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ABSTRACT

A well-designed deployment of well-maintained surface instruments as well as abundant rainfall provided

an excellent dataset with which to evaluate the Micro Rain Radar (MRR) performance for estimating

raindrop size distribution (DSD) and its integral rainfall parameters with respect to the consolidated devices

during the Iowa Flood Studies (IFloodS) field campaign. The MRR was collocated with two-dimensional

video disdrometer (2DVD) andAutonomous Parsivel2 Unit (APU) at three different sites located at 5–70-km

distances from the National Aeronautics and SpaceAdministration’s S-band dual-polarizationDoppler radar

(NPOL). A comparative study between MRR, 2DVD, APU, and NPOL was conducted including all rainy

minutes as well as minutes of stratiform rain and convective rain. Considering 2DVDas a primary reference, a

good agreement was evident for reflectivity between MRR’s lowest reliable height and 2DVD with an ab-

solute bias of less than 2 dB even in convective rain except for one site. For rainfall rate, the percent absolute

bias between MRR and 2DVD ranged between 25% and 35% in stratiform rain and about 10% higher in

convective rain. Agreement for mean mass-weighted raindrop diameter was good (bias less than 0.1mm),

whereas MRR overestimated the normalized intercept parameter of the gamma DSD [mean bias among the

three sites was 20.13 log(mm21 m23)]. The agreement between MRR and APU was slightly worse than the

one between MRR and 2DVD. When the horizontal and differential reflectivities of NPOL were compared

with the ones derived from the MRR DSD resampled within the radar volume, we found an absolute bias of

approximately 3 and 0.4 dB, respectively.

1. Introduction

Knowledge of the vertical structure of precipitation is

essential for the quantitative precipitation estimation

(QPE) from spaceborne and ground-based weather

radar. For spaceborne radars such as the National

Aeronautics and Space Administration (NASA) Global

Precipitation Measurement (GPM) mission Dual-

Frequency Precipitation Radar, the vertical profile of

precipitation is retrieved down to the lowest unclut-

tered bin, which ranges from 250m at nadir to ap-

proximately 3 km at the edges (Kubota et al. 2014) and

can be affected by terrain complexity. Ground-based

weather radar estimates precipitation in a resolution

volume located at an altitude that is dependent on the

radar beam elevation angle, the beamwidth, and the

distance from the radar. In that regard, the radar cov-

erage is very limited below 1 km above ground, even

in relatively flat regions. Maddox et al. (2002, their

Fig. 5b) show the limited radar coverage for the con-

tiguous United States at 1 km AGL. The variation in

vertical profile of reflectivity (VPR) is well recognized

as a source of uncertainty in radar QPE (Zhang et al.

2016). The problem is more severe in orographically

complex regions where blockage forces the use of

sweeps at higher elevation angles.

The observational evidence for the variability in VPR

near the ground is best suited to either a range–height

indicator mode of scanning radars (Schuur et al. 2012) or

vertically pointing radars (Williams 2002; Giangrande

et al. 2012). These observations are available during

field campaigns or at long-term ground observation sitesCorresponding author: Luca Baldini, l.baldini@isac.cnr.it
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equipped with research weather radars such as those

funded through theDepartment of EnergyAtmospheric

Radiation Measurement program and the NASA GPM

GroundValidation program in theUnited States. Among

the vertically pointing radars, Micro Rain Radar (MRR)

has been widely used for precipitation studies because it

comes with built-in raindrop size distribution (DSD)

retrieval software (Peters et al. 2005). Its low cost, low

maintenance and commercial availability make it quite

attractive for research organizations around the globe. It

has been used to determine the diurnal features of pre-

cipitation in Ecuador (Bendix et al. 2006); compare

brightband features between coastal and mountain sites

in South Korea (Cha et al. 2009); determine the vertical

variability of the relationship between reflectivity and

rain rate (Tokay et al. 2009); characterize seasonal and

orographic precipitation features in the United States

(Prat and Barros 2010); investigate the vertical profile

of rain in India (Das et al. 2010; Kirankumar and

Kunhikrishnan 2013), Spain (Fraile et al. 2015), and East

China (Wen et al. 2016); investigate the impact of pre-

cipitation variability within a measurement volume on

the performance of dual-polarization rain algorithms in

Italy (Gorgucci and Baldini 2015); and calibrate opera-

tional weather radar in Germany (Frech et al. 2017). A

number of these studies include either rain gauge or a

disdrometer and comparisons between the lowest reli-

able MRR gate and surface instrument have been done

for reflectivity, rain rate and rain accumulation. As

noted by Frech et al. (2017), MRR data fill the gap be-

tween the measurements at the ground and aloft by a

scanning radar. In that regard, MRR has a potential to

be used by operational agencies. A network of MRRs at

selected sites can enhance the capability of precipitation

mapping of nationwide weather radar networks.

Micro Rain Radar, manufactured byMeteorologische

Messtechnik GmbH (Metek), is a K-band, low-power

frequency-modulated continuous-wave profiler. It mea-

sures Doppler spectra from which vertical profiles of

DSD are retrieved from near the ground to 1–6 km,

depending on the range resolution. Currently, two ver-

sions of MRR are commercially available: MRR-2,

which has 32 gates, and the newer MRR-PRO, which

has up to 254 range gates with a minimum height reso-

lution of 10m. The minimum averaging intervals have

also been improved from 10 to 1 s in MRR-PRO.

The accuracy of the MRR retrievals is influenced by a

number of factors, including Mie scattering, microwave

attenuation, variation in fall velocity and shape of

raindrops, vertical wind, and turbulence (Chen et al.

2015). TheMRRmanufacturer’s algorithm is developed

for liquid precipitation, and the output is given as ‘‘raw,’’

‘‘processed,’’ and ‘‘averaged’’ data, depending on the

level of processing applied. Although some of the fac-

tors listed above are addressed in both processed and

averaged data, MRR is considered to be less reliable in

heavy convective rain because of the presence of a larger

number of large drops and vertical wind. Tridon et al.

(2011) recognized the velocity folding (aliasing) inMRR

Doppler spectra due to strong vertical wind and offered

automatic detection and correction, which led to better

DSD retrieval. Adirosi et al. (2016) presented an alter-

native methodology for improved MRR-based DSD

retrieval in the presence of vertical wind, which is

adopted in this study. MRR is also considered less reli-

able in snow due to the higher sensitivity of snowflakes

to turbulence, high dependency of the size–fall velocity

relationship to the flake habit and differences in back-

scattering cross section of the frozen particles to Mie

scattering (Kneifel et al. 2011). Maahn and Kollias

(2012) improved MRR snow measurements through

postprocessingDoppler spectra and verified their results

through comparing reflectivity, Doppler velocity and

spectrum width with a collocated 35.2GHz vertically

pointing cloud radar.

MRR has been an integral component of the ground

instrumentation deployed during the GPM Ground

Validation (GV) field campaigns and is included in the

System for Integrating Multiplatform Data to Build the

Atmospheric Column (SIMBA) precipitation observa-

tion fusion framework (Wingo et al. 2018). Among the

GPM GV field campaigns, the Iowa Flooding Studies

(IFloodS) provided a unique dataset for a comparative

study including MRR-2. IFloodS was the first integrated

hydrologic GPMGV field campaign designed for better

understanding of the strengths and limitations of satel-

lite products for hydrological applications (Petersen and

Krajewski 2013). Favorable natural conditions led to

abundant rainfall, and even local flooding, during the

field campaign. A special collection of papers published

in the Journal of Hydrometeorology is evidence of the

richness of the IFloodS dataset. Among them, Seo et al.

(2018) compared various radar rainfall estimates with

gauges and Chen et al. (2017) focused on improving dual-

polarization radar rainfall algorithms usingNASA’s S-band

dual-polarization radar (NPOL) and an Autonomous

Parsivel2 Units (APU) network with respect to different

characteristics of the events observed during the cam-

paign. Thurai et al. (2017) developed a weighted algo-

rithm for X-band dual-polarization rainfall estimation

using the two-dimensional video disdrometer (2DVD)

network, Iowa X-band dual-polarization radar, and the

rain gauge network.

In this study, a comprehensive evaluation of MRR

performance was carried out by comparing DSD and

integral rainfall parameters obtained from MRR raw
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data with the corresponding ones calculated from 2DVD

and APU observations and the ones derived from NPOL

measurements. The comparison with disdrometers was

made both at ground level—that is, at the lowest reliable

MRR gate—and along the vertical, comparing the dis-

drometer data at groundwithMRR retrievals at different

heights to investigate the effect of vertical gradients of

precipitation on MRR–disdrometer comparison. The

comparison with NPOL was made along the vertical

considering coincident bins and measurements during

both stratiform and convective rain conditions. To im-

prove the reliability of MRR retrievals in convective

rain, the postprocessing of Adirosi et al. (2016) was

applied to raw MRR spectra and the results were com-

pared to standard MRR products.

The paper is organized as follows. Section 2 describes

the experimental datasets used in this study. Section 3

reports the equations used to compute the DSD and

rainfall parameters from disdrometer and MRR raw

data. Section 4 gives the equations considered to eval-

uate the performance of MRR. The DSD and integral

products derived fromMRR-measured Doppler spectra

are validated through comparative study with collo-

cated disdrometers (in section 5) and coincident NPOL

measurements (in section 6). Conclusions are given in

section 7.

2. Experimental dataset

a. Experimental setup

IFloodS took place in eastern Iowa in April–June

2013. NPOL was located close to Waterloo, Iowa

(42.2688N, 92.5098W; Wolff et al. 2015a), and six

clusters of disdrometers and rain gauges were de-

ployed approximately along an NPOL azimuth at sites

from 5 to 106 km away. In each site, 2DVD (Petersen

et al. 2014a) and APU (Petersen et al. 2014b) dis-

drometers were collocated (interdistance less than

10m). Three of these sites had two–four APUs nearby

(within 10 km), and one site had one additional APU

collocated. The APUs recorded from 396 to 539mm of

rainfall in 72 days, evidence of abundant rainfall dur-

ing IFloodS. Four of the six sites included also an

MRR-2 (Petersen et al. 2015) operated at the vertical

resolution of 35m. One MRR did not operate prop-

erly. Therefore, this study uses the data from three

MRR-2 sites, which were 5, 24, and 69 km from NPOL

(Fig. 1 and Table 1). For such sites, collocated were

only one 2DVD and one APU. This experimental

setup, along with the abundant rainfall recorded, cre-

ated an ideal dataset for a comparative study to eval-

uate the performance of MRR.

NPOL is a transportable research-grade S-band sys-

tem; it operated nearly continuously during the IFloodS

field campaign. The scanning strategy adopted during

IFloodS consisted of plan position indicator (PPI) and

range–height indicator (RHI) scans. Two PPI scans

provided 3608 coverage at 0.678 and 1.398. Sector PPI

and RHI scans aimed to sample particular precipitation

structures in depth, while PPI scans at 908 elevation were
performed during several events for differential reflec-

tivity Zdr calibration monitoring, depending on the

occurrence and location of precipitation echoes. The

entire scan cycles that always included the low-elevation

PPIs were completed in 1–3min whenever precipitation

was within range of the radar (Wolff et al. 2015b).

The GPMGV office conducted quality control, which

may reduce the sample size, especially at short distances

due to clutter effects (Pippitt et al. 2015) and was re-

sponsible of NPOL calibration. Both engineering and

solar calibration were performed for calibration. PPIs at

vertical incidences have been used for verification ofZdr

calibration that indicated a Zdr bias near 0.0 dB for the

entire field campaign. For monitoring Zh calibration,

they applied the self-consistency principle and made

comparisons between NPOL and 2DVD. The results

of the two techniques were in agreement (D. Marks

2019, personal communication). The relative calibra-

tion adjustment (RCA) technique was applied during

the field campaign to monitor the relative stability

of NPOL calibration (Wolff et al. 2015b). This study uses

FIG. 1. Instrument locationmap.At the three sites highlighted by

colored squares, data collected by collocated MRR, 2DVD, and

APU are available. The black dot indicates the location of the

NASA NPOL.
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PPI data collected at the two lowest elevation angles

(0.678 and 1.398) that include correction for calibration

biases. For the IFloodS campaign, the pulse duration of

NPOL was 0.8ms and the pulse repetition frequency

was set at 1100Hz. Data were provided every 18 that

correspond to using 72 pulses per sample and with a

range resolution of 150m.

The 2DVD is an optical device using two orthogonal

light sheets projected onto an array of 512 discrete

photodetectors inside two line-scan cameras to mea-

sure, for each single hydrometeor that falls through

the device measuring area of nominally 10 3 10 cm2,

the equivolume drop diameter D, oblateness, and fall

velocity (Schönhuber et al. 2007). Its third generation

consists of an outdoor measurement unit and an in-

door analysis computer. The manufacturer reports

that the accuracy of size and vertical velocity is better

than 0.17mm and 4%, respectively, for particles fall-

ing at less than 10m s21. The underestimation of small

drops less than 0.5mm in diameter is perhaps the main

shortcoming of the 2DVD in rain (Thurai and Bringi

2018). This could have a pronounced effect on the

accuracy of the intercept parameter of fitted distri-

bution and low moments of size spectrum (Thurai

et al. 2017).

The OTT Parsivel2 (APU) is a laser-based optical

disdrometer. It has an optical sensor that produces a

horizontal sheet of light (30mm wide, 1mm high, and

180mm long) that is focused on a single photodiode. A

hydrometeor that passes through the light sheet re-

duces the signal amplitude at the photodiode for a

certain time, allowing the measurement of the di-

mension and the fall velocity of the particle. The raw

output provided by the manufacturer’s software is the

number of drops in 32 size and 32 fall velocity cate-

gories with variable widths. The underestimation of

fall velocity for drops larger than 1mm and the un-

derestimation of small drops less than 0.7mm in di-

ameter are the main shortcomings of Parsivel2 in rain

(Tokay et al. 2014). The fall velocity is required to

compute the DSD.

b. Data processing

TheGPMGVprogramprocessed theNPOLdata,which

include radar measurements such as radar reflectivity

factor at horizontal polarization Zh, differential re-

flectivity Zdr, and the copolar correlation coefficient rhv
used in this paper along with radar rain rates com-

puted using three different algorithms, several other

radar specific parameters, and derived size distribu-

tion parameters (Pippitt et al. 2015). In this study,

nonmeteorological echoes were filtered out by in-

cluding only the radar bins with rhv greater than 0.9

and adopting a clutter filter based on the standard

deviation of Zdr (Lombardo et al. 2006) computed

over a 3 3 3 pixel box. Boxes with a value outside the

0.09–0.9 dB interval are filtered out.

Considering the disdrometer datasets, a filter criterion

(Tokay et al. 2001) was adopted to remove spurious

secondary drops and nonmeteorological particles that

were collected by APU or 2DVD. The criterion filters

out any drops with a measured fall velocity outside the

range 650% of the fall velocity of Atlas et al. (1973)

that, in this study, was used also to compute DSD and

related parameters. To construct DSD, raw drop-by-

drop outputs of 2DVD were stratified in 50 bins with a

constant width of 0.2mm. The bin widths increased with

size from 0.1 to 1.0mm for APU (Tokay et al. 2013).

Both 2DVD and APU observations were integrated to

1-min resolution.

The MRR estimates DSD from Doppler spectra.

After subtracting the noise level, using calibration

constant and range-weighting function, the measured

spectral power was converted first to spectral reflec-

tivity density (volume reflectivity: m2m23 per unit of

velocity) for each Doppler spectral bin. Under the as-

sumption of negligible vertical wind and assuming the

relationship between raindrop diameter and terminal

fall velocity of Atlas et al. (1973), the spectral re-

flectivity density with respect to the drop diameter can

be obtained and then converted into drop size spectra

by dividing by the single particle backscattering cross

section of a raindrop (Peters et al. 2005). It should be

reiterated that MRR is subject to attenuation and the

manufacturer algorithm applies a correction for the

attenuation in the processed and averaged data (Peters

et al. 2010). The assumption of absence of vertical wind

in the DSD retrieval algorithm is not always reliable.

Vertical winds can shift MRR Doppler spectra toward

lower or higher velocities (which will result in shifting the

TABLE 1. Site locations.

Lat (8) Lon (8)
Height

(m ASL)

Distance from

NPOL (km)

NPOL first

elev height (m AGL)

NPOL second

elev height (m AGL)

Site 1 42.239 292.464 283 4.98 71 132

Site 2 42.126 292.282 284 24.5 340 639

Site 3 41.861 291.874 258 69.2 1125 1969
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estimatedDSD toward small and large drops, respectively)

and, in some cases, can be affected by aliasing. Adirosi

et al. (2016), taking advantage of collocated measure-

ments of 2DVD and MRR, suggested a new processing

of the MRR raw spectra to improve the reliability of

MRR retrievals in the presence of vertical wind. The

two major changes in the MRR processing chain are

the dealiasing and shifting of the MRR spectra. The

dealiasing procedure is applied to each MRR spectrum

and is similar to the one proposed by Maahn and

Kollias (2012). It consists of considering three adjacent

spectra and identifying the peak, lower and upper

limits of the triplicated spectrum. The second step

consists of shifting each 1-min MRR spectrum by a

quantity that is equal to the difference between the

characteristic fall velocity computed from the MRR at

105m above ground level (AGL) and the one obtained

from the collocated 2DVD. The present study adopts

such postprocessing. Figure 2 shows an example of the

application of the unfolding process. Furthermore,

before applying the MRR postprocessing, the transfer

function used to obtain the spectral reflectivity from

the raw spectral power has been calibrated considering

the spectral reflectivity reported in the processed

MRR data. Hereinafter, the DSD and the corre-

sponding variables obtained after the application of

this postprocessing are labeled as ‘‘REP’’ and the

MRR-averaged data provided by Metek are labeled

as ‘‘AVE.’’

For the DSD datasets obtained from APU, 2DVD

and MRR, the 1-min samples with rain rate R outside

0.1 , R , 300mmh21 and radar reflectivity factor Z

outside 220 , Z , 55dBZ were discarded. The snow

days and the MRR profiles with brightband signature

were excluded from the dataset. A cross comparison

between 2DVD and APU led to eliminating 2 days at

two sites.

3. Integral rainfall parameters

The DSD is the base for a number of hydrological and

meteorological integral variables including rain rate,

radar reflectivity factor, mean mass-weighted raindrop

diameter Dmass, and intercept parameter of the gamma

distribution normalized with respect to the liquid water

content Nw that can be expressed as

R5 0:6 1024p

ðDmax

Dmin

N(D)D3y(D) dD (mmh21) , (1)

Z5

ðDmax

Dmin

N(D)D6 dD (mm6 m23) , (2)

FIG. 2. Example of the unfolding process applied to the MRR spectra: (bottom) an example

of samples affected by aliasing and (top) the same samples after the correction. The data shown

were collected on 0748 UTC 30 Apr 2013 at site 1.
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D
mass

5

ðDmax

Dmin

N(D)D4 dD

ðDmax

Dmin

N(D)D3 dD

(mm), and (3)

N
w
5

256

pr
w

103LWC

D4
mass

(m23 mm21) , (4)

where N(D) is the DSD; D is the equivolume drop di-

ameter; y(D) is the drop terminal velocity; Dmin and

Dmax are the minimum and maximum drop diameters,

respectively; rw is the density of water (g cm23); and

LWC is the liquid water content:

LWC5
p1023

6
r
w

ðDmax

Dmin

N(D)D3 dD (gm23) . (5)

Figure 3 shows the cumulative distributions of the

integral variables defined above and estimated from the

2DVD, APU and MRR measurements at three sites

during IFloodS, and Table 2 reports their mean and

maximum values resulting from the great variety of

precipitation events observed during IFloodS [see Chen

et al. (2017) andWolff et al. (2015b) for ameteorological

description of single events]. For comparison, the coin-

cident rainy minutes of 2DVD and APU and the first

reliable range gate of MRR at 105m above the ground

were considered. Please note that the cumulative dis-

tributions of the DSD and rain parameters of REP

MRR and AVE MRR were nearly identical due to

the minimal contribution of convective profiles in the

dataset, and therefore, only REP MRRs are shown. In

fact, applying the Thurai et al. (2010) algorithm for

convective/stratiform rain classification to the AVE

DSDs at 105mAGL results in just 6%, 4%, and 4.2% of

convective rain minutes for sites 1, 2, and 3, respectively.

Furthermore, aliasing affects a small number of spectra

(less than 5%) and its extension is quite limited. The

condition shown in Fig. 2 is rare, and usually the aliasing

affects only a few spectral bins. Consequently, consid-

ering the whole IFloodS dataset, theAdirosi et al. (2016)

postprocessing has a minor impact on the results since it

is expected to be more effective for convective profiles.

The cumulative distributions of the four variables

computed with Eqs. (1)–(4) show a very good agreement

at all sites between APU and 2DVD (Fig. 3). Table 2

reports mean and maximum values of the different

variable considered in this study. The mean values of R

and Z are lower in 2DVD for the first two sites while the

largest differences in mean values were observed at site

3 where the APU R and Z are lower of 18% and 1.2 dB,

respectively. The mean values of Dmass and log10Nw are

also lower in 2DVD for the first two sites and the

maximum difference between 2DVD and APU for the

means of Dmass and log10Nw are 0.3 and 0.05mm, re-

spectively. Note that Nw ranges over nearly four orders

of magnitude and is expressed by taking the common

logarithm of Nw (mm21m23). The cumulative distribu-

tion of variables has a different degree of agreement be-

tween MRR and disdrometers. The distribution of MRR

Z has very good agreement with the distributions from

2DVD and APU at sites 1 and 3, but Z is shifted toward

lower values forMRR, resulting in a difference of 1.7 dB in

mean for site 2. The maximum Z values are drastically

lower in MRR than in disdrometers. At site 2, the differ-

ence in maximum Z is nearly 9dB. This is related to the

difficulty in determining large drop sizes from Doppler

spectra for the MRR. The large drops have a pronounced

effect onZ, especially in heavy rain. ThemeanRofMRR is

lower than that of 2DVDfor all sites, but the differences are

significantly high (35%) at site 2 and low (4%) at site 1. The

meanDmass of MRR is lower at all three sites, but the dif-

ferences are always less than 0.1mm, showing good agree-

ment. Good agreement is shown also for the other DSD

parameter, with at most the mean log10Nw of REP MRR,

0.25 higher than that of 2DVD at site 1.

The level of agreement betweenMRRanddisdrometers

in terms of distribution of variables is linked to the sensi-

tivity of variables to a particularDSD regime. For instance,

Nw is sensitive to the number of small drops, and the larger

values of Nw of MRR are therefore linked to the over-

estimation of small drops with respect to the disdrometers.

Given the small differences between Z, R, Dmass and Nw

estimated from the AVE MRR and the REP MRR da-

tasets, in the following sections of this paper we consider

only the REP data. If not explicitly written, MRR data

means ‘‘REP MRR data.’’ However, each time that the

two datasets present distinct behaviors we will report and

discuss it.

4. Statistics for the evaluation of instrument
performances

Four different rainfall statistics were employed to

compare the integral variables listed above. Bias and

absolute bias (abs bias) are the most meaningful statis-

tics for Z, Dmass, and log10Nw, and the difference in R is

often referred to as a percentage. Percent bias and

percent absolute bias are therefore the leading statistics

for R. The rainfall statistics are computed as follows:

bias5
�X

i
2Y

N
, (6)

abs bias5
�jX

i
2Y

i
j

N
, (7)
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percent bias5
�X

i
2Y

i

�X
i

, and (8)

percent abs bias5
�jX

i
2Y

i
j

�X
i

. (9)

In Eqs. (6)–(9), X is the reference and Y is the esti-

mator. Since this study compares MRR with APU,

2DVD, and NPOL, MRR is always the estimator.

Negative values of bias or percent bias indicate an

overestimation of MRR with respect to the reference

instrument. The bias alone cannot express the level of

agreement. The absolute bias is also referred to as ab-

solute error when one of the instruments is taken as a

reference, and is therefore the key statistic for judging

the agreement. A similar argument is true for the per-

cent statistics. The correlation coefficient is used to de-

termine to what extent two variables can be considered

FIG. 3. CDFs of (a)–(c) Z, (d)–(f) R, (g)–(i)Dmass, and (j)–(l) log10Nw for the three sites. Distributions of these variables are obtained from

DSDs estimated from measurements collected by 2DVDs (magenta lines), APUs (green lines), and MRRs at 105-m height (brown lines).
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as linearly related. However, it cannot evaluate the level

of agreement between the variables. Rather, the cou-

pled high correlation and low bias indicate a high level of

agreement.

5. MRR–disdrometer comparisons

In this section, the performance of MRR is evaluated

with respect to the two available disdrometer types.

Only the coincident minutes collected by MRR, 2DVD,

and APU were considered. This allowed us to correctly

evaluate the comparisons of MRR with 2DVD and

APU since otherwise results can be affected by the dif-

ferent samples considered.

a. DSD comparisons

Figures 4a, 4d, and 4g show 1-h stratiform DSDs col-

lected at the three sites. The agreement among 2DVD,

APUandMRR in terms ofmidsize drops (1,D, 3mm)

is very good. For the small drop (D, 1mm) regime, the

MRR DSD increases with decreasing drop size. In

contrast, the 2DVD and APU DSD decreases with de-

creasing drop size, showing downward concavity. It is

historically difficult to determine the drop concentration

accurately for the small drop regime. Thurai and Bringi

(2018) showed a good agreement in DSD between the

2DVD and Meteorological Particle Spectrometer (MPS)

at sizes between 1 and 2mm in diameter. The MPS,

sensitive to the drops down to 50mm, showed concave

upward shape in DSD. For the large drop (D. 3mm)

regime, the MRR has an intrinsic upper limit of

5.03mm, whereas the 2DVD and APU can detect drops

up to 10mm. For stratiform rain, the DSD agreement is

good between the three sensors except at site 2, where

APU counted more drops at sizes of 3–4mm in diame-

ter (Fig. 4d).

Figure 4 highlights also the DSD differences in terms

of rain rate (Fig. 4b,e,h,k),and reflectivity (Fig. 4c,f,i,l)

obtained from the 1-h DSDs for each size bin. For rain

rate, the peak of the distribution is located between

0.8 and 2mm; therefore, these drop diameters have

the highest contributionduring stratiform rain (Figs. 4b,e,h).

The size range of highest contribution expands to

approximately 3.6mm in convective rain (Fig. 4k).

For reflectivity, the peak contribution was from the

drops between 0.8 and 3mm in diameter in stratiform

rain (Figs. 4c,f,i). For convective rain, the peak con-

tribution to reflectivity shifted toward larger drops

ranging from 1.2mm to the maximum drop diameter

in DSD (Fig. 4l).

The mass-weighted drop diameter is a result of drop

concentration at small, midsize, and large drop size

regimes [see Eq. (3)]. The presence of a large number

of small drops in MRR DSD (see, e.g., Figs. 4a,d, and

g) shifts Dmass toward a smaller value, while the

presence of large drops in convective 2DVD DSD

(see, e.g., Fig. 4j) shifts Dmass toward a larger value.

The intercept parameter of the normalized gamma

function, on the other hand, is sensitive to the drop

concentration, which is driven by the number of small

drops. Therefore, NW is expected to be larger in MRR

DSDs. It should be noted that the concave upward

shape of DSD was not always observed in MRR DSD

(not shown). In these cases, MRR-derived NW should

have a smaller value and Dmass should shift toward a

larger value.

TABLE 2. Mean and maximum values of Z, R, Dmass, and log10Nw obtained at the three different sites from the DSD estimated from

data collected by 2DVD, APU, and MRR at 105m considering both the REP and the AVE data.

Site 1 Site 2 Site 3

Mean Max Mean Max Mean Max

Z 2DVD (dBZ) 24.46 54.25 27.05 54.20 25.99 49.82

Z APU (dBZ) 25.04 54.81 27.70 54.60 24.78 50.76

Z REP MRR at 105m (dBZ) 25.30 48.59 25.50 46.76 25.58 48.44

Z AVE MRR at 105m (dBZ) 25.15 48.22 25.33 45.67 25.37 47.69

R 2DVD (mmh21) 2.99 161.42 2.69 139.54 2.44 66.16

R APU (mmh21) 3.06 148.74 2.93 112.02 2.00 63.60

R REP MRR at 105m (mmh21) 3.17 242.01 1.85 44.04 2.13 43.21

R AVE MRR at 105m (mmh21) 2.87 251.07 1.74 48.34 1.98 38.78

Dmass 2DVD (mm) 1.29 3.91 1.42 4.09 1.44 3.33

Dmass APU (mm) 1.30 4.33 1.45 5.90 1.42 3.78

Dmass REP MRR at 105m (mm) 1.25 3.61 1.38 3.64 1.38 3.48

Dmass AVE MRR at 105m (mm) 1.23 3.84 1.37 3.98 1.37 3.29

Log10Nw 2DVD 3.41 5.49 3.29 5.37 3.18 5.09

Log10Nw APU 3.46 5.25 3.33 5.23 3.13 5.07

Log10Nw REP MRR at 105m 3.66 8.80 3.27 6.07 3.32 6.28

Log10Nw AVE MRR at 105m 3.61 6.85 3.26 6.46 3.30 5.71

628 JOURNAL OF ATMOSPHER IC AND OCEAN IC TECHNOLOGY VOLUME 37

Unauthenticated | Downloaded 07/30/24 09:43 AM UTC



b. MRR–2DVD comparison

Figure 5 depicts the two-dimensional histograms of

the two integral rainfall (Z and R) and two DSD (Dmass

and log10Nw) variables derived from 2DVD and REP

MRR data at 105m AGL for all of the coincident rainy

minutes. Note that, considering amean drop fall velocity

of 5m s21, the precipitation sampled at 105m AGL

takes 21 s to reach the ground. Since we are considering

1-min samples, no delay correction was applied. A good

agreement between 2DVD and MRR is evident for all

four variables for all sites, with an exception of an MRR

FIG. 4. Examples of the 1-h stratiformDSDs (the time in the plot title indicates the beginning of the hour considered) collected byAPU,

2DVD, andREPMRRat 105mAGLat sites (a) 1, (d) 2, and (g) 3, alongwith (j) an example of the 1-hDSDwith a relatively high number

of convective minutes collected by APU, 2DVD, and REP MRR at 105m AGL at site 1 on 20 May 2013; the corresponding values of

(b),(e),(h),(k) rain rate and (c),(f),(i),(l) Z for each size bin obtained from the DSDs shown in the respective left panels. Vertical dashed

lines represent the 1- and 3-mm drop diameters.
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underestimation of Z and R for site 2. The latter can be

due to instrumental issues. The dispersion of the data

along the 1:1 line is a qualitative measure of agreement

between the two variables. Ideally, one seeks a mini-

mumdispersion equally distributed on both sides of such

line, with the peak concentration of the data along the

line. Indeed, the dispersion was minimal for Z for all

three sites, but peak concentration slightly leaned toward

the 2DVD measurements at site 2, raising a question

of a possible calibration error in MRR (Figs. 5a–c). The

dispersion is large for R for all three sites, but

the peak concentration leans toward the 2DVD for

sites 2 and 3 only (Figs. 5d–f). For the DSD param-

eters, the dispersion was relatively larger for log10Nw

in contrast toDmass, which has its peak concentration

along the 1:1 line (Figs. 5g–i). The peak concentra-

tion leans toward MRR for log10Nw for sites 1 and 3

(Figs. 5j–l).

FIG. 5. The 2D histogram between (a)–(c)Z, (d)–(f)R, (g)–(i)Dmass, and (j)–(l) log10Nw obtained from 1-minDSD collected by collocated

2DVD (x axis) and MRR (y axis) at the three selected sites. Variables obtained from REP MRR DSD are shown.
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Table 3 shows the bias and absolute bias for Z, R,

Dmass, and log10Nw. The analysis was conducted for 1) all

coincident rainy minutes, 2) stratiform rain and 3) con-

vective rain. The coincident samples of stratiform rain

were distinguished from those of convective rain ap-

plying the Thurai et al. (2010) algorithm to the 2DVD

data. Although the algorithm classifies the rainy samples

as convective, stratiform and transition, this study con-

siders only the first two categories. The sumof the number

of convective and stratiform minutes therefore differs

from the total number of samples reported in Table 3. The

samples of convective rain are 5.5% or less of the samples

of stratiform rain, and the statistics in Table 3 for all and

for stratiform rain are therefore very close each other.

Recall that the MRR-derived integral rain and DSD pa-

rameters are based on Doppler velocity spectra assuming

zero vertical air velocity. Vertical air motion in stratiform

rain is much less than that in convective rain; therefore,

the samples of stratiform rain should be considered as the

optimum dataset for evaluating the MRR performance.

The statistics in Table 3 reflect that Dmass is well re-

trieved from MRR with low absolute biases and high

correlation coefficients. The bias is 0.07mm or less and

the absolute bias is 0.14mm or less in stratiform rain.

Low bias and absolute bias are obtained also for Z ex-

cept for site 2, where bias exceeds 1.0 dB and absolute

bias is ;2 dB in stratiform rain. This result is consistent

with Tokay et al. (2009), who compared MRR-derived

(at 175m above the ground level) and impact-type Joss–

Waldvogel disdrometer-calculated Z and found a bias

within 2 dB for the majority of the events. Frech et al.

(2017) more recently compared MRR-based reflec-

tivity at 650m AGL with the reflectivity obtained at

ground level by a Thies disdrometer, obtaining a bias for

15 , Z , 35 dB between 0.1 and 0.3 dB and a mean

absolute deviation (MAD) between 2.2 and 2.9 dB.

The agreement between MRR-derived and 2DVD-

calculated R is relatively low, with absolute bias ranging

from 24% to 34% in stratiform rain. The bias itself was

large, 29.4% at site 2 and 221.6% at site 1. The nega-

tive bias indicates an overestimation by MRR, which is

not the case in convective rain at the same site. The very

few samples of convective rain have a significant role

in R, lowering the correlations and differentiating the

overall statistics from the statistics in stratiform rain.Nw is

sensitive to the number of drops, which is dominated by

the small drops. Given the fact that MRR DSD diverges

from 2DVDDSD at the small drop regime the most, it is

not surprising to have large absolute bias in log10Nw in all

three sites. Sites 1 and 3 have noticeably large negative

bias, likely due to abundant small drops inMRRDSD for

stratiform rain (Figs. 4a,d,g). The bias of log10Nw is neg-

ative but close to zero for site 1 and is positive for sites 2

and 3 in convective rain. Considering all of the coincident

rainy minutes, MRR overestimates R at site 1 and un-

derestimates R for sites 2 and 3. The overestimation of R

at site 1 increases considering only the stratiform samples.

The underestimation for site 2 is larger (percent bias of

31.5% for all rainyminutes) than the ones of sites 1 and 3,

as also reiterated for reflectivity as shown in Fig. 5b.

MRR-based R estimations are always smaller than the

ones of 2DVDduring convective rain, and positive values

of bias for all the three sites were obtained.

The results discussed above refer to the REP MRR

dataset. Results obtained using the AVE MRR data-

set are similar but with some noticeable differences.

Actually, theAdirosi et al. (2016) processing reduces the

dispersion of data along the 1:1 line, resulting in lower

TABLE 3. Performance of the comparison of 2DVD-based rainfall andDSDparameters and the corresponding ones obtained fromREP

MRR DSDs at 105m AGL for three different conditions: all coincident rainy minutes, stratiform rain, and convective rain. Here, corr

indicates the correlation coefficient.

Z (dBZ) R (mmh21) Dmass (mm) Log10[Nw (mm21 m23)]

Bias Abs bias Corr Bias Abs bias Corr Bias Abs bias Corr Bias Abs bias Corr

2DVD vs REP MRR at 105m—all minutes (no. of samples: 2759, 4694, 1877 for sites 1, 2 and 3, respectively)

Site 1 20.83 1.54 0.977 24.8% 35.5% 0.745 0.05 0.14 0.937 20.24 0.34 0.840

Site 2 1.56 1.97 0.972 31.5% 36.7% 0.830 0.04 0.15 0.936 0.01 0.30 0.834

Site 3 0.43 1.50 0.976 11.5% 28.0% 0.880 0.06 0.14 0.961 20.17 0.29 0.878

2DVD vs REP MRR at 105 m—stratiform minutes (no. of samples: 2546, 4336, 1723 for sites 1, 2 and 3, respectively)

Site 1 20.92 1.54 0.973 221.6% 30.3% 0.919 0.05 0.13 0.943 20.26 0.35 0.852

Site 2 1.54 1.98 0.967 29.4% 34.7% 0.887 0.05 0.14 0.938 20.01 0.30 0.832

Site 3 0.49 1.51 0.971 4.9% 24.8% 0.919 0.07 0.13 0.960 20.19 0.30 0.884

2DVD vs REP MRR at 105 m—convective minutes (no. of samples: 147, 185, 94 for sites 1, 2 and 3, respectively)

Site 1 0.79 1.72 0.828 13.8% 40.9% 0.503 0.07 0.26 0.629 20.04 0.32 0.556

Site 2 2.26 2.36 0.842 38.0% 45.1% 0.695 0.06 0.26 0.688 0.14 0.30 0.813

Site 3 1.01 1.58 0.776 24.6% 36.2% 0.737 20.01 0.17 0.804 0.11 0.22 0.849
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values of absolute bias and percent absolute bias (not

shown), particularly for convective rain (Table 4). Table 4

shows the statistics for Z, R,Dmass, and log10Nw obtained

from AVE MRR and 2DVD data in convective rain.

Both biases and absolute biases are larger when AVE

MRR is employed.

Comparison of the 2DVD-based variables obtained at

the ground with the MRR-based variables estimated at

different heights provides unique information on the

vertical variability of precipitation and on the time–

height ambiguity between the radar and the disdrometer

measurements. The setup of IFloodS allows evaluation

of precipitation variability within the first kilometer

above the ground, given that the maximum height for

the MRR measurements was set to 1085m AGL. The

precipitation sampled by MRR at 1085m AGL takes

more than 3min to reach the ground, assuming a mean

fall velocity of 5m s21. However, since we are interested

in the characterization of the instantaneous precipita-

tion profile, we did not apply any time delay correction

between MRR observations at different heights and

surface observations. Therefore, the results presented in

the following do not refer only to instrumental differ-

ences, but include also the time–height ambiguity ef-

fects. Figure 6 shows the statistics in Eqs. (6)–(9) for Z,

R, Dmass, and log10Nw obtained by comparing 2DVD

and REP MRR data at the different range gates. Recall

that the first reliable MRR range gate is centered at

105m AGL. The absolute bias increases and the cor-

relation decreases with height, but the magnitude of

the decrement or increment varies depending on

variables considered (Figs. 6b,c,e,f,h,i,k,l). Bias itself

does not follow a steady increase or decrease trend

with height for all parameters, and may shift its posi-

tion from positive to negative values or vice versa

(Figs. 6a,d,g,j).

The increase in both sampling volume of MRR and

time–height ambiguity with height is the main cause for

the larger absolute bias and lower correlation at higher

altitudes. The trend of absolute bias of Z along the

vertical was slightly different for the three sites (Fig. 6b).

The maximum differences in absolute bias can be ob-

served at the lowest and the highest gates. The absolute

bias ofZ at the lowest gate is 2 dB at site 2, 0.5 dB higher

than at the other sites, and at the highest gate (1085m) is

4.3 dB at site 3, 0.4 and 0.6 dB higher than at the other

two sites. The absolute biases of Z are very close be-

tween 200- and 500-m heights between the three sites,

and the absolute bias is around 3dB at 500m. The bias of

Z is very different from one site to another, but trends at

sites 1 and 3 are similar (Fig. 6a). For site 1, the bias of Z

ranges from 20.82 to 0.50 dB between the lowest and

highest range gates, crossing the zero around 385m

AGL. For site 3, it varies between 0.4 and 1.5 dB. The

bias of Z at site 2, on the other hand, remains nearly

constant with height and is above 2 dB. The correlations

ofZ decreased from 0.97 at the lowest gate to 0.76 at the

highest gate for all three sites (Fig. 6c).

The trend of percent absolute bias ofR at sites 2 and 3

is similar up to 600m AGL (Fig. 6e). The percent ab-

solute bias ofR at site 1 is about the same as that at site 2

below 200m but increases rapidly with height, reaching

80% at 700m and remaining at the same value above

that height. The correlation coefficient of R decreases

more rapidly than any other variable, reaching 0.1 at the

highest gate, but is about the same between the three

sites at a given altitude (Fig. 6f). There are no similarities

in the trend of percent bias of R between the three sites

(Fig. 6d). The percent bias of R has a decrease at site 2,

while both increasing and decreasing trends are evident

at different height intervals at site 3. For sites 2 and 3, the

percent bias of R is mainly bounded between 10% and

30%, whereas at site 1 it is negative,25% at the ground,

crosses zero one gate above, and remains less than 15%

at all other gates.

The absolute bias of Dmass increases from 0.14 to

0.30mm between the lowest and the highest gates at

sites 2 and 3 (Fig. 6h). At site 1, the absolute bias of

Dmass increases at a slower rate, ending up at 0.28mm at

the highest gate. The bias ofDmass increases with height

at all sites, but the difference between the lowest and the

highest gates was the largest at site 2, ranging from 0.05

to 0.18mm and is the smallest at site 3, ranging from 0.06

to 0.14mm (Fig. 6g). The correlations ofDmass gradually

decrease with height at site 3 and at a bit faster rate at

sites 1 and 2 (Fig. 6i). The agreement between the de-

vices remains good, with a bias less than 0.2mm also at

the highest range gate. The absolute bias of log10Nw

TABLE 4. Performance of the comparison of 2DVD-based rainfall and DSD parameters and the corresponding ones obtained fromAVE

MRR DSDs at 105 m AGL for convective rain minutes (number of samples: 146, 180, and 92 for sites 1, 2 and 3, respectively).

Z (dBZ) R (mmh21) Dmass (mm) Log10[Nw (mm21 m23)]

Bias Abs bias Corr Bias Abs bias Corr Bias Abs bias Corr Bias Abs bias Corr

Site 1 3.22 4.29 0.529 30.9% 48.0% 0.498 0.38 0.49 0.386 20.15 0.37 0.668

Site 2 4.31 4.60 0.415 53.8% 56.6% 0.664 0.21 0.40 0.328 0.14 0.34 0.759

Site 3 3.07 3.58 0.375 40.8% 45.4% 0.688 0.17 0.33 0.307 0.05 0.27 0.686
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increases from 0.3 to 0.6 between the lowest and the

highest gates at sites 2 and 3 and the increase in absolute

bias was about the same for the other site (Fig. 6k). The

bias of log10Nw decreases with height from nearly zero at

the lowest gate to 20.3 at the highest gate at site 2,

whereas it first increases from the lowest gate to 245m

and then decreases at a slower rate at sites 1 and 3

(Fig. 6j). The bias is the smallest at all gates at site 1. The

correlations of log10Nw are the lowest and decrease at a

relatively faster rate at site 2, ranging from 0.83 to 0.52

between the lowest and the highest gates (Fig. 6l). The

magnitude of MRR overestimation ofNw increases with

the height. In qualitative terms, we can conclude that, in

terms of correlations, the variability of Z, Dmass, and

FIG. 6. Comparison of (a)–(c)Z, (d)–(f)R, (g)–(i)Dmass, and (j)–(l)Nw from 2DVD andMRRDSD as a function of height for the three

sites: (left) the values of bias or percent bias, (center) the values of absolute bias or percent absolute bias, and (right) the values of the

correlation coefficient.
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log10Nw along the vertical is lower when compared with

that of R. This fact has an impact on the dependency of

the performance of radar DSD and rain retrieval algo-

rithms that assume uniform DSD within a radar sam-

pling volume (Gorgucci and Baldini 2015).

c. MRR–APU comparison

The 2D histograms between the variables obtained

from REP MRR DSDs at 105m AGL and the ones

computed fromAPUDSD in the three sites considering

all the coincident rainyminutes have a similar trend as in

Fig. 5 (not shown). The differences between the quan-

titative comparison presented in Table 5 and the similar

statistics presented in Table 3 can be partially ascribed

to the fact that the APU underestimates the small drops

more than the 2DVD and has a large uncertainty in

determining the size of raindrops due to a bin width of

0.5mm for drops larger than 2.5mm and of 1.0mm for

drops larger than 5mm. Furthermore, the sampling

cross-sectional area of APU is approximately half that

of 2DVD. The absolute biases of Z are relatively larger

whenAPU is comparedwithMRR’s lowest reliable gate

for all stratiform and convective rain samples at all sites.

The biases ofZ are also larger at sites 2 and 3 in stratiform

rain. The quantization effect of APU seems to play an

important role for these larger biases. The drops larger

than 2.5mm could highly contribute to the reflectivity

(Figs. 4c,f,i,l) and it is expected that drops are skewed

toward smaller-size drops of the given size bin. Marzuki

et al. (2010) showed a drastic increase in the moments of

the DSD when the 2DVD drop-by-drop raw data were

binned from 0.2 to 0.5mm. Although outside the scope of

this study, we rearranged the 2DVD raw output with

APU size intervals. The reflectivity recalculated from

simulated APU data was higher by 0.16dB on average,

but the maximum difference in reflectivity between the

simulated APU and original 2DVD was 1.9dB. The

quantization effect, of course, is not the sole source of

the difference between the APU and 2DVD-based re-

flectivity. The negative and positive biases of Z in MRR-

APU and MRR-2DVD comparisons in site 3, respec-

tively, do not depend on the quantization errors but on

the different instrumental error of the two devices. The

absolute biases of R were larger, with one exception, in

MRR/APU comparison for all the coincident, stratiform

and convective rain samples at all three sites (Table 5).

Because 2DVD is more expensive than MRR and

APU, a number of field campaigns [e.g., the In-Cloud

Icing and Large-Drop Experiment (ICICLE); Bernstein

et al. 2018] and field study sites (e.g., that at the National

Weather ServiceWeather Forecast Office at Marquette,

Michigan, in support of the GPM mission) have incor-

porated MRR and APU, but not 2DVD. Also, in this

case, the results obtained comparing APU and AVE

MRR data are quite close to those obtained comparing

APU and REP MRR data for all rain and stratiform

rain (Table 5), indicating that, in these conditions,

the Adirosi et al. (2016) postprocessing does not pro-

duce a significant improvement of the MRR data.

Conversely, improvements are evident for convective

rain that is, in fact, the main goal of such postprocessing.

Table 6 shows results obtained by comparing APU and

AVE MRR data during convection. Comparing these

results with those in Table 5 for the convective rain, it is

clear that the performance of MRR increases using the

Adirosi et al. (2016) postprocessing since the statistics in

Eqs. (6)–(9) are lower than in Table 6, while the corre-

lations are higher, especially for the reflectivity factor.

Last, as for the comparison between 2DVD and

MRR, the bias obtained by comparing APU and MRR

increases with height while the correlation coefficient

decreases (not shown). The magnitude of the increment

TABLE 5. As Table 3, but for the comparison between APU and MRR (REP).

Z(dBZ) R (mmh21) Dmass (mm) Log10[Nw (mm21 m23)]

Bias Abs bias Corr Bias Abs bias Cor Bias Abs bias Cor Bias Abs bias Cor

APU vs REP MRR at 105 m—all minutes (no. of samples: 2717, 4624, 1747 for sites 1, 2 and 3, respectively)

Site 1 20.28 1.99 0.959 23.8% 37.7% 0.718 0.05 0.16 0.921 20.20 0.33 0.841

Site 2 2.18 2.94 0.932 36.9% 41.1% 0.871 0.07 0.20 0.855 0.06 0.31 0.827

Site 3 20.79 1.90 0.960 26.7% 28.0% 0.908 0.04 0.16 0.902 20.19 0.31 0.817

APU vs REP MRR at 105 m–stratiform minutes (no. of samples: 2565, 4207, 1655 for sites 1, 2 and 3, respectively)

Site 1 20.39 1.97 0.952 218.7% 33.3% 0.901 0.04 0.15 0.924 20.20 0.33 0.851

Site 2 1.90 2.72 0.921 32.1% 37.1% 0.899 0.04 0.18 0.853 0.06 0.31 0.829

Site 3 20.91 1.91 0.953 219.2% 28.4% 0.937 0.03 0.16 0.895 20.20 0.32 0.820

APU vs REP MRR at 105 m–convective minutes (no. of samples: 120, 261, 47 for sites 1, 2 and 3, respectively)

Site 1 2.00 2.53 0.827 15.7% 43.6% 0.433 0.27 0.34 0.658 20.19 0.32 0.570

Site 2 5.56 5.59 0.623 47.4% 50.8% 0.749 0.44 0.51 0.439 20.04 0.30 0.681

Site 3 1.55 1.82 0.878 25.0% 31.6% 0.851 0.13 0.28 0.504 20.03 0.27 0.730

634 JOURNAL OF ATMOSPHER IC AND OCEAN IC TECHNOLOGY VOLUME 37

Unauthenticated | Downloaded 07/30/24 09:43 AM UTC



and decrement are similar to the ones obtained by

comparing 2DVD and MRR. However, in this case, as

also stated above, the MRR at site 3 overestimates Z

and R with respect to APU.

6. MRR–NPOL radar comparison

In this section, Zh and Zdr measured by NPOL are

compared with those estimated from REP MRR DSD

using the T-matrix electromagnetic model (Barber and

Yen 1975). Starting from theMRRDSDs obtained every

1min in each MRR layer, a T matrix was implemented

to obtain the Zh and Zdr at S band assuming a temper-

ature of 208C, radar elevation angle of 08 (very close to

the actual NPOL elevation angles considered so that

differences in Zh and Zdr are negligible), raindrop shape

model of Beard and Chuang (1987), and Gaussian

canting angle distribution with a mean of 08 and a

standard deviation of 108. In simulating radar measure-

ments, we assume that only raindrops are present in the

radar sampling volume. Since this study evaluates the

accuracy of MRR, NPOL is a reference instrument

and the comparative study was conducted only for

radar measurements (Zh and Zdr) and not radar re-

trieved products such as DSD parameters and rain

rate. A comparison of rainfall rates estimated from

NPOLmeasurements with those computed fromAPU

DSD collected during IFloodS can be found in Chen

et al. (2017).

Because of radar beam geometry, the farther the

distance from the radar site is, the wider is the radar

sampling volume (the latter increases with the square of

the range) and the greater the height of the radar beam

center from the ground will be. Table 1 shows the height

of the NPOL beam center above the three sites. In the

NPOL–MRR comparison we considered that, as a re-

sult of the beam broadening, the number of MRR

range bins within the NPOL measurement volume

changes as a function of the distance of the MRR from

the radar. To match measurements, we used a beam-

weighting function that assigns a different weight at

each MRR range bin depending on the distance from

the radar site, the radar elevation angle and the an-

tenna radiation pattern assumed to follow a Gaussian

shape. The following equations have been adopted

(Gorgucci and Baldini 2015):

Z
h,w

5 10 log
10
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30

j53

WF
j
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!
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30

j53

WF
j
P
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1
CCCCA, (11)

where Ph,j and Py,j are the reflectivity factors at hori-

zontal and vertical polarization in mm6m23 in the jth

MRR bin weighted by radar illumination function

(WFj). The subscript w stands for weighted. The index

j ranges between 3 and 30 because the first two and the

last MRR bins were considered unreliable and there-

fore not used. Moreover, only complete columns of

MRR data were retained for analysis.

Figure 7 shows the 2D histogram between NPOL

measurement (x axis) and REP MRR-based variable

(y axis) in all rain condition, and Table 7 reports

the performance estimators for 1) all rainy minutes,

2) stratiform rain, and 3) convective rain. For sites 1

and 2, the second radar elevation angle was consid-

ered. For site 1, radar returns at the lowest elevation

seem to be affected by ground clutter and therefore

filtered out by the adopted filter (see section 2b). Also

for site 2, the behavior of radar variables at the first

elevation in the Zh–Zdr diagram (not shown) looks

unlikely for rain, probably due to residual effects of

ground clutter from side lobes. For site 3, the MRR-

based variables are plotted against the ones of NPOL

at the lowest elevation because the radar beam at the

second elevation angle is above the highest MRR

bin (Fig. 8).

A good agreement between NPOL Zh and Zh esti-

mated from REP MRR-derived DSDs is achieved in

terms of bias for all sites (Table 7). Sites 1 and 2 present a

bit larger bias (;1 dB for all rain condition) with respect

to site 3, where the bias is negligible (less than 0.3 dB for

all rain conditions). A certain dispersion of data is evi-

dent and leads to values of absolute bias around 2–3 dB

TABLE 6. As Table 4, but for the comparison between APU and MRR (AVE) (number of samples: 120, 255, and 47 for sites 1, 2 and 3,

respectively).

Z (dBZ) R (mmh21) Dmass (mm) Log10[Nw (mm21 m23)]

Bias Abs bias Corr Bias Abs bias Corr Bias Abs bias Corr Bias Abs bias Corr

Site 1 3.97 4.50 0.532 30.9% 46.9% 0.519 0.55 0.62 0.251 20.29 0.43 0.686

Site 2 6.86 6.94 0.400 56.1% 58.7% 0.703 0.58 0.63 0.224 20.08 0.32 0.655

Site 3 4.72 5.02 0.493 45.6% 48.4% 0.709 0.44 0.53 0.086 20.14 0.36 0.610
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and correlation around 0.8–0.9. For stratiform rain, the

absolute bias ranges between 2.78 and 3.57 dB. Tokay

et al. (2009) compared MRR and S-band profiled re-

flectivities, obtaining a bias that ranges between 20.5

and 1dB. Frech et al. (2017) compared the reflectivity

sampled by MRR and by a C-band radar at vertical

incidence and obtained a bias (radar less MRR) up

to21.7 dB and a MAD up to 2.5 dB. Please note that in

this study the PPIs at low elevation angles are used for

comparison purposes and that beam broadening makes

the NPOL beamwidth above the three sites 85, 430, and

1200m. Considering differential reflectivity, a good agree-

ment is obtained betweenMRRandNPOL, highlighted by

the small bias and absolute bias at all the considered sites.

FIG. 7. 2D histograms between (a),(c),(e) the equivalent reflectivity factor at horizontal polarization and

(b),(d),(f) differential reflectivity, measured by NPOL (x axis) and the corresponding variables estimated from

1-minDSDobtained byREPMRRdata (y axis): comparison of NPOLdata from the sweep at the second elevation

angle (1.398) and MRR-based variables at sites (top) 1 and (middle) 2 and(bottom) comparison of MRR-based

variables at site 3 with NPOL measurements collected at the first elevation angle (0.678).
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However, a dispersion of the data around the 1:1 line re-

sults in correlations ranging between 0.40 and 0.69. It is

important to underline that the assumptions adopted in the

T-matrix simulation to obtain radar measurements from

MRR DSDs avoid negative values of Zdr, while NPOL

measurements also report some negative values of Zdr,

mostly due to signal fluctuation that, in light rain, can

imply negative Zdr. As shown in Table 7, the results for

the stratiform condition are close to the ones obtained

considering all the coincident rainy minutes, while in

convection, theZh bias becomesmore important (around

2–3dB) with low values of the correlations. The results

obtained comparing AVE data with NPOL measure-

ments are very close to the ones shown in Table 7.

7. Conclusions

Vertically pointing radars play an important role in

radar-based precipitation estimation by filling in the gap

between areal radar and point disdrometer/gauge mea-

surements. In that regard, the cost-effective MRR has

the potential to become an operational tool as part of

automated surface observing systems in the United

States and elsewhere. The IFloodS field campaign

provided a unique dataset with which to investigate the

performance of the MRR by comparing observations

from collocated 2DVD and APU disdrometers as well as

NPOL. The design of the field campaign with multiple

sites, the instruments’ performancewithminimum failure

during the 2-month-long field campaign, and the fortu-

itous occurrence of abundant rainfall are three main

factors contributing to the rich dataset used for com-

prehensive analysis. This study focused on the accuracy

of MRR-derived Z, R, Dmass, and log10Nw considering

2DVD, APU, and NPOL as references. The study in-

cluded 1) all rainy minutes, and a subset of 2) stratiform

and 3) convective rain minutes. First, a postprocessing

was applied to the disdrometer andMRRdata (section 2b)

TABLE 7. Performance of the comparison of NPOL measurements and the REP MRR-based variables.

Zh (dBZ) Zdr (dB)

Bias Abs bias Corr Bias Abs bias Corr

NPOL vs REP MRR—all minutes (no. of samples: 934, 1039, 884 for sites 1, 2 and 3, respectively)

Site 1 20.95 3.68 0.782 20.02 0.43 0.401

Site 2 1.11 3.50 0.814 20.19 0.37 0.613

Site 3 0.26 2.78 0.878 20.20 0.36 0.698

NPOL vs MRR REP—Stratiform minutes (no. of samples: 790, 984, 817 for sites 1, 2 and 3, respectively)

Site 1 20.66 3.57 0.741 20.01 0.42 0.381

Site 2 1.03 3.45 0.795 20.19 0.37 0.593

Site 3 0.27 2.78 0.862 20.21 0.36 0.689

NPOL vs MRR REP—Convective minutes (no. of samples: 70, 31, 31 for sites 1, 2 and 3, respectively)

Site 1 23.21 5.25 0.400 0.01 0.46 0.334

Site 2 3.37 5.41 20.046 20.13 0.37 0.424

Site 3 2.08 3.19 0.737 20.10 0.45 0.415

FIG. 8. Geometry of NPOL PPI scanning (only first and second elevation angles are shown)

with respect to MRR positioning and maximum height measurements during IFloodS.
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to achieve the most reliable disdrometer measurements,

extracting contamination of nonmeteorological returns

from solid and mixed-phase precipitation, although a

nonperfect discrimination could be a caveat. Furthermore,

for the MRR an ad hoc postprocessing method devel-

oped by Adirosi et al. (2016) was applied to correct the

MRR spectra for the effects of vertical wind and, con-

sequently, to obtain more reliable DSD estimates from

MRR power spectra, especially during convection.

The DSDs estimated by MRR show different char-

acteristics with respect to those estimated by the dis-

drometers. For small drops, most MRR DSDs show an

upward concavity, whereas 2DVD and APU DSDs

exhibit a downward concavity. For large drops, the

MRR intrinsic upper limit of 5.03mm creates discrep-

ancies with the DSD estimated from the disdrometers in

convective rain.

The level of agreement between the disdrometers and

NPOLwith respect toMRR differs from one variable to

the next and depends on the sensitivity of the variable to

the particular size range and the MRR’s ability to re-

trieve that size range.

Comparing MRR and disdrometers at ground, and

considering all the coincident rainy minutes, the abso-

lute bias for Z is almost always less than or around 2dB

for all three sites. The only exception is site 2, where a

certain underestimation is obtained by MRR during

convective rain. The agreement in terms of rain rate is

pointed out by a percent absolute bias that ranges be-

tween 28.0% and 36.7% for the comparison of MRR

and 2DVD data and reaches greater values when MRR

is compared withAPU. The agreement in terms ofDmass

is very good, with absolute bias around 0.2mm, which is

roughly the diameter resolution of 2DVD, while MRR

seems to slightly overestimate the number of drops. For

convective conditions, the agreement between MRR

and 2DVD or APU slightly decreases. However, better

results have been obtained when the REP MRR data

were used instead of theAVEdata.Most of the time, the

agreement between 2DVD and MRR at the lowest re-

liable bin is slightly better than the one between APU

and MRR. Finally, comparing the MRR variables at

different heights with the ones at ground measured by

disdrometers leads to a decrease in the agreement be-

tween the instruments. The magnitude of the decrease

is an indication of the variability of the precipitation

parameters in instantaneous measurements along the

vertical, and we found that it highly depends on the

choice of variable, in addition to the time–height am-

biguity between measurements collected at different

heights. In particular, the increment of absolute bias

from the lowest to the highest MRR bin is around 100%

for the two DSD parameters and higher for the rainfall

rate and reflectivity factor. More comprehensive and

systematic analysis of the MRR data along the vertical

should be done in the future to shed more light on this

topic and its implications for applications such as radar

retrieval algorithms.

The measurements of MRR along the vertical were

also compared with those of NPOL. This was done by

simulating vertical profiles of S-band reflectivity factor

at horizontal polarization and differential reflectivity

fromMRRDSDs with T-matrix simulation and properly

resampling them onto the NPOL resolution volumes.

The agreement in terms of Zh is very good for all rain

conditions, particularly for site 3, with bias equal to

0.26 dB and absolute bias equal to 2.78 dB, whereas for

the other two sites bias is around 1 dB and absolute bias

is around 3.5 dB. The bias obtained from comparing

reflectivity from MRR and NPOL (Table 7) is com-

parable to that obtained between MRR and 2DVD

at ground level (Table 3). However, in the latter

comparison a lower absolute bias and higher correla-

tion have been found. Note that the reflectivity used to

obtain merit parameters in Table 3 are computed under

Rayleigh assumption. The comparison in terms of Zdr

shows a larger dispersion ofMRR-based data with respect

to NPOLmeasurements, but the result is likely influenced

by the assumptions adopted in the T-matrix simulation

(such as the type of hydrometeors and the shape–size

model). In convection, the agreement is still not very good

and in terms of merit parameters is worse than the one

obtained at ground level between MRR and 2DVD.

This study revealed that the MRR is a valuable tool in

quantitative precipitation estimation from radar remote

sensing. Because both disdrometers and MRRs are re-

search tools, we are limited with the field campaign-

based datasets that represent certain climate regimes. In

this study, central Iowa receives precipitation from

frontal systems, mesoscale convective complexes, and

airmass thunderstorms during the spring. There is merit

in repeating this study at different climate zones, espe-

cially at sites where tropical oceanic rainfall occurs.

There is also an interest in using MRR in winter pre-

cipitation. Similar studies are also desirable at high lat-

itudes. However, further work is needed to improve the

accuracy of MRR during convection conditions.
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