√
D2

1,0 + D2
1,1 + D2

1,−1
√

3
=

D1,0
√

3
=

Re(D1,0)
√

3
(C.13)

=

√
A2

1,0 + A2
1,1 + A2

1,−1
√

3
=

√
a2

1,0 + 2 (b2
1,1 + c2

1,1)
√

3
·

Let us consider now, see Eq. (86), A1,m = aBB
1,m(β)+aBB,1,m, as

in the case of frequency independent aglob
1,m coefficients evaluated

for a Planckian spectrum, but in a reference system S with the
z axis only roughly aligned with the observer peculiar velocity
β, that is easily identified from the sky area where the observed
(large scale pattern) temperature is not far from its maximum
(this implies A1,0 = a1,0 > 0 and, with the adopted ranges for the
Euler angles, this also defines a unique, positive choice of the
sign in Eq. (C.12) as well as in Eqs. (C.10) and (C.11), since βE
should be relatively small). Thus, the above expressions allow
to simply find a reference system S ′ where D1,1 = 0 = D1,−1
or, equivalently, the global dipole signal is along the z′ axis for
all the frequencies (and, in Eq. (C.13), the positive sign of D1,0
means that the z′ axis points towards the direction of the maxi-
mum of the dipole pattern signal).

Considering, instead, A1,m = aglob
1,m (ν, β) with aglob

1,m (ν, β) given
by Eq. (86) but in the presence of deviations from a Planckian
spectrum. The coefficients a1,0, b1,1 and c1,1 in the above expres-
sions are then frequency dependent, it is no longer possible to
find a reference system S ′ satisfying D1,1 = 0 = D1,−1 for all
the frequencies, and, in principle, this property can be used to
constrain the intrinsic dipole, as discussed in Sect. 15.
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