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Abstract. The concept of Lagrangian Coherent Structures (LCS) is here applied to investigate
in a new perspective the particles transport in chaotic magnetic con�gurations. A paradigmatic
and simpli�ed magnetic con�guration is revisited before extending the analysis to a more realistic
one. Preliminary results concerning the typical dynamics of the Reversed Field Pinch (RFP)
device are shown.

1. Introduction

The transport of particles along chaotic trajectories is an important issue in thermonuclear
plasmas, since magnetic �eld lines embedded in a plasma con�nement system are often
characterized by a chaotic motion [1, 2, 3, 4, 5, 6]. Even though this circumstance may lead
to a degradation of the con�nement properties, also in a chaotic domain magnetic barriers can
emerge and limit the �eld line motion itself. In this work we still remain within the ansatz of
the motion of magnetic �eld line as a proxy for the particle trajectories along the lines. This has
been a common ansatz in fusion plasmas where collisions e�ects and drifts are neglected (see for
example the famous paper [7]) and it proved to be valid when using test electrons to reconstruct
the magnetic topology of Wendelstein 7-X [8] .
In this frame, the possibility of distinguishing in a chaotic domain sub-regions having di�erent
transport behaviour becomes crucial. Several types of techniques, such as orbit stickiness, �nite
time rotation number, and braiding exponents, have also been used in the literature in order
to partition the regions with di�erent dynamical properties in Hamiltonian systems,see e.g.
[9, 10, 11, 12].

In this work we apply the concept of Lagrangian Coherent Structures (LCSs) borrowed from
the study of dynamical systems [see the review paper in [13]] in order to distinguish in a chaotic
domain sub-regions characterized by di�erent transport features. The LCS concept has been
introduced in Ref. [14] in order to generalize the dynamical structures observed in autonomous
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and periodic systems to temporally aperiodic �ows. In this perspective over the �nite time span
which characterizes the LCS the particles belonging to di�erent regions can not mix with each
other.
In plasmas environment these studies have been carried out, e.g. [15],[16], studying transport
barriers for a �xed dynamical time. Here we review the works [17, 18], where we have applied
the concept of Lagrangian Coherent Structures (LCSs) to a paradigmatic chaotic magnetic �eld
con�guration, generated by a magnetic reconnection event, in order to separate regions where
�eld lines have a di�erent kind of behaviour. In addition we have considered the possibility that
the magnetic �eld evolves in time during the particle transit time. To take into account the
dynamical time dependence we de�ne LCS that depend on the particle velocities. In this way
we are able to test if particles with di�erent energies experience di�erent transport barriers. In
addition to this review, following previous work [16], we apply the adopted de�nition of LCS to
a more realistic situation.

We will consider the numerical simulations of a Reveresed-Field-Pinch con�guration,
characterized by a broad chaotic region and will investigate the presence of transport barriers.
At this stage the analysis will be restricted to the time-periodic case.

2. Lagrangian Coherent Structures as maximal repulsion-attraction material lines

We consider a dynamical system in 2D phase space x = (x, y) with continuous di�erentiable �ow
map

φt
t0(x0) = x(t, t0,x0). (1)

Two neighbouring points x0 and x0 + δx0 evolve into x and x+ δx according to

δx = ∇φt
t0 δx0. (2)

Consider a curve γ0 and at each point x0 ∈ γ0 de�ne the unit tangent and normal vectors e0
and n0. In the interval [t0, t], γ0 evolves into γt, and x0 ∈ γ0 into xt ∈ γt. The tangent vector
e0 evolves, by means of the linearized dynamics, into

et =
∇φt

t0(x0) e0

[e0C
t
t0(x0) e0]1/2

, (3)

and the normal vector n0 into

nt =

(
∇φt0

t

)T
n0

[n0C
−1(x0)n0]1/2

(4)

where T stands for transposed and Ct
t0(x0) ≡

(
∇φt

t0

)T ∇φt
t0 is the Cauchy-Green strain tensor

which describes the deformation into an ellipse of an arbitrarily small circle of initial conditions
(i.c.), centered in x0 and C

−1(x0) = Ct0
t (x0). To simplify the notation the time interval marks

have been suppressed as will be the case in the following formulae. Let ξmax and ξmin be its
two eigenvectors with positive eigenvalues λmax and λmin. The curves with tangent vector along
ξmin and, respectively, ξmax are called strain lines of the Cauchy-Green tensor. The repulsion

ratio ρtt0(x0,n0) is de�ned (see Ref.[19, 20]) as the ratio at which points initially near x0 ∈ γ0
increase their distance from the curve [to, t]:

ρtt0(x0,n0) = nt∇φt
t0(x0)n0 = [n0C

−1(x0)n0]
−1/2 = [ntC(x0)nt]

1/2. (5)

An LCS over a �nite time interval [t0, t0 + T ] is de�ned as a material line along which the
repulsion rate is pointwise maximal. This leads, as shown in Refs. [19, 20], to the following
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de�nitions of Weak Lagrangian Coherent Structures and LCS.
A material line satisfying the following conditions at each point:

a) λmin < λmax, λmax > 1, (6)

b) e0 = ξmin (7)

the tangent vector is along the eigenvector associated with the smallest eigenvalue,

c) ξmax ·∇λmax = 0 (8)

the gradient of the largest eigenvalue is along the curve, is called a repulsive Weak Lagrangian
Coherent Structure (WLCS). A WLCS which satis�es at each point the additional condition

ξmax ·∇2λmax · ξmax < 0 (9)

is called a repulsive Lagrangian coherent structure. Attractive LCS are de�ned as repulsive LCS
of the backward time dynamics. For a Hamiltonian �ow (that is the case considered here) the
�ow map is incompressible (volume-preserving).

3. Slab magnetic �eld con�guration

The magnetic �eld and the choice of time instants which we consider in this section have been
obtained and discussed in Ref.[21], where the two-�uid equations have been solved for the
magnetic �ux and the stream function in slab geometry with periodic boundary conditions in
all three directions. The magnetic equilibrium con�guration is tearing unstable to the adopted
multiple helicity initial condition. In this way a magnetic reconnection process with multiple
island chains has been induced. The magnetic �eld is expressed in terms of the �ux function ψ
as:

B = B0ez +∇ψ(x, y, z, t) × ez,

with ψ(x, y, z, t) = 0.19 cos(x) + ψ̂1(x, t) cos (k1yy + k1zz) + ψ̂2(x, t) cos (k2yy + k2zz) in the
domain [−Lx, Lx] × [−Ly, Ly] × [−Lz, Lz] with Lx = π, Ly = 2π, Lz = 16π with k1y = k2y =

2π/Ly and k1z = 0 while k2z = 2π/Lz. The initial perturbations, ψ̂1(x, 0) and ψ̂2(x, 0), are
localized at the resonant surfaces x1 = 0 and x2 = 0.71 respectively. At each �xed physical
time t the magnetic �ux function ψ(x, y, z, t) plays the role of the Hamiltonian for the magnetic
�eld lines with x and y canonical variables and z the magnetic Hamiltonian time (tH). The
�eld line equations become dx/dz = −∂ψ/∂y and dy/dz = ∂ψ/∂x. The presence of a double
helicity perturbation guarantees the non-integrability of the system and the generation of a
chaotic behaviour of the magnetic �eld lines. In particular, as described in detail in Ref.[21], the
process develops following three phases. A linear one in which two independent island chains are
formed at their resonant surfaces. A quasi-linear phase in which the island chains grow to such an
extension that they start to interact inducing a chaotic behaviour of magnetic �eld lines. Chaos
develops around the separatrix of the magnetic islands �rstly and then it spreads all around as
reconnection evolves in the last non linear phase.

We will consider the normalized physical time (tP ) interval t = 415 − 425 in which chaos,
initially developed only on a local scale (at t = 415), starts to spread on a global scale (at
t = 425).

First we consider the dynamical system obtained by taking a snapshot at a given tP where
the �ux function ψ(x, y, z, t = t̄) is the Hamiltonian and z is the tH . The periodicity in the
z-direction allows us to exploit the Poincaré map technique, which gives a detailed picture of
the chaotic domains, provided one integrates the Hamilton equations starting from a su�ciently
large number of initial conditions and for su�ciently large values of the tH parameter. These
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results will be compared with the LCS approach. The attractive LCS will be found as
mirror images of the repulsive ones with respect to y = 0, due to the symmetry property
ψ(x, y, z, t = t̄) = ψ(x,−y,−z, t = t̄).
Subsequently,the particle motion in a time-varying magnetic �eld will be considered through
a simpli�ed model. In this model particle gyromotion and drifts are neglected and the particle
dynamics is retained only through their (constant) streaming velocity V along the guide �eld B0.
Adopting this point of view we are able to describe the LCSs in a time nonperiodic dynamical
system and to identify LCSs that depend explicitly on the di�erent particle velocities. Thus we
introduce a family of nonautonomous dynamical systems characterized by a di�erent velocity
V , with Hamiltonian ψV(x, y, z) ≡ ψ(x, y, z, t = t0 + (z − zo)/V ). In the following we assume
V > 0. For negative V and for the modi�ed relationship between repulsive and attractive LCSs
see Ref.[17]. The velocity is normalized to the Alfvèn velocity (coherently with the normalization
of the time-scale) based on the characteristic magnitude of the equilibrium magnetic �eld in the
plane perpendicular to the z-direction, By0. The chosen values for the velocity are a compromise
between having a magnetic �eld that does not evolve too fast during the motion of particles and
being able to show the dependence of the LCS on the velocity V and to investigate whether or not
the LCS computed for a given velocity V act as barrier also for particles with di�erent velocities.In
order to make this condition quantitative, we observe that we cannot apply straightforwardly the
standard de�nition based on the ratio between the particle transit time through the con�guration
and the magnetic �eld growth time because in the physical time interval t = 415, 425 the evolution
of the magnetic �eld is super-exponential [21]. However we can provide an estimate by considering
the ratio R between the number of loops that a particle moving with velocities V1,2 makes during
this interval and the factor by which the main (1, 0) mode has grown in the same interval. For
V1 = 1000 we �nd R = 88 while for V2 = 200 we �nd R = 17.6 which show that even the slower
particles make in the interval t = 415, 425 a number of loops that is su�cient to experience the
e�ect of the LCS.

4. Numerical results

To �nd the hyperbolic LCSs we used the MATLAB tool developed by Onu et al. in Ref. [22].
This tool is based on the identi�cation of the LCS as the most repelling curves. These curves
are identi�ed as those passing through a local maximum of the Finite Time Lyapunov Exponet
(FTLE) �eld related to the Cauchy-Green strain tensor �eld, de�ned in the previous section.
Since in chaotic systems, the FTLE �eld exhibits an exceedingly large number of local maxima,
by integrating the above condition for each of them, we would �nd so many structures that no
physical information could be extracted. For this reason we have introduced a criterion to select
the most relevant LCS. The details of the application and optimization of this procedure are
available in Ref.[18].

4.1. tH periodic results

The investigation of transport barriers has been initially done in the tH periodic case. In this
frame we study the transport barrier at �xed physical time. In practical sense, these are transport
barriers for particles having a very short z-transit time along the periodic direction with respect
to the time-scale variation of the magnetic �eld. In the left panel of Fig. 1 we show the agreement
between the Poincaré map and the LCS (attracting in blu and repelling in red). The green arrows
highlight the intersection between the attracting and the repelling LCS. This behaviour is not
surprising, because LCSs generalize what stable and unstable manifolds are for a Hamiltonian
system. We refer to the Ref. [17] for the analogy between the LCS and Hamiltonian structure
of a non-integrable system. This �gure shows only few LCS (the ones we consider the strongest)
but additional LCS can be found relaxing some numerical parameters (see Ref. [18]). In the
right panel of Fig. 1 we check if the LCS we have found act as transport barriers. To this aim
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we put several initial conditions in a very narrow region (denoted by the green arrow) and then
we evolve these initial conditions under the �ow by integrating the magnetic �eld line equations
until they perform 150 z-loops. In principle, to check if an LCS does con�ne the particles, one
should evolve under the �ow map Φ both particles and the LCS itself, checking that at each
time step particles do not cross the LCS. But, due to the nature of the dynamical system we are
considering (chaos not totally developed), the LCS we found mark invariant manifold or regular
surviving tori making the LCS invariant under the �ow map. Of course, when the system loses
its periodicity this argument does not hold anymore.

Figure 1. In the left panel the most important LCS are overplotted on the Poincaré map at
z = 0 and t = 415. The repelling (attractive) structures are drawn in red (blue). In the right
panel it is shown that i.c. located where the green arrow points cannot cross the barrier.

Reproduced from Ref. [18], with the permission of AIP Publishing

4.2. tH non periodic results

In the case of tH non periodic, it is not possible to check the agreement between the LCS and
the Poincaré map. Indeed, even if we follow the magnetic �eld lines and plot them each time
they go through a plane z-costant (puncture plot), the resulting plot would give only information
about the mean value of the radial transport, but it would not allow to extract information about
a partition of the space (thus transport barriers cannot be seen). This is due to the fact that
islands are moving because the perturbation grows in time. Then the resulting puncture plot
would result in a mix of dots without any kind of topological information.

Thus, to check the validity of LCS we need to follow in time (and space) both LCS and
particles. We remember that time and space are related, so the Hamiltonian is ψV(x, y, z) ≡
ψ(x, y, z, t = t0+(z − zo)/V ). where t0 = 415. In Fig. 2 is shown the position at t = 415.1 and
t = 417, in the left and right panel respectively, of two sets of i.c. initially separated by a LCS.
In the �rst part of the dynamics, particles tend to go as far as possible from the repelling LCS.
Of course this motion happens in the perpendicular direction, coherently with the fact that the
particles maximize their distance from the LCS.

In the right panel, it is clear that each set of particles obeys to its own dynamics. The black
i.c. stretched increasing their mixing, while the green i.c. remained compact. This is due do
the fact that the black i.c. have been located over an attracting LCS (let us image this i.c. as a
blob of �uid crossed by an attracting LCS), whereas the green i.c. have been located in a region
without attracting LCS.
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Moreover, since we take into account the time evolution of the �eld by a relation between
the z-position and the velocity, it is clear that now the Hamiltonian depends on the particle
velocity. This relation gives rise to the possibility that particles having di�erent velocities may
see di�erent transport barriers.

In Fig. 3 the attracting LCS computed for particles having V = 1000 are shown in both
panels. In the left (right) panel the positions of several sets of particles, initially located in
di�erent positions of the domain and having V = 1000 (V = 200 ) are overplotted. We observe
that, although the particle positions for V = 200 appear qualitatively similar to those in left
panel, they are shifted towards higher x-values with respect to black particles having V = 1000,
and thus there is no agreement between the LCS, that have been computed for particles having
V = 1000, and the particles position. This can be understood, since the particles having V = 200
see a stronger chaos (with respect to particles with V = 1000) that decreases the area of the
m = 2 island chain.

Figure 2. Position of i.c. separated by a LCS at t = 415.1 (417) on the left (right) panel.
Reproduced from Ref. [18], with the permission of AIP Publishing

Figure 3. In both panels the LCS evaluated for V = 1000 are plotted. In the left (right) panel
the location of evolution of di�erent sets of i.c. evaluated for V = 1000 (V = 200). Reproduced
from Ref. [18], with the permission of AIP Publishing
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5. Reversed Field Pinch numerical simulation

A numerical simulation of the reversed-�eld pinch (RFP) con�guration for the magnetic
con�nement of fusion plasmas has been performed using the spectral code Specyl ( Ref. [23]).
Specyl solves the visco-resistivity MHD equations with the zero pressure and constant density
(ρ = 1 in the momentum equation) approximation. The equations written in dimensionless units
are:

∂tv + v · ∇v = J×B + ν∇2v (10)

∂tB = ∇× (v ×B− ηJ) (11)

∇×B = J (12)

∇ ·B = 0 (13)

Numerical simulations are performed in cylindrical geometry with aspect ratio R0/a = 4, where
a = 1 is the cylinder radius and 2πR0 the periodicity of the cylinder in the axial direction.

The simulation takes into account a nonuniform resistivity, η = η0(1 + 20(r/a)10) with
η0 = 10−6 and an uniform viscosity ν = 10−4. The magnetic boundary conditions are helically
modulated by imposing a Magnetic Perturbation (MP) having a poloidal periodicity m = 1 and
cylindrical periodicity n = 6 (thus, for the chosen parameters of simulation, a non resonant MP),
see further details in Ref. [24].

The RFP dynamics was characterized by a strong activity of several MHD modes, whose
interaction tended to generate a stochastic magnetic �eld. In the late '90 it was discovered the
possibility of cycles of Quasi-Single Helical (QSH) states formation, during which a single MHD
mode was able to grow more intense than the other MHD modes, to give its own helicity to
the core region of the plasma [25, 26], with bene�cial e�ects on the magnetic �eld topology
[25, 27, 28, 29]. In the new states such a topology consists of core-conserved and edge-conserved
magnetic surfaces. The �rst belong to the set colored in green in the bottom panel of Fig. 4. In
this �gure we show the magnetic �eld topology during the dynamical phase, highlighted by the
stripes in the top panel of Fig. 4, of quasi-periodical formation of QSH states. In this case, the
helical winding of the plasma column is the same given to the plasma through the MP.

Here we are interested in evaluating if, in this phase of the simulation, some magnetic transport
barriers exist. Applying the LCS technique, we �nd the barriers shown in black in the left panel
of Fig. 5. Like in the results of the model described in Sec. 3, also for this more realistic
and complex con�guration the LCS technique allows a more re�ned analysis, highlighting some
structures in region where the Poincaré map suggests only a stochastic behaviour. To check
the robusteness of the barriers, we take two sets of initial conditions separated by an LCS and
evolve these two sets under the �ow map. The result is shown in the right panel of Fig. 5, where
four di�erent regions separated by LCS are clearly visible. Indeed, evolving the particles under
the �ow, not only the red i.c. and the blu i.c. stay apart, but a further partition of the space,
underlined by the fact that red i.c. cannot access the region on their left and blue i.c. cannot
access the region on their right, emerges. Thus we conclude that this structures act as transport
barriers for a �nite time. Such a time during which magnetic �eld lines are con�ned by a LCS, t̂,
is longer than the other relevant time scales in MHD and in experiment. In fact, a test particle in
RFX-mod (R0 = 2m) with a typical temperature of T ∼ 700 eV and with the mass of an electron
would cover the length L = 100Lz ∼ 1.2 103m in a time scale t̂ = L/vth = L/

√
(2T/me) that

is longer than the typical dynamical scales (t̂/τA ∼ 103) and longer than the typical collisional
time between electrons and ions (t̂/τei ∼ 10).

6. Conclusions and remarks

In this paper we have used the conceptual framework of the Lagrangian Coherent Structures
to analyze two magnetic con�gurations characterized by a chaotic behavior of the �eld lines,
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Figure 4. (Top) Dynamical behaviour of QSH MHD cycle in a RFP device. (Bottom) Poincaré
map during the dynamical phase highlighted by the stripes in the top panel. Among the green
dots, marking the magnetic �eld lines whose maximal radial position during their whole evolution
is below r̂ = 0.25a, it is possible to recognize the core conserved region.

Figure 5. LCS and two set of initial condition (left pannel) and LCS with evolution of initial
condition up to 100 z-loop (right pannel).

intended as a �rst approximation of the particle motion (particles moving along the �eld lines).
The �rst con�guration analyzed was derived by a numerical experiment of magnetic reconnection
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and was meant to provide a study-case useful to illustrate the adopted technique. We have
�rstly revisited the case of a �xed dynamical time, corresponding to a particle motion with
in�nite velocity along the magnetic �eld lines. Secondly, we have introduced in an simpli�ed way
the dependence from the dynamical time of the process, showing that particles with di�erent
velocities experience di�erent barriers. The second con�guration analyzed was derived by
numerical simulations of the RFP con�guration reproducing the transition to the QSH state,
and was meant to illustrate the use of the LCS in a more realistic con�guration. In this case the
LCS technique allowed to identify magnetic barriers in the chaotic area that were not detected by
the inspection of the Poincaré maps only. In both analyses the LCS technique gives a complete
partition of the space, showing that there are regions in which particles are embedded and in
which mixing processes can develop on di�erent time-scales. It has been also proved that these
structures split a region in sub regions among which the transport is not allowed. We remark
that the approach adopted above is limited to a test particle analysis which is not constrained
to be consistent with the magnetic �eld via Ampere's Law. Finally we recall that the goal of
this paper is to give a description of how to partition the chaotic domain of a 3D magnetic �eld.
The same technique can be used, knowing the full Hamiltonian of a particle, to study the chaotic
motion of particles that, as shown in [30], can appear also for magnetic con�gurations having a
well preserved �ux surfaces.
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