

Understanding the MIRAI botnet: scanning
process, infection method and key features

F. Lauria

TECHNICAL REPORT
IIT TR-06/2023

Understanding the MIRAI botnet:
scanning process, infection method and key features

Filippo Maria LAURIA
�lippo.lauria@iit.cnr.it

Technology Unit Computer and Communication Networks
Institute of Informatics and Telematics — Italian National Research Council

via G. Moruzzi, 1 — 56124 Pisa, Italy

Abstract
This document provides a comprehensive analysis of the MIRAI botnet, a
sophisticated malware that speci�cally targets vulnerable Internet of Things (IoT)
devices. The analysis focuses on the bot's infection process, key features, PRNG
implementation, information storage, execution �ows and loader's functionalities.
The MIRAI botnet demonstrates a high level of automation and adaptability,
employing scanning techniques and various attack vectors to compromise IoT
devices. The PRNG implementation utilizes the Xorshift128 algorithm, optimized for
resource-constrained IoT devices. The storage of crucial information within the bot
is examined, highlighting the use of obfuscation techniques. The execution �ows
involve processes for network scanning, attack coordination and attempts to gain
unauthorized access using default credentials. The loader component operates with
a multi-threaded architecture, efficiently managing the infection process.
Additionally, the document explores the loader's features, such as selecting
appropriate executables based on hardware architectures and utilizing different �le
upload methods. These insights shed light on the complexity and versatility of the
MIRAI botnet, emphasizing the need for robust security measures. Manufacturers
and users are encouraged to prioritize strong passwords, regular �rmware updates
and network segmentation to mitigate the risks posed by this malicious botnet.

Introduction
The MIRAI botnet, discovered in 2016, exploited vulnerabilities in IoT devices to
carry out large-scale distributed denial-of-service (DDoS) attacks. By targeting
devices with weak passwords, MIRAI compromised and enlisted them into its botnet
network. [1] Despite being a botnet of the past, MIRAI had a signi�cant and lasting
impact on the threat landscape, inspiring the emergence of similar botnets with
comparable behavior patterns. [2] This section provides an introduction to key
concepts related to botnets, including worms, DDoS attacks, the Internet of Things
(IoT) and master-slave botnets. Understanding these concepts is crucial for
comprehending the inner workings of the MIRAI botnet.

Worm
A computer worm is a self-replicating program designed to spread autonomously,
often utilizing the Internet as a means of propagation. While worms themselves may
not possess malicious intent, they are frequently accompanied by a harmful code
segment known as a payload,which can cause damage to the victim's device. [3]

Distributed Denial-of-service (DDoS)
A Denial-of-service (DoS) attack occurs when an attacker targets a network service,
node or resource with the intention of preventing authorized users from accessing it.
When such attacks are orchestrated from multiple network nodes simultaneously,
they are referred to as Distributed Denial-of-service (DDoS) attacks. [4]

Internet of Things (IoT)
The term Internet of Things (IoT) refers to a vast
network of interconnected intelligent devices
capable of exchanging information with other nodes
on the network, leveraging the pervasive nature of
the Internet. [5]

Master-slave botnet
In a master-slave botnet, as illustrated in the �gure
to the right, numerous nodes, referred to as bots1 are
connected to a central master node2. The master
node serves as a command center available to the
attacker who can orchestrate and coordinate the
actions to be performed by the connected bots
against the target.

Overview of MIRAI
MIRAI is a prominent botnet that speci�cally targets
IoT devices, taking advantage of their susceptibility to exploitation due to weak
default credentials assigned by manufacturers. The combination of vulnerable
devices and a lack of cybersecurity awareness among device owners creates an ideal
environment for the proliferation of malware targeting embedded devices.

2 also known as CNC or C&C or C2
1 or also slaves or zombies

Initially discovered in September 2016, MIRAI gained notoriety for launching the
�rst large-scale DDoS attack on the Internet. This attack generated an
unprecedented volume of traffic, exceeding 1 Tbps, directed at a single victim. [2] In
October 2016, the source code of MIRAI was released by its author(s), marking a
signi�cant turning point. [7] We conducted an analysis of the source code and
developed monitoring tools based on sandboxes and honeypots to gain insights into
this phenomenon. Despite the release of the MIRAI source code, the botnet and its
variants continued to propagate and persist within the IoT ecosystem.

MIRAI operates on a master-slave architecture, with a Command and Control (CNC)
server serving as the central coordinator for the bots. Although the source code of
the CNC server, written in the Go programming language, was not included in our
analysis, it plays a crucial role in the botnet's operation. MIRAI's CNC server employs
the single fast-�ux technique3, making it more challenging to detect and shut down.

The MIRAI botnet primarily comprises
compromised IoT devices that establish
connections with the Command and Control
(CNC) server, awaiting further instructions. In
addition, these infected devices actively
conduct targeted scans within a subset of the
entire IPv4 address space to identify and
exploit new vulnerable devices.

Unlike traditional master-slave architectures,
MIRAI incorporates a signi�cant component
known as the loader,which plays a pivotal role
in efficiently infecting new devices. The
loader receives information about potential
targets either from the bots themselves or
directly from the botnet's operator, [14] who
provides contact information for speci�c

devices. This loader component facilitates the seamless integration of new devices
into the botnet's network, expanding its reach and potential impact.

MIRAI-like Botnets
Since the emergence of MIRAI, numerous botnets with MIRAI-like characteristics
have appeared, employing similar attack strategies. The release of the MIRAI source
code has provided aspiring threat actors with a blueprint to create and deploy their
own botnets targeting vulnerable IoT devices. These devices, often lacking adequate
security measures, become prime targets for various malicious activities.

3 the fast-�ux technique essentially involves registering a single domain name that simultaneously points to multiple
IP addresses. When connecting to the Command and Control (CNC) server, the bots query the DNS, which responds
with a list of addresses. This list is dynamically ordered based on load balancing algorithms typically used by name
resolvers (e.g., round-robin), ensuring that the order of addresses varies. The CNC nodes are programmed to
periodically register/unregister their IP address associations with the domain, continuously updating the list of
addresses held by the DNS server. [6]

In the following sections, we will explore the scanning processes employed by
MIRAI, shedding light on the intricacies of its operations.

Scanning process
The scanning process is a crucial aspect of the MIRAI botnet's operation. Each bot in
the botnet persistently conducts scans across a subset of the entire IPv4 address
space, speci�cally targeting TCP ports such as port 23 (telnet) or ports 22 and 2222
(ssh). When a vulnerable device is detected, the bot transmits the contact
information of the compromised device to the loader for further action.

In the next section, we will delve into the infection processes employed by MIRAI,
providing a deeper understanding of how the botnet compromises and controls
vulnerable IoT devices.

Infection process
The infection process involves the loader targeting a speci�c device for infection.
Let's examine the steps of the infection process in detail:

1. the loader, armed with the contact information, initiates a connection attempt
to the target device;

2. upon successfully establishing a connection, the loader veri�es if the device is
vulnerable to infection by searching for directories with write/execute
permissions and other indicative factors;

3. once the device's vulnerability is con�rmed, the loader proceeds to download
and execute the MIRAI executable, effectively transforming the device into a
bot;

4. the newly transformed bot takes its �rst action by establishing a connection
to the Command and Control (CNC) server within the network.
Simultaneously, it begins scanning the internet in search of potential victims,
as described in the scanning process section.

In the next section, we will discuss the key features of the bot that have been
deduced by analyzing its source code.

Bot's key features
Let's delve into some key features of the MIRAI bot code that contribute to its
functionality and evasiveness. Upon execution, the bot immediately takes action by
deleting itself from the �le system. However, the process continues to run, ensuring
that the infection persists until the device is rebooted. To prevent automatic device
restart, the MIRAI bot disables the embedded device's watchdog timer4. These initial
actions highlight the bot's proactive measures on IoT devices.

4 the watchdog is a timer that periodically triggers an integrity check routine of the system. If the routine detects a
fault, it restarts the system to restore the initial conditions and bypass the anomaly. [8]

To protect vital operational information, such as the addresses of the Command and
Control (CNC) server and the loader, the MIRAI bot employs cryptographic
techniques for obfuscation. This ensures that the stored information remains
unintelligible to software analysts during static analysis. By encrypting critical data
within the bot itself, MIRAI enhances its resistance to detection and analysis, making
it more challenging for security professionals to uncover its network infrastructure
and control mechanisms.

Understanding these key features provides valuable insights into the design and
capabilities of the MIRAI bot. Its ability to delete itself, disable device restart and
obfuscate crucial information demonstrates the bot's sophistication and intent to
remain hidden and operational within compromised IoT devices.

In the following subsections, we will explore other notable features of the MIRAI bot
binary, shedding light on its PRNG implementation, storing information within the
binary and execution �ows. These features further contribute to the bot's
effectiveness and resilience in carrying out malicious activities.

PRNG implementation
The author(s) of MIRAI implemented a pseudo-random number generator (PRNG)
within the bot, using the Xorshift128 algorithm. [9] This algorithm falls into the
category of linear feedback shift register (LFSR) algorithms. As it can be noticed in
the snippet below, the PRNG implementation in MIRAI consists of two main
functions: rand_init() for initializing the seed values and rand_next() for
generating the next random number.

uint32 x, y, z, w;

// seeds initialization
void rand_init() {
x = now();
y = getpid() ⊗ getppid();
z = clock();
w = z ⊗ y;

}

// PRNG
uint32 rand_next() {
uint32 t = x;
t = t ⊗ (t << 11);
t = t ⊗ (t >> 8);
x = y; y = z; z = w;
w = w ⊗ (w >> 19);
w = w ⊗ t;
return w;

}

In the rand_init() function, the seed values x, y, z and w are initialized. The x value
is set to the current time, y is calculated by performing a bitwise XOR operation
between the process ID and the parent process ID, z is set to the current clock time
and w is obtained by performing a bitwise XOR operation between z and y.

The rand_next() function generates the next random number based on the current
state of x, y, z and w. It follows a series of XOR and shift operations to update the
values of x, y, z and w and �nally returns the updated value of w as the random
number.

The Xorshift128 algorithm is known for its simplicity and efficiency, making it
suitable for devices with limited computational power and resources. It has a period
of 2128-1, meaning it can generate a large number of unique random values before
repeating and its main purpose, within the MIRAI bot, is the generation of random
IPv4 addresses to be used as scanning targets.

Storing information within the binary
Let's explore how MIRAI stores information within the binary and the obfuscation
techniques it employs. To store the information, MIRAI utilizes a structure called
table, which is essentially a C array. Each element in this array holds a
variable-length string of bytes. Now, let's shift our focus to how the stored
information is accessed and obfuscated using the xor operator.

MIRAI's obfuscation function utilizes the xor operator, which has symmetric
properties allowing it to be used for both obfuscation and deobfuscation. However, it
appears that the author(s) made an error in implementing this function. The
provided code snippet showcases the obfuscation/deobfuscation process, where a
32-bit key is applied to each byte of the information in the table. The key is divided
into four components, k0 through k3 and each byte is xor-ed with these components
in a repetitive manner.

...
// hard coded key
uint32 key = 0xdeadbeef;

// obfuscation/deobfuscation
// function
void toggle_obfuscation(i) {
k0 = key[0] ... k3 = key[3]
for (j=0;j<len(tab[i]);j++) {
uint8& b = table[i][j];
b = b ⊗ k0;
b = b ⊗ k1;
b = b ⊗ k2;
b = b ⊗ k3;

}
}
...

However, due to the associative property of the
xor operator, it is clear that the effective key
size reduces to only 8 bits.

This means that the entire
obfuscation/deobfuscation process can be
simpli�ed to a single expression: b ⊕ 0x225.

Consequently, in this case, each byte in the
information is xor-ed with the constant value
0x22, weakening the strength of the
obfuscation/deobfuscation.

Despite the reduced key size, this runtime obfuscation/deobfuscation technique still
poses challenges for dynamic analysis using a debugger. It makes the analysis of the
information and understanding of the bot's behavior more challenging. Additionally,
MIRAI incorporates other well-known anti-debugging techniques, such as capturing
SIGTRAP to terminate the executable during debugging. These measures are
implemented to impede the efforts of analysts in comprehending the bot's inner
workings.

In conclusion, by employing obfuscation and anti-debugging techniques, MIRAI
aims to increase its resilience against analysis, making it more difficult for security
professionals to dissect its code and identify its malicious activities.

5 {[(b ⊗ k0) ⊗ k1] ⊗ k2} ⊗ k3 = b ⊗ (k0 ⊗ k1 ⊗ k2 ⊗ k3) = b ⊗ (0xDE ⊗ 0xAD ⊗ 0xBE ⊗ 0xEF) = b ⊗ 0x22

Execution �ows
Let's delve into the execution �ows within the MIRAI bot. The bot utilizes the PRNG
to obfuscate its process name running on the infected device. The parent process
generates two child execution �ows:

● scanning handler: this �ow is responsible for scanning the network and
identifying new potential victims for infection. It utilizes the PRNG to
generate IP addresses for potential connections. The generated IPv4 addresses
undergo a validation process that considers private or reserved addresses, as
well as broadcast and multicast addresses, as invalid. Additionally, speci�c
addresses associated with certain companies are also deemed invalid. Once a
valid IPv4 address is identi�ed, the bot attempts to establish a connection to
the target device.

● processes killer: this �ow terminates concurrent or suspicious processes that
may interfere with the bot's operations. This includes terminating other
botnets or loggers running on the infected device.

The parsing of attack requests takes place within the parent process. Therefore, the
parent process is responsible for managing and coordinating attacks. Attack
requests have speci�c structures with mandatory �elds, including the attack vector,
targets and duration. MIRAI implements various attack vectors, such as
TCP/UDP/HTTP �oods and introduces a new type of DNS attack known as DNS
Water Torture6.

During the scanning process, the MIRAI bot employs a dictionary-based attack
strategy. It utilizes a prede�ned dictionary that includes 60 pairs of factory default
credentials commonly used by manufacturers, which are known to be vulnerable.
The bot systematically scans potential targets and attempts to gain unauthorized
access by leveraging these default credentials. This approach is designed to exploit
weaknesses in the security measures of IoT devices, allowing the bot to infect and
propagate further.

An analysis of the execution �ows reveals that MIRAI operates with a well-structured
and organized approach. It dynamically scans networks to identify vulnerable
devices, coordinates attacks through its parent process and utilizes a diverse range
of attack vectors and credential-based exploits. This systematic methodology
enables MIRAI to maximize its effectiveness in compromising and controlling IoT
devices, highlighting the botnet's sophisticated strategies and techniques.

Loader's key features
The loader component of MIRAI demonstrates a robust and efficient approach
through its multi-threaded architecture, enabling smooth handling of the infection
process. The main thread acts as a listener, receiving contact information from
victim devices transmitted by the bots. Upon receiving details about a new victim,
the loader creates a dedicated worker thread responsible for managing the infection
process speci�c to that device.

6 DNS Water Torture is an attack that forces recursion of DNS resolvers by creating requests for de�nitely
nonexistent subdomains. If such requests come from many bots, they can overwhelm the DNS servers of the targeted
domain. [10]

During the infection process, the loader utilizes a connection descriptor that holds
essential information about the remote device. This information may include the
presence of a download path or the hardware architecture of the device.
Understanding the hardware architecture is crucial for the loader to select the
appropriate executable �le to be downloaded and executed on the victim device.
MIRAI's loader is equipped with a diverse range of cross-compiled executables7
tailored to prevalent hardware architectures in the IoT domain, which is more varied
compared to traditional personal computers.

The loader faces the decision of selecting the method for uploading the binary �le
onto the victim device. It provides three options: WGET, TFTP or ECHO:

● the WGET method utilizes the HTTP protocol to retrieve the designated binary
�le from a remote repository; [12]

● similarly, the TFTP method employs the TFTP protocol for �le retrieval; [13]
● on the other hand, the ECHO method takes a distinct approach where the

loader serializes the content of the binary �le and transmits it to the device
through the established communication channel.

Once the binary �le is successfully uploaded, it is executed on the victim device,
establishing the presence of the bot. Subsequently, the connection between the
loader and the infected device is terminated, allowing the bot to operate
autonomously within the IoT network.

The loader's features showcase its ability to handle the infection process efficiently,
adapt to diverse hardware architectures and employ multiple �le retrieval methods.
Understanding the loader's functionalities provides insights into the intricacies of
MIRAI's deployment and underscores the sophistication of its infection mechanism
in compromising IoT devices.

7 cross-compilation is the process by which it is possible to compile an executable for a speci�c hardware
architecture from a different host machine with a different architecture. [11]

Conclusion
In conclusion, the analysis of the MIRAI bot code has provided valuable insights into
its operation and key features. This botnet exhibits a range of malicious behaviors
and techniques that enable it to compromise and control vulnerable IoT devices.
From the scanning process that targets speci�c ports to the infection process that
transforms devices into bots, MIRAI demonstrates a high level of automation and
adaptability.

The bot's key features, such as the implementation of a PRNG for random number
generation, the storage of critical information within the binary using obfuscation
techniques and the execution �ows that coordinate various processes, highlight the
complexity and evasiveness of the bot. These features contribute to its ability to
remain hidden, resist detection and operate autonomously within compromised IoT
networks.

Moreover, the loader component plays a crucial role in the infection process,
employing multi-threading to efficiently handle victim devices and selecting
appropriate executables based on hardware architectures. The choice of �le upload
methods, including WGET, TFTP and ECHO, showcases the versatility of the loader
in adapting to different network environments.

Overall, the analysis of the MIRAI bot code emphasizes the importance of robust
security measures for IoT devices. It underscores the need for manufacturers and
users to prioritize strong passwords, regular �rmware updates and network
segmentation to mitigate the risk of botnet infections. Additionally, it highlights the
ongoing challenge faced by security professionals in detecting and combating
evolving botnet threats.

References
[1] Mirai (malware) - https://en.wikipedia.org/wiki/Mirai_(malware)
[2] Who Makes the IoT Things Under Attack? -

https://krebsonsecurity.com/2016/10/who-makes-the-iot-things-under-attack/
[3] Computer worm - https://en.wikipedia.org/wiki/Computer_worm
[4] Denial-of-service attack - https://en.wikipedia.org/wiki/Denial-of-service_attack
[5] Internet of things - https://en.wikipedia.org/wiki/Internet_of_things
[6] Fast �ux - https://en.wikipedia.org/wiki/Fast_�ux
[7] Mirai Source Code - https://github.com/jgamblin/Mirai-Source-Code
[8] Watchdog timer - https://en.wikipedia.org/wiki/Watchdog_timer
[9] Xorshift - https://en.wikipedia.org/wiki/Xorshift
[10] Water Torture: A Slow Drip DNS DDoS Attack -

https://secure64.com/2014/02/25/water-torture-slow-drip-dns-ddos-attack/
[11] Cross compiler - https://en.wikipedia.org/wiki/Cross_compiler
[12] Wget - GNU Project - Free Software Foundation -

https://www.gnu.org/software/wget/
[13] The TFTP protocol (rev. 2) - https://datatracker.ietf.org/doc/html/rfc1350
[14] Botnet - https://en.wikipedia.org/wiki/Botnet

https://en.wikipedia.org/wiki/Mirai_(malware)
https://krebsonsecurity.com/2016/10/who-makes-the-iot-things-under-attack/
https://en.wikipedia.org/wiki/Computer_worm
https://en.wikipedia.org/wiki/Denial-of-service_attack
https://en.wikipedia.org/wiki/Internet_of_things
https://en.wikipedia.org/wiki/Fast_flux
https://github.com/jgamblin/Mirai-Source-Code
https://en.wikipedia.org/wiki/Watchdog_timer
https://en.wikipedia.org/wiki/Xorshift
https://secure64.com/2014/02/25/water-torture-slow-drip-dns-ddos-attack/
https://en.wikipedia.org/wiki/Cross_compiler
https://www.gnu.org/software/wget/
https://datatracker.ietf.org/doc/html/rfc1350
https://en.wikipedia.org/wiki/Botnet

