CONGRESSO ANNUALE
ANNUAL CONFERENCE

ASSOCIAZIONE

‘ (A ITALIANA

PER IL CALCOLO

ouno O O AUTOMATICO

PAVIA 23-25 Settembre 1981

attl

volume [l

e L)

e S i o

T Sl e
S SR
- —

N
== o ——

S ——
===
e ™ P

STRUCTURED DESIGN OF FAILURE TOLERANT SYSTEMS

A. Ciuffoletti{*) - L. Simoncini(**)

(*) Selenia S.p.A. - Roma, ltaly

(#*)1stituto di Elaborazione dell'Informazione - Pisa, Italy

The literature on reliable systems is composed by a very broad range of specific problems and

solutions. Very few designs of

reliable

systems

are reported, in which an

integrated

methodology is taken into account as one of the most important design goals.

This fact makes, 1in general,

difficult

to provide

a good readability and possibility of

evaluation of the proposed solutions for enhancing the reliability of these systems.

The aim of this paper is to provide a structured methodology and

several implementative

suggestions for the design of failure tolerant systems.

The overall approach does not explicitly differentiate between hard or soft objects and allows
the treatment of failure tolerance from the first design phases.

1. INTRODUCTION

Computer Science has been mostly criented towards
the synthesis of striclty deterministic systems:
this means that any system 1is
associated with a specification,
describes its behaviour in a
predictable way.)

component of 2
wnich completely
definitely

Th the real world, we have to cope with anomalous
nehaviours of and
mehaviours are originated by failures which can b}e:
a) physical which are largely
impredictable or
b) specification or failures like
or malicious attempts, both caus-
which are again

components systenms. Such

failures or faults,

implementation
bugs or flaws
"ed by human impre~

dictable.

&rrors,

The

low,

probabilities of such events are relatively
and this justifies the approach of classical
computer However the spreading of
applications requires high confidence in the
computing tools or high reliability for critical
control systems. Therefore it is vital to take
into careful account the possibility of anomalous
pehaviour of the system. Should such event happen,
the system has to be able to exibit a "positive"
and predictable behaviour.

science.

This motivation is the basis of the development of
fault tolerant computing which can be seen-as-a

wide and difficult extension of the classical
computer science.

The ‘design of systems with well balanced
capabilities of coping with failures, requires

that robustness characteristics must be considered
as initial specifications. of the design phase and
must constrain each step of the design at any
level.

[%3)

Still the literature on failure tolerant systems
is composed. by a very broad range of specific
problems and solutions. Very few design approaches
are reported in which an integrated methodology is
considered as one of the most important design
goals /1,2,37.

In general this makes difficult to provide a good
readability and possibility of evaluation of the
sroposed solutions for enhancing the robustness of
these systems to failures.

In this paper, structured design
methodology, by giving the basilar ideas for build-
ing up a general framework for the design of
failure tolerant systems. Such basilar ideas will
be introduced .as implementative suggestions; they
are useful in that they are relatively simple and
consistent. Since they do differentiate
between hard or soft objects they are able to be
omogeneously applied to all the design levels of a
failure tolerant system.

we present a

not

In Section 2 the general phylosophy is presented
and the implementative suggestions are derived and
discussed. Most of the ideas discussed in this
paper has besen previously introduced in [27 and a
reduced version of it is in [%].

2. GENERAL PHILOSOPHY FOR STRUCTURED DESIGN

Any system can be decomposed in subsystems of
lower complexity; their interaction supports the
functional behaviour of the system.

This general statement introduces three central
concepts:

- the machine, which represents the Dbasilar
abstract component of a sgystem; it exactly

corresponds with its specification or with the

set of its functional behaviours;

A. Ciuffoletti, L. Simoncini

As an example of the previous discussion, let us
congider how machines can model data tyvpes [E] at
running time. The machine can be identified as an
instance of a certain data type: this instance
will be related statically or dinamically to one
or more "users". In the second case we shall say
that the instance is a shared resource; but it is
to be pointed out that the resource is active,

i.e. it is able to judge on the validity of an
interaction. Only particularly malicious
behaviours could deceive it. Therefore the

interactions among the resource and the users are
failure tolerant and the expectation will be based
on names, codes, lenghts and bounds.

the error detaction has been performed
the symptom analysis it is necessary to
the primary source of the

After
through
identify or diagnose
anomalous behaviour.

We shall suppose that the channels are always

reliable. In fact, if this is not the case, the

diagnesis will be greatly complicated. 8o we

introduce a new implementation suggestion:

~ the communication channel isg completely
transparent.

The implementation of the communication channel

will be discussed in Sect. 2.3.

At the interaction object the informations which
are necessary for the identification of the source
of the anomaly, can a) arrive with the anomalous
interaction as a symptom or b) be present in the
interaction object as a consequence oI previous
interactions or by the same specification of the

machine.

In the case a), the symptom is always r=liable,
but it might be difficult and dangerous to try to
get a definite diagnosis by associating a specific
symptom to a specific machine.

the
the

If the interaction bbject knows the subject,
simplest strategy is to consider it as
regponsible of the It will be up %o the
subject to verify if the source of the error has
ascribed to other machines with which he
previously interacted.

2rTor.

to be

With this approach the diagnosis is structured in
a step by step way.

This is possible if shared communication channels
are not present. In a situation like Fig. 1, which
models the existence of a shared communication
channel where M, are machines the
represent the inéeractions, the knowledge of the
subject is rather complex. In this case a machine
should be able to identify unambiguously the subj-

and arrow

ect through e.g. an appropriate coding of the
subject field in the communicating praotocol. This
approach may not be completely safe, since

failures in the machine which destroy the coding
can be thought; in this case it would be necessary
to diagnose as failed all the potential subjects
and wait for evidence of failure freedom by them.

588

;

"Fig 1 Shared Communication Channel”

In case b) let us consider the possibility of
determining the subject of an interaction on the
basis of informations previous to the interaction.
This identification is always possible if a
dedicated communication channel exists between two
machines.

In the case of a shared communication channel such
identification is extremely difficult, even if we
consider the existence of previously defined
specifications about the use of the communication
channel. In fact an ancmalous behaviour may not
respect such specifications.

As an example let us consider a channel whose
utilization is passed explicitely from one user to
other with a specific policy; a failed user can
attempt an of the channel; *he
machine which detects the irregularity cannot rely
its diagnosis on the confidence that the failed
machine obeys to such rules.

incorrsct use

These analysis determines two other implementative
suggestions:

- the diagnosis ascribes the source of an
anomalous interaction to the subject of the
interaction;

- with common communication channels, the subject

must identify itself with a strongly symptomatic
code.

The machine which has been judged as failed may be
requested to retry the last action or series of

actions; this retry request may start a
retrospective diagnostic analysis of the
interactions of which the requested machine was
object, with the aim of finding out possible
anomalies.

The first action in diagnosis is:
- retry of interaction is requested to a subject
which has exhibit an anomalous behaviour.

As a consequence:

- both subject and object of FTI should be provid-
ed with the capability of performing a retry
action, that is possibly recovering a previous
correct situation.

Moreover it is required that all the diagnostic
Steps are exercised. through FTI.
This allows to state that:

~ the diagnosis and the subsequent operative
decisions are meaningful only locally to the
machine which developed it.

Structured Design of Failure Tolerant Systems

~ the interaction, which represents the basilar
cooperation act among the machines;

~ the implementation relation which maps the set
of functional behaviours and of the interactions
of lower complexity machines into the functional

behaviour of the implemented machine.

We model the system as a set of virtual machines,
organized in a hierarchy of successive levels of

abstraction; any level of abstraction is composed
by machines which cooperate on the basis of
interactions; each machine at a given level of

abstraction 1is considered as an implementation of
other machines at the next lower level.

We shall assume that any level has its own failure
modes.

In the following sections we will deal with the

mutual relations among the three concepts.

2.1. The Machine and the Interactions

In this section we shsll deal with the relation
which exists between machines at the same level of
abstraction, and with the treatment of the effects
of failures which are detected at that level.

The functional behaviocur of a machine depends on
the undergoing interactions and on its non
deterministic specifications. The non
stic behaviour of a machine can be better defined
by starting that, at any moment, it is very likely
to be able to predict its future behaviour, hut
there is a non zero probability that the machine
will exhibit an anomalous unpredibtable behaviour.

determini-

The definition of anomaly implies that there is an
external entity which 1is able to foresee and
expect a given (failure-free) behaviour of the
machine, by interacting with it.

In -non failure tolerant systems this attitude can

be. associated esclusively with the user or

operator, he can:

a) unconditionally accept the result from the
system, in case of complicated, that is

unpredictable, computations; or

b) submit the acceptance of the results to their
reasonableness; this means that results are in
some extent predictable.

Ih this latter case we shall better say that the
user can develop an expectation about the
behaviour of the system. This ability needs some
redundant knowledge, which is umnnecessary if a
total conrfidence is relied on the system.

—Igithgrfollowing, interaction object will have the
meaning of '"user" of the interaction which has
! begn,origin&ted by a subject.

In“a@ failure tolerant
expectation shall be
inside: the system.

system, the attitude of
assigned %o the machines,

Such consideration allows +to state the first

implementation suggestion:

589

- in failure tolerant systems, any machine which,
at a given instant, acts as interaction object,
must be able, on the basis of an expéctations to
judge the behaviour of the subject. If the
expectation is not satisfied the behaviour of
the subject is judge as anomalous.

The expectation can be either statically assigned
at the interaction ooject or the interaction
object can dinamically create such expectatién as
a consequence of different situations.

The influence of the communication support on the
interaction will be analyzed in Section 2.3.

We define a failure tolerant interaction (FTI) as
an interaction which can be submitted to a
conditional acceptance by the interaction object.

The condition is based on an expectation about
certain characteristic of the interaction, which
we call interaction symptons. In addition to the

symptoms anélysis, the interaction object will
perform the current computations on the
information.

Information and symptoms are the two components
not necessarily separated of an interaction {e.g.
a watchdog timer (incorporated in a machine)
controls a symptom generally not dependent on the
carried information, routine which
controls if a data is in a given range heavily
depends on it). We point out that symptom analysis
is not necessary in normal operation, so it can be
seen as ''redundant" operation. Consequently we
have two types of redundancy:
- behavioural redundancies,
generation of symptoms
- cemputing redundancies,

generation of sxpectations.

Usually, symptoms are generated even if nothing is
specifically provided with this aim in the design
of cthe machine (e.g. locality for a program or
status sequence for a processor), while the
expectation attitude is generally to be added to
the normal implementation of a This
requirement shall be inserted by exploiting the
characteristics of the machine with minimum impact
on it.

while a

which determine the

which determine the

machine.

Another aspect which derives by the previous
discussion is that the interactions shall be known
and verifiable by the interaction object. This
requirement defines the second implementative
suggestion:

- all FTIs are definitely explicit.

This statement determines severe constraints for
FTIs being supported by global environments /&7.
If an "implicit" channel of interaction exists, it
would be possible an uncontrolled spreading of
errors. Therefore an environment, which is more
oriented +to support failure tolerance, is that
based on message passing /[7,87.

A. Ciuffoletti,

a) a transient failure; in this case the machine

goes back toc a normal behavioural condition and”’

the system can recover a regular functioning;

b) a permanent failure; in this case the machine
cannot go back to a normal behavioural
condition. If we want the system to recover, we
need some other machine, with analogous
functional capabilities, to be able to
substitute it.

In the case b), "spares" shall be provided to
allow the sgystem to go back to a normal function-
ing. Two kinds of "spares" can be identified:

a) passive spares: those machines which were not

active, that is "stand by"” before their
insertion;
b) active spares: those machines which, before
their insertion, were performing:
~ the same operation which was previcusly
performed by the failing machine; a typical

example is the duplication with check;

~ different operations from those performed by
the failing machine; in this case the spare
has to be sufficiently flexible to fulfill
the operation previously carried out by the
failed machine; this is the basis of graceful
degradation.

The cost in terms of performance and percentage of
resources utilization which is associated to the
techniques for managing these two types of spares
is different. It is optimized in case of active
spares performing different operations, since the
percentage of resource utilization is te highest
and the performance is reduced oniy in case of

failures.

In any case the two type fo spares are compatible,

their wuse depending by the requirements of
application of the system.

As regards to machines which exhibit only
transient failures, 1t is sufficient +to keep

copies or traces which are necessary to recover
their normal functional behaviour; we can say that

these machines have embedded ‘“self repairing”
characteristics.

We define:

~ a machine is failure tolerant (FTIM) if it

exhibits only transient failures.
An implementative suggestion can be stated:

~ "spares" shall be provided for non failure
tolerant machines (NFTM).
Obvicusly an object has to be able to start

communication with the szubstitute of the failed
machine as well as refuse any 1nteract1on by a
deflnltely failed subgect :

When a failure tolerant system is implemented, the

starting building blocks are non FTMs. At an
intermediate abstraction level, between the lowest
and the user level, FTIs among NFTMs are
introduced (by definition, FTIs do not take place

necessarily among FTMs). At thislevel we should

550

L. Simoncini

necessarily among FTMs). At this level. we should
provide "spares'" for. the NFTMs, which are subjects
of FTIs, in order to allow the substitution of a
definitely failedmachine. It 1s obvious that all
failures, exhibited by NFTMs which are part of the
implementation of NFTMs among which FTIs are
introduced, will be assimilated to failures in the
NFTMs, which are provided with spares.

A Dbetter characterization of a FTM is the follow-

ing:

- @ machine is a FTM if all the interactions among
+the machines, which are part of its
implementation, are FTIs.

In fact should an anomalous behaviour of one of
the implementing machine have effects at a higher
level, these effects will influence the machine at
the higher level only in a transient mode. They
will disappear when the failure is fixed at the
right level. Thus:

- "spares" are not necessary for FTMs,

the recovery action is needed.

since only

¥e can outline the hierarchy of abstraction levels

in a failure tolerant system as follows:

a) at lower levels of abstraction NFTMs and NFTIs
will be present,

b) at intermediate levels NFTMs and FTIs will be
present; "spares" shall be provided:

¢) at higher levels FTMs and FTIs will be present;
"spares" will not be necessary.

At levels of abstraction generally defined as
intermediate, FTMs and FTIs will be present
together with non failure tolerant ones.

Let us consider the following example, outlined in

Fig. 2.

Let M 3 be failed, and an error be detected by
MlA' & 3 will be substited by Ml3 and M will
start again interacting with M__." This reconfi-
guration will be notified to 3 by M and
possibly accepted. In the worst case M21 will
exhibit a transient failure.

In case that M iz failed and that ¥ detects
the failure, M could not be suostituted

immediately since it is not provided with "spares”
This failure will be evidenced at the higher
level, when M will detect some anomaly in the
behaviour of . Then M9 will be substituted by

M22. The interruption of interactions by M__ will
be~ the co;rect action, after which Ml3 can
continue its normal computation.

By this discussion we have pointed out the

relation among machines at - different level of

abstraction.

The relevant deriving characterizations are:

~ a machine 1is FTM if it is well implemented
having as implementation basis FTIs and if all
the NFTMs, which are part of its implementation,

are provided with spares;

Structured Design of Failure Tolerant Systems

This means that any operative decision subsequent
to the diagnosis is under the responsability of
the machine which developed it. It 1is also
confined in its effects to condition the behaviour’
of that machine towards the other machines with
which it interacts. The only thing a machine can
do is notifying an not forcing the other machines
with its decision. Situations like "master-slave"
will be very dangerous since possible malfunctions
could make a machine, which acts as master, to try
to deceive the other machines with unknown an
uncontrollable effects.

In this sense a machine which has diagnosed
another one as definitely failed, closes the
commuinications with it by refusing any other
interaction with it. This action, which is the
most protective one a machine can undertake, can
be performed through the knowledge of the subject
of = the subsequent interactions; in case of
dedicate channel, simply by refusing the

interactions coming on that channel; otherwise in

case of shared channels by 2 preliminary analysis

and decoding of the subject field of the

information. Therefore:

~ the operative action successive to the diagnosis
of a definitely failed machine consists in the
interruption of communications, by refusing any

other interaction with it.

With the previous discussion, a characterization

of the constraints of an interaction has been
derived, when the subject is a possibly failing
machine. Such kind of interaction has been defined
as FTT.

The several relevant features of a FTI are:
a) as concerning the implementation
interaction object:
~ creation of expectation on the behaviour of
the subject
- capability of developing a local diagnosis,
tentatively ascribing the cause of the error
to the subjact
- capability of requesting a retry of operation

of the

and of maintaining an internal consistent
situation while waiting for +the retried
interaction

- capability of undertaking operative actions,
by refusing interactions with machines which
it has judged definitely failed.

b) as to the subject:

- capability of supporting the retry action

- name identification by a strongly symptomatic
code, in case of shared communication channel
c) as to the interaction channel:

- transgparency to the interaction,

to a small subset of the

machine state.

- access object

2.2. The Machine and the Implementation

In this section we will deal with the relation
between machines at different level of abstraction
and with the treatment of the effects of
which are detected in levels different from that
in which the failure has been originated.

failures

An anomaly which is detected in the behaviour of a
machine, can be originated by:

- =N =FTT; £ NFTT

M'=spares; Ci) =implementation relation

Example

591

&. Ciuffoletti,

level are
machines, as

- the effects of failures at lower
modelled, in failure tolerant
transient failures; therefore only a recovery ac-
tion is necessary in FMTs and 'spares" are not
needed.

2.3. The Imolementation and the Interactions

In the previous section the problem of implement-
ing FTMs from NFTMs has been dealt with. The
solution of this problem requires the introduction
of FTIs.

The constraints for an interaction being a FTI
concern the interacting machines and the
functionality of the communication channel.

will discuss the
implementation of a

In this section we
characteristics for a correct
communication channel.

The constraints for an interaction being a FTI
require that a communication channel can:

i) he transparent to the interaction,

ii) exhibits only transient anomalous behaviours.

It is quite straight by the point ii) that
communication channels, which are able to support
£TIs, have to be implemented on FTIs at the lower
level of Therefore let wus first
consider communication channels among NFTMs which
support FTIs.

abstraction.

A channel 1is usually accessed by two or more
users: if both a machine and its 'spares" are
accessed by the same channel (i.e. they are obje—
sts of interactions szupported by this channel),
then the failure of imply the
unavailability of both the machine and its spares.
The situation is exactly the if both a
machine and its can access the channel

the channel will

same
"gpares'
(i.e. they are subject of interactions supported
oy this channel) . In
malfunctionings may exist for which a machine can
hcld indefinitely the channel. Therefore:

fact, particular

M e e M
M g e e e
M1 Ny o\ M
a) b)

Channels
spares

e M N Flg 3 to-from

N -

562

L. Simoncini

~ not all the machines which can support a certain
function have to access or be accessed through
the same channel.

Therefore the situation in Fig.
advisable, while that one in
safe.

3a) or 3b) are not
Fig. 3c) would be

In other words, we have in general that a correct
implementation of a communication channel for
supporting FTIs among NFTMs, should rely on a
point to point basis and not on shared
communication channels (e.g. a bus with
arbitration) as outlined in Fig. 4. The approach
in Fig. 4, which is almost usual, is completely
unsafe, since, as previously said, the failure
either of a processor or of the channel can deter-
mine the loss of all the system.

Nevertheless a complete point to point approach is
very expensive and difficultly expandable.

In this case we have to consider the channel as no
more transparent, and substitute it with an
explicit interacting machine, possibly provided
with spares. This is outlined in Fig. 5.

The requirement that the communication channel is
an explicit interacting machine, determines the
need that it is an intelligent unit, able of
refusing on the basis of an expectation the
with the Ps. With this approach, we
actually replace the shared communication channel
with a set of dedicated ones and a

Therefore the discussion of the previous sections

interactions

machine.

can be applied to this case.

For what concerms higher levels of abstraction, we
already pointed out that it 1is
possible to implement correctly

have always
communication
channels able to support FTI's, once this problem
has been solved at lower In this
can meet the requirement that at higher level only

transient anomalous induced by

levels. way we

behaviours are
failures at lower levels.

e
Q

Fig 4 Common bus

N

CH'

Fig 5 Explicit channel

Structured Design of Failure Tolerant Systems

CONCLUSION

In this paper we have dealt with the problem of
implementing a system tolerant to failures in its
h/w or s/w support. Some design rules are given
which can help in this complex task. Those rules
have their validity at any abstraction level, and
in a way, are recursive: in fact the application
of the rules at a given level helps the designer
to respect the same rules at the higher ones. So,
the risk of implementing conflicting policies is
and a good readability easily provided.
In a word, a methodology to structure
failure tolerant designs. Of course the drawback
of any structure is to constrain the choices the
designer can do: but he will not have to deal with
problems that the structure will "solve' for him.
In our case important problems as:
~ which components have to be replicated
- how to build channels which do not affect
failure tolerance
- how controls the
component
- wnich kind of
can have on higher levels

avoided,
we give

functioning of a certain

consequence a low level failure

- what is the meaning of redundancy and how to
introduce it effectively

- which concept underlies different failure
tolerant policies which are oractically

implemented {(as TMR and 'graceful degradation")
are treated and solved in a completely general
way.

One of the main problems left unsolved by the
presented structure is how to support the retry
operation. In fact the retry models the recovery
action, and related to this is the problem of the
spread of recovery actions, "*domino
effect® [i7. In this way we will turn our future
efforts.

Xnown as

REFERENCES

{11 8. Randell, P.A. P.C.
"Reliability Issues in Computing System Design",
Comp. Surv. Vol. 10, n° 2, June 1978, pp. 123-164.

Lee, Treleven,

[2] W.C. Carter, "Fault Detection and Recovery
Algorithms for Fault Tolerant Systems", IFIP
Working Conference, "Reliable Computing and Fault
Tolerance in the '80's"; London, Sept. 1980.

[3] A.L. Hopkinks, '"On Virtual Levels of Fault
Processing for Very Reliable Systems”, IFIP Work-
ing Conference, "Reliable Computing and Fault
Tolerance in the '80's", London, Sept. 1980.

f4] A. ciuffoletti, "Approccio strutturato alla

modellistica di ‘sistemi fault tolerant”, ISI,
University of Pisa, (Tesi di Laurea), April 1980,
in Italian.

[5] A. Ciuffoletti, L. Simoncini, "Integrated

Design Methodology of Failure Tolerant Systems"”,
to be published in the Proceed. of FTSD,
Conference on Fault Tolerant Systems and
Diagnostics, Brno, Sept. 1981.

Intern.

533

[61 C.A.R. Hoare, '"Monitors: an Operating System
Structuring Concept', Communications oI the ACM,
Vol. 17, n® 10, Oct. 1974, pp. 540-557.

[7] R.E. Bryant, J.B. Dennis, '"Concurrent Programm-
ing", MIT Report, 1379.

[8] E. Manning, N.J. Livesey, M. Tokuda,
"Interprocessor Communication in Distributed
System: One View", IFIP'80, North-Holland, 1380,

pp. 513-520.

[9] T.¥. Pratt, "Programming Languages: Design &

Implementation, Prentice-Hall, Englewood Cliff,
N.J.
This work has been supported by the '"Progetto

Finalizzato Informatica Sottoprogetto P1, OCbietti-
vo MUMICRO" and by the Convention between SELENIA
and CNR.

