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ABSTRACT

The interfacial tension response to dilational deformation of interfacial area exhibits a (more or
less) nonlinear behaviour, depending on the amplitude of the deformation. Studies of such
observable interfacial properties in the nonlinear domain suggest valuable information about the
two-dimensional micro-structure of the interfacial layer, as well as about the structure time-
evolution.

In this article, the emphasis is centered on the available mathematical methods for quantitatively
analyzing and describing the magnitude and the characteristics of the nonlinear interfacial
viscoelastic properties. Specifically, in periodic oscillation experiments the nonlinear behaviour can
be represented by the combination of a linear part (the surface dilational modulus), with an
additional complementary Fourier analysis parameterising the non-linearity. Also asymmetric
Lissajous plots, of interfacial tension versus deformation, are useful tools for expanding the
response nonlinearity into four distinct components relevant to significant points of the cyclic loop.

In connection with the mathematical methods, nonequilibrium thermodynamic formulations
provide a powerful theoretical framework for investigating the interfacial dynamic properties of
multiphase systems.

Experimental results for adsorption layers of complex components, available in the literature,
show notable nonlinear interfacial viscoelastic behavior. In particular in this review, data are

illustrated for solutions of polymers and of polyelectrolyte/surfactant complexes.



The observed nonlinear findings reveal formation of complexes, patches, and other different

interfacial structures.
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1. Introduction

Multiphase disperse systems, belonging to a wide variety of categories, are basic material
assemblages in numerous industrial products [1, 2], living organisms [3] and natural compartments
[4]. The composition, microstructure and conformation of such systems are now explored under
different aspects and their properties are determined by a multitude of measurement methods.

In liquid/liquid multiphase systems the thermodynamic and the rheological properties of the
interfacial layer (i.e., the quasi-bidimensional region separating the adjoining phases) have an
increasing effective influence on the overall system behaviour, upon decreasing the dispersion size
from the sub-millimetric to the sub-micrometric level [5].

A specific relevant property of the above-mentioned interfacial layers is the dilational
viscoelasticity, which is manifested when the interfacial area is subjected to extension or
compression. Among all possible causes of the stability of disperse systems, these surface
viscoelastic properties are now well identified as ones of the principal physical quantities governing
the long-term stability or the time-evolution of emulsions and foams [6].

The magnitude and the characteristics of the dilational interfacial viscoelasticity essentially
depend on i) the chemical nature of the components; ii) the adsorption equilibrium composition of
the surface layer or the instantaneous transient composition; iii) the extent of the interfacial area
change. Hence in real systems, depending on the particular circumstances, the interfacial dilational
viscoelasticity may assume different characteristics, from a steady-state linear behaviour (exhibited
for small area perturbation in proximity of the adsorption equilibrium state) to a steady-state
nonlinear behaviour and arriving to the most general case of the transient non-equilibrium nonlinear
behaviour in case of large area disturbances of a freshly-formed interface.

Up to now the dynamic interfacial rheological properties (specifically the dilational interfacial
viscoelastic properties) have been intensively studied during the last decades. A great part of the
obtained results, described in the literature, are related to the systems at or near equilibrium. In this
case the methods of the analysis of experimental data are well established. All of them are based on
the assumption that the response amplitude is proportional to the disturbance amplitude.

However, real interfaces actually manifest a more or less nonlinear dynamic response, with
memory, as a result of the changes of interfacial area. In practice, most technological operations
involve violent hydrodynamic conditions, far from a quiescent equilibrium state, resulting in wide
and fast area extension/compression of the interfacial layers, which are present inside the processed
heterogeneous body. In such hydrodynamic circumstances an amplitude dependence of the

rheological properties may be expected, that is, the viscoelastic response may become nonlinear.
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Obviously, in case of nonlinearity, the linear models cannot be adopted as a good description of the
stress response. Hence, from a practical point of view, it is advantageous to theoretically and
experimentally investigate the interfacial rheological parameters related to strong deviations from
equilibrium, as the observable nonlinear behaviour conveys additional information, in respect to the
linear behaviour, closely manifesting the real condition of the processed system. Moreover the
interfacial nonlinear rheology can be used to link the information on the macroscopic dynamics of
the system to the molecular structure.

Various available nonequilibrium thermodynamic formulations allow the interfacial response-
stress phenomenology to be interpreted either for small and large area deformations, providing a
powerful theoretical framework to investigate the dynamics of disperse multiphase systems. The
formalism of nonequilibrium thermodynamics can be used to construct a wide range of admissible
nonlinear models, conveying an insight on the interfacial layer microstructure at large deformations
[7,8].

Note that all the results under discussion below relate to the thermodynamic branch and thereby
not to the large deviations from equilibrium. When parameters of the system deviate further from
equilibrium values the thermodynamic branch can become unstable and completely new and
unexpected types of behaviour can occur [9]. The conditions of the stability of the thermodynamic
branch are discussed in ref. [10] for a two-phase system with the account of surface phenomena.
The violation of these conditions results in the spontaneous growth of the amplitude of surface
waves and consequently to the surface convection and turbulence.

In addition to nonequilibrium thermodynamics, several mathematical tools (namely, Volterra
series, Fourier transform operation, Fourier expansion series, stress decomposition method,
Lissajous plots and polynomial series) can be applied for a quantitative characterization of the
nonlinear interfacial rheological behaviour, estimating the limits of the linear approximation and
parameterizing the deviations from a linear response.

The aim of the present work is twofold: A) to present an overview of the above-mentioned
mathematical tools, complementing the nonlinear thermodynamics; and B) to provide examples of
recent experimental results, for different classes of adsorption layer components, with particular
focus on the applied mathematical methods for the characterization of the observed nonlinear

dilational viscoelastic behaviour.



2. Interfacial dilational modulus

Considering a linear viscoelastic regime, the interfacial dilational modulus, €(®), is the physical
property that quantitatively describes the viscoelastic behaviour of adsorption layers. Such a
physical quantity was earlier defined in the frequency domain by Lucassen et al. [11; 12, 13, 14,
15]. Later on, Loglio et al. [16] extended in the time domain the definition of the interfacial
dilational modulus. Essentially, limiting to appropriately-small disturbances of interfacial area
under not-far-from-equilibrium conditions, the dilational modulus can be defined either in the time
domain or in the frequency domain, within the mathematical framework of systems theory, as

shown in the following expressions,
Ay(®) = y(O—yo = [[F{e(@).7} At -T)] AvdT (1)
Ap(w)=¢(w) AA(w)] A 2)

where Ay(w)= F{Ay(t)}, AA(w)=F{AA(t)}, F is the Fourier transform operator, t is the dummy time in

the convolution integral, ® is the angular frequency, Ay is the surface tension change and AA/A4, is
the relative area change.

According to Eq.(2), e(®) can be conceived as the frequency response function of the interfacial
system, which quantitatively describes the viscoelastic behaviour in the linear regime. Also from
Eq.(1), the impulse response function (transfer function) is formulated as the inverse Fourier
transformation F' of the frequency-response function of the system & (r)=F"'{e(w.)}.

Eq. (1) implies that the viscoelastic system under consideration has memory and the surface
tension depends not only on the surface area at the given time but on the surface area in all the
preceding times. From the pure mathematical point of view this means that the surface tension is
not a function of AA but a functional of AA(t). In the case of small surface deformations one can

apply a general representation of linear functionals [17]

Ay(t) =" G(t-7)(dAA(D)/ A dr)dT (2a)

where G is the surface relaxation function.

Application of the Fourier transform to Eq. 2a results in Eq. 2 and the relations between the
components of the complex modulus € and the relaxation function

e(w)= Gy + [Gap)sin(wn)dn +iw [ Gn) coslwn)dn 3)
0 0



It is assumed here that the relaxation function consists of a constant part Gy and a part which
depends on time.

Adopting a linear model, the basic conceptual proposition is now well-established that the
interfacial dilational modulus, €(®), is an intrinsic constitutive property of a system which
characterises the dynamics of adsorption layers, linking the interfacial response, Ay(t) , to the
interface excitation, AA(t)/Ay, forced with any functional form [16, 18, 19, 20, 21, 22, 23, 24, 25,
26, 27, 28, 29, 30, 31, 32, 33].

3. Mathematical methods for nonlinearity characterization

The nonlinear viscoelastic behaviour of the interface becomes progressively more and more
dominant on increasing the amplitude and the time scale (or the frequency) of the interfacial input
perturbation. Also, the interfacial response depends on the inherent relaxation mechanisms of the
interfacial layer, i.e., bulk-to-interface material transport and molecular conformation or
reorganization at the interface. Such relaxation mechanisms may occur at a comparable time scale
as the time scale of the interfacial perturbation. It is just these relaxation processes which impart the
memory effect to the interfacial behaviour.

From a general point of view, the behaviour of nonlinear systems with memory cannot easily be
described in explicit mathematical terms.

Relying on a time-invariance assumption (that is, assumption of a steady-state condition), in the
following sections a review is reported on the possible mathematical approaches for processing the

measurement results and characterizing the behaviour of real interfacial systems.

3.1. Thermodynamic approach

Almost all thermodynamic descriptions of the non-equilibrium interfacial layer are based on the
ideas of Gibbs and formulated in terms of surface excesses [5, 6, 8, 10, 34]. This method neglects
the thickness of the interfacial layer and considers it as a mathematical surface with the prescribed
values of extensive properties per unit surface area (surface excesses).

The main attention in nonlinear two-phase systems with large strains and rates of strain has been

paid to shear surface properties until now and thereby these results are irrelevant in the work on
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dilational surface rheology [5, 8, 35]. The neglect of the influence of shear deformations and
consideration of a frequent case of the two-dimensionally isotropic interface facilitates significantly
the mathematical description. All tensors and vectors disappear in the expression for the entropy
production d;S/dt and one can write for an open system consisting of the surface layer and a thin

layer of the adjacent bulk phase (subsurface layer) [9]

doi_

d;S &' dg j
42 _ 34,2050 4
dt % T dt “)

Tdt

LA

i

where T is the absolute temperature, A" is the affinity of adsorption of component i from the
bulk phase to the surface, & is the extent of adsorption, A; is the affinity of the chemical reaction j
between the components in the surface layer or the corresponding thermodynamic force for a
structural transition in the surface layer, &; is the corresponding extent of reaction or a structural
parameter.

Relation (4) assumes that the set of independent variables apart from the usual thermodynamic
parameters (temperature, pressure, concentrations in the bulk phase and adsorbed amounts) contains
also the internal variables & and &. The structure of relation (4) indicates that for small deviations
from equilibrium all the thermodynamic fluxes d&y/dt are connected with thermodynamic forces Ax

by the following linear relations

451
dt

=2 LAy (5)

k

where Ly is the matrix of kinetic coefficients.

The combination of kinetic equations (5) with balance equations in the bulk phase (diffusion
equations for all the components, hydrodynamic equations), some boundary conditions and kinetic
models for the processes in the surface layer lead to a general expression for the interfacial
dilational modulus [36]. One can obtain compact forms of this expression in the case of simplified
kinetic models, for example, when the only relaxation processes are the diffusion of a surfactant
from the bulk phase to the surface and the transition through an adsorption barrier at the surface
[36], the adsorption of two surfactants with the diffusion controlled adsorption kinetics [37], the
surfactant adsorption from micellar solutions [17, 38] the formation of loops and tails in the
polymer adsorption layer [39].

One can extend the linear models mentioned above to the weakly non-linear domain by
expanding the thermodynamic fluxes in Eq. (5) to higher order. This formal approach, however,
increases strongly the number of phenomenological kinetic coefficients. On the other hand, in the

case of shear deformations it describes the surface rheological behavior adequately only for a very
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limited range of stain rates [35]. It is hardly possible to expect that the account of higher orders
terms in Eq. (5) results in a significantly better description of a nonlinear system with dilational
deformations.

The classic approach based on the relations of type (4) and (5) is not the only possible formalism
in the modern nonequilibrium thermodynamics. Other thermodynamic formalisms like the extended
irreversible thermodynamics based on another choice of independent variables or extended rational
thermodynamics based on the assumption of the conservation of fluxes give no significant
advantages at the description of nonlinear phenomena as compared with the classic formalism [5,
8]. A more perspective formalism is the GENERIC (General Equation for the Non-Equilibrium
Reversible Irreversible Coupling), which is more suitable for the description of the far from
equilibrium behaviour [40]. It has been applied to surface phenomena only recently [7, 8]. This
approach is characterized by the serious mathematical complexity. The incorporation of the models
of relaxation processes in the surface layer in GENERIC and its application to the interpretation of

experimental data on the surface dilational rheological properties are still the tasks for future.
3.2. Volterra series and Fourier analysis

The Volterra series appears as a good theoretical modelling tool, in the time domain or in the
frequency domain, for (weakly) nonlinear dynamic systems [41]. In case of interfacial layers, in
which AA(t)/Ay is the input perturbation and y(t) is the output response, the Volterra series reads in

the time domain [42] :

N=00

y(@)=yo + Z%J‘;J‘O’ k(t\,72..7) X HAA(t—z)/Ao dridra.....dz. (6)
n=1 . i=1

where 7o is the equilibrium surface tension at the instant t = 0 and the mathematical n-th order
Volterra kernel k, can be physically interpreted as the n-th higher-order impulse response of the
system.

As seen in Eq. (6), the Volterra series includes the first-order impulse response of the interfacial
system, which has been already introduced in refs. [18, 19] on the basis of the dilational viscoelastic
modulus &(w), that is, the frequency-response function of the interfacial layers, earlier defined by

Lucassenetal. [11, 13, 14].



It is noticeable that Eq. (6) is a generalisation of the Taylor’s series, because it includes the
memory. Also, Eq. (6) is an extension of the previous linear treatment as Eq.(1) can be obtained by
truncating the series at the zeroth-order plus the first-order terms. In addition, Eq.(6) defines the
higher-order impulse responses k, of the interfacial layers.

Thus Eq. (6) in principle is an appropriate mathematical resource for the representation and
identification of the real interfacial systems which are more or less non-linear.

However, the Volterra series has a serious drawback, because at present in the literature no
efficient numerical algorithm, especially tailored for the interfacial layers, can be found. Another
hindrance is the lack of experimental techniques for the kernel measurement relevant to the non-
linear contribution of interfacial tension responses.

In order to circumvent the above-mentioned inconveniences of Volterra series, the nonlinear
interfacial behaviour can be represented and characterised by a consecutive combination of a linear
part followed by an additional Fourier analysis parameterising the non-linearity in periodic
oscillation experiments.

Essentially, at experiment conditions of steady-state responses to forced sinusoidal perturbations,
the nonlinearity behaviour is phenomenologically described by giving the amplitude spectrum of
the fundamental frequency and of the higher harmonics frequency multiples [28, 31]. To this
purpose, the amplitude spectrum of periodic phenomena are properly analysed by expansion into
Fourier series. In principle, a single cycle of a periodic phenomenon contains all the necessary
physical information. In practice, in the harmonic oscillation experiments, the acquisition of data
during a time interval longer than the single-oscillation period appears advantageous for a
convenient experimental redundancy as well as for a verification of the transient or steady-state
regime. The essential aspects of this technique, as it applies to interfacial rheology, was recently
reviewed in ref. [42].

As concerns the frequency content of time-varying signals, the amplitude spectrum is practically
determined with the powerful algorithms of the Fast Fourier Transform (FFT), available in
widespread computer programmes. For a more detailed consideration, the interested reader is
directed to Ref. [43].

An index of the non-harmonic contribution, occurring in the interfacial response, is expressed by
the Total Harmonic Distortion (THD), that is, the ratio of the higher harmonics amplitude to the
amplitude at the measured fundamental frequency.

In the following equation, a; is the amplitude value at the fundamental frequency and ay, as, ...,

a, are amplitude values of the higher harmonics :
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THD = (a” +as° + ... +a,)"* / a 7

Thus, the THD index can easily be computed from the amplitude values of the fundamental
frequency and of the higher order harmonic frequencies. THD is also expressed as a percentage of
the fundamental-frequency amplitude.

Alternatively, the non-linearity extent can be quantitatively expressed by defining THD as the
ratio of the higher harmonics power to the power at the fundamental frequency [42]

For small-amplitude perturbations, the THD value becomes vanishingly small (linearity
approximation). At constant-amplitude perturbation, THD depends on the excitation frequency

(frequency dispersion of THD).

3.3. Stress decomposition

Relation (2) defines unequivocally the interfacial dilational modulus only in the case of
infinitesimal surface deformations AA. A possible approach in the case of large deformations
consists in the application of the Fourier analysis and the use of the main harmonics to calculate the
“global” or intracycle interfacial dilational modulus as described above. In this case the obtained
value of the modulus relates to the whole cycle of compression/expansion. At the same time, the
surface stress Ay in a non-linear system is not a linear function of the surface strain during the
whole cycle. This means that if we take small enough values of AA, much less the amplitude of the
surface area oscillations, the applications of relation (2) will give different values of the surface
elasticity in different steps of surface deformation. These “local” intercycle values can differ
strongly from the “global” value and can contain information disappearing in the course of the
standard Fourier analysis. The problem of the distinctions between intercycle and intracycle surface
elasticities was realized first in the studies of the bulk shear rheology and a few methods were
proposed to analyze the intercycle nonlinearities [45, 46, 47, 48]. Only very recently van Kempen et
al. have applied a graphic method based on Lissajous plots to estimate the intracycle dilational
surface elasticity of solutions of oligofructose fatty acid esters [49]. The surface rheological
properties of these systems were very different from those of the solutions for surfactants of low

molecular weight and fairly elastic Lissajous plots displayed asymmetric behavior with strain
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hardening during compression and strain softening during expansion. The analysis of nonlinear
dilational rheology allowed the authors to conclude on the formation of two-dimensional glass
phase in the surface layer.

The graphic method gives both the real and imaginary components of the interfacial dilational
modulus characterizing the adsorption layer, for example, in the ranges of maximal and minimal
surface deformations. In this case the real component for the minimal deformation equals the
tangent slope to the Lissajous plot at zero strain and the real component for the maximal
deformation equals the slope of the secant at maximum strain. Fig. 1 represents this plot for mixed
solutions of polyacrylic acid (PAA) and dodecyltrimethyl ammonium bromide (DTAB) at pH 9.2
[51]. One can estimate the corresponding imaginary components from the analysis of the surface
stress dependence on the strain rate. The application of this graphic method of the analysis of
experimental data of the surface rheological methods showed that the intercycle moduli of the
surface elasticity at minimal and maximal deformations can differ for the compression and

expansion and thereby depend not only on the strain absolute value but also on the strain direction
[49].

o ///;
e’

-0.08 -0.04 0.00 0.04 0.08
area deformation ( % )

Ay-amplitude (mNm™)

Fig. 1. The dependence of the surface tension on relative changes of the surface area (Lissajous
plot) for mixed solutions of polyacrylic acid and dodecyltrimethyl ammonium bromide at pH 9.2.
The tangent slope of the lines corresponds to the real part of the interfacial dilational modulus at
maximal compression (black line), maximal expansion (red line), and at minimum strain in the

course of compression (blue line), in the course of expansion (green line).

The simple method under consideration above of the analysis of nonlinear surface rheological
data is a graphic realization of the well-known stress decomposition method, which is widely used
together with the Fourier analysis in the studies of the bulk shear rheology to characterize the
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nonlinear system response to large deformations [48]. In the case of shear strains only odd high
harmonics contribute usually to the system response and as a consequence the change of the strain
direction leads only to the change of the stress sign but not its absolute value. As a result the elastic
stress component for shear strains is an odd function of the relative shear strain x and an even
function of the strain rate y. At the same time, the viscous component on the contrary is an even
function of x and an odd function of y. Using the properties of these functions Cho et al. presented

the whole system response as a sum of two contributions [45]

Ay(t) = flx,y) = Flxa) _,,f ] _|_f'~xar]'—f (=) =7, +1, )

-
&

The dependencies of 7; on the strain and 7 on the strain rate are linear functions unlike the
corresponding dependencies of the general response f(x,y) which are the Lissajous plots. This
means that 7; depends only on x and 7> depends only on y at the given strain amplitude, and
consequently 7; corresponds to the real component of the system response and 7, to the viscous
component.

Cho et al. also proposed to use polynomial fitting to approximate the elastic and viscous
components [45]. However, in this case the increase of polynomial order results in the change of the
coefficients of lower order. To avoid this inconvenience Ewoldt et al. applied orthogonal

Chebyshev polynomials to the fitting [46]

Ti[x:] = En:oﬂ'ﬂ' bn Tn (.’?C:] = blx + 53[4;{3 - 3_’?{:] 4+ 9)
TE(}F:J:En:odda’n Tn[:}Fj]=glx+a3[4x3_3x]+_" (10)

where the coefficients a, and b, does not change at the account of higher order terms.

The sign of the coefficients in the third order terms in Eq. (9) and Eq. (10) has a clear physical
meaning [46]. For example, the positive sign of bz indicates the strain stiffening while the negative
sign corresponds to the strain softening. The application of the Chebyshev polynomials gives also a
possibility to obtain easily the intercycle viscoelastic moduli. The elastic moduli at minimal (E,"™")

max

and maximal (E,™") can be represented by the following expressions
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Emin E(ij:ﬂ= by — 3by + - (11)

This approach cannot be applied directly to the case of compression/expansion, in particular to
the surface dilational rheology where one has to take into account the contribution of even
harmonics. In this case the change of the strain direction can lead not only to the change of the
stress sign but also of the stress absolute value. As a result the Lissajous plots become asymmetric
loops and it is impossible to describe them by the Chebyshev polynomials. Recently Yu et al.
proposed a more general approach to the stress decomposition taking into account both odd and
even harmonics [47]. In this method the system response (the stress) is expanded into four
components. Apart from pure elastic 7; and pure viscous 7, components the stress contains also two

viscoelastic contributions 73 and z4.

7 =3 (Fe3) = F(-2.3) + fG& =) = f(~x,-¥)
7 =3 (F23) + F(=x.3) = £ ~) = F(=x,~))
T3 = % (flxy) = f(=xy) — flx, —y) + f(—x,—¥))

1
7y = (FGey) + f(=x3) + e, =) + f(=x,—¥)) (12)

The difference between the two viscoelastic components is not obvious enough. 73 becomes more
elastic at low strains and more viscous at the maximal strains. The opposite behavior is
characteristic for 7,. Therefore the physical interpretation is more difficult in this case. The
appearance of even harmonics and the two viscoelastic components is connected with the
asymmetry of the response in relation to the undeformed state. In its turn the asymmetric response
is probably a consequence of the structural changes in the course of deformation. In the case of the
dilational surface rheology it can be caused by the aggregate formation and destruction in the
surface layer [50, 51, 52, 53, 54, 55, 56, 57, 58, 59].

The possibility of the analysis of a nonlinear signal with both odd and even harmonics allows the

application of the method by Yu et al. to the interpretation of experimental data on the dilational
14



surface viscoelasticity. The absolute values of the local viscoelastic moduli (the elastic component
at minimum and maximum surface deformations, the viscous component at minimum and
maximum deformation rates) in this case depend on the direction of the deformation. An example of
the application of this method to the results for mixed PAA/DTAB solutions at pH 9.2 will be given

in the next section.

3.4. Comparison of mathematical tools

The Fourier analysis gives overall information on frequency dependence (i.e., on the amplitude
of the harmonics components) of the dynamic surface properties, while the main variable in the
stress decomposition method is the deformation of the system in four sections of the oscillation
cycle, retaining specific information about the nonlinear behaviour. As a result, these two
approaches become complementary and the detailed analysis of experimental data requires
application of the both of them.

The estimation of the THD parameter requires representation of the measured oscillations of the
surface tension in a complex form and their expansion into the Fourier series according to the
following algorithm [60]
2A &

Re{G(f,)}~ Z : g cos(27 ft,)
2N & (13)
Im{G(fn)}~ ~ ng sin(27 f,1,)

cyel® k=0
Here the summation is performed over all points of all whole cycles included in a selected

temporal interval. Re{G(f,)} and Im{G(f,)}are the real and the imaginary parts of the complex
transformed function, G , of frequency, fn . &, 1s the experimental value of surface tension (or of
area) at time #; , A is the time interval between two consecutive points, chd is the number of

cycles in a selected temporal interval, T/ 2 is a half of the oscillation period.

After this operation, the amplitude of fundamental harmonic a; and amplitudes of higher

harmonics ay, a3, . . ., a, can be calculated according to the following equation

a, =[Re{G(1, )} + m{G( £, )} )"

The choice of the number n of higher harmonics depends on the system under examination.
According to the most usual practice the THD-value is determined up to the fifth harmonic
component (i.e., n = 5).
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In the case of the stress decomposition method [44, 46] one has to generate the three new
functions f(-x, y), f(x,-y) and f(-x,-y) from the set of experimental data on the surface strain x, the
surface strain rate y and the surface stress Ay(t)=f(x,y)). This allows calculation of 7;, 7>, 73 and 74
according to equation (12). After this calculation, the coefficients of the polynomial fitting of 7, can

be used for the calculation of the local viscoelastic moduli [46].

4. Experiments and results

4.1. Adsorption and spread layers of polymers, micro- and nanoparticles
Aqueous solutions of various polymers usually display a linear response to the surface
expansion/contraction in a rather broad interval of surface strains. For example, the amplitude of the
surface tension oscillations of concentrated (2 wt. %) solutions of sodium polystyrene sulfonate was
proportional to the corresponding amplitude of the surface area oscillations up to AA/A =+ 15 %, at
least [60]. On the other hand, the nonlinear behaviour of insoluble polymer monolayers at relatively
low strains is a more frequent phenomenon. Hilles et al. studied in detail the deviations from linear
rheological behaviour for insoluble Langmuir monolayers of a few hydrophobic nonionic polymers
[61]. These deviations at a given oscillation amplitude increased in the sequence: poly(vinyl
acetate) (PVAc), poly(octadecyl acrylate), poly(vinyl stearate), when the quality of the water-air
interface as a solvent decreased. In the semidilute regime of polymer monolayers the deviations
from linear behaviour appeared at lower surface deformations if the surface concentration was
higher. The slope of the dependence of the dilational surface modulus on the strain amplitude
increased monotonically with the strain. In the concentrated regime one could observe some new
phenomena. The slope of the dependence of the dilational surface modulus on the surface strain
could decrease at the increase of the strain amplitude if this quantity and the surface concentration
exceeded some critical values. Simultaneously the surface pressure decreased continuously in the
course of surface oscillations. The observed “pseudo-plastic behaviour” was probably a
consequence of the irreversible elongation of macromolecules in the direction perpendicular to
interface at the surface compression. Alternatively, the “pseudo-plastic behaviour” may be
attributed to anisotropy of the surface properties after the elongation of macromolecules. During the
subsequent surface expansion the system was unable to recover its initial conformation and the

surface pressure took a lower value due to a decrease of the number of polymer contacts with the
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interface. As a result the surface pressure was lower after a cycle of compression/expansion than
before it [61].

Hilles et al. also measured the dynamic surface elasticity of a spread monolayer of latex
microparticles at the water — n-octane interface [61]. At the high relative strain amplitude of 22 %
the system was weakly nonlinear with the THD parameter a little higher than 10. The behavior of a
monolayer of polystyrene (PS) latex particles at the surface of 0.01 M sodium chloride solution
proved to be more complicated [62]. The surface pressure started to increase at the compression
when the distance between the particle centers was about twofold their diameters. The surface
elastic modulus increased at the further compression and one could observe a transition to a closed
packed monolayer when the modulus approached about 50 mN m™. After that the modulus
increased rather abruptly to the values higher than 500 mN m™, went through a maximum and
decreased to almost zero at the monolayer collapse (at surface pressures close to 50 mN/m). In the
range of surface particle concentrations below the elasticity maximum, the system displayed a
linear response to the oscillations of the surface area with the amplitude of 2 %. At higher surface
concentrations, the THD parameter increased strongly indicating the generation of higher
harmonics. The observed nonlinearity was a consequence of the high surface elasticity. The surface
pressure reached the critical value of the monolayer collapse even at small surface compressions in
the region beyond the elasticity maximum and did not change after that until the monolayer
expansion when it started to decrease again (Fig. 2). The constancy of the surface pressure at the
monolayer collapse indicated that the rate of compression/expansion was much less than the
collapse rate. The surface rheological data together with the results of optical methods allowed
determination of the collapse mechanism of the monolayer of PS microparticles [62]. Unlike the
case of a monolayer of silica nanoparticles, where one could observe the formation of multilayers
beyond the critical collapse pressure [63], the collapse of the monolayer of PS microparticles was

due to the monolayer buckling.
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Fig. 2. Surface pressure oscillations for monolayers of PS particles on the surface of 0.01M NaCl

solution at I'T = 32 mN/m (red closed squares) and at I'T = 49 mN/m (blue open circles).

In the case of spread and adsorbed monolayers of silica nanoparticles one can also observe a
nonlinear response to surface area oscillations. Moreover, the addition of silica nanoparticles to
insoluble lipid monolayers can enhance the nonlinearity of the system [64].

The negatively charged silica nanoparticles are hydrophilic but the adsorption of a cationic
surfactant at their surface makes them amphiphilic and promotes their adsorption at the liquid-gas
interface. The surface properties of the aqueous dispersion of 0.2 % in weight of monodisperse
silica nanoparticles with the average diameter of 10 nm and with the addition of
cetyltrimethylammonium bromide (CTAB) depend strongly on the surfactant concentration [63]. At
the concentrations lower than 1 uM the surface elasticity is zero, the particles are hydrophilic and
cannot be adsorbed at the liquid surface. In the surfactant concentration range from about 1.5 to 20
uM the surface dilational modulus almost does not depend on concentation and the system is
characterized by linear rheological behavior at the changes of the surface area up to about 10 %.
However, at the concentrations higher than 20 uM the behavior changes abruptly. The response to
the oscillations of the surface area becomes nonlinear and the surface dilational modulus can reach
extremely high values between 300-1000 mN m™, which depend strongly on the amplitude and
duration of the surface oscillations. The surface tension after the oscillations was always lower than

before them. When the oscillations stopped the surface tension started to increase and returned to its
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original value within a few hours. This means that the surface perturbations caused strong changes
of the adsorption layer structure.

The observed nonlinear behavior has the following explanation. A dense rigid adsorption layer
of nanoparticles forms at the surfactant concentrations higher than 20 pM. Even small surface
compressions can cause the destruction of the layer and formation of some patches of almost
incompressible multilayers. The subsequent expansion results in a splitting of the rigid layer (Fig.
3). New portions of nanoparticles from the subphase can fill in the empty space between the islands.
The next compression leads to the formation of new aggregates and the process repeats again. The
number of aggregates of high surface elasticity increases in the course of oscillations. The
summation rule of Lucassen for a composite film containing incompressible aggregates shows that
the film elasticity increases strongly with the increase of the surface area covered by the aggregates
[65]. These ideas explain the extremely high surface elasticity and its strong dependence on the

oscillation amplitude and the number of cycles of compression/expansion.
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Fig. 3. A scheme of multilayer formation of silica nanoparticles in the course of oscillations of

the surface area in the Langmuir trough.

The results of the Brewster angle microscopy agree with the conclusions from rheological
measurements. At surfactant concentration below 20 uM, the adsorption layer is homogeneous and
its morphology does not change during slight oscillations. Beyond this concentration the layer is

also homogeneous in the system without external perturbations but after slight deformations one
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can see some surface aggregates. They are stable and do not change their position in the layer
during a few hours. This observation indicates the high density of the adsorption layer. The regions
between the multilayer aggregates are also filled by nanoparticles. The further periodical
compressions and expansions of the surface result in a splitting of the aggregates. Their number
increases and their size decreases. The morphology of the surface layer in this concentration range
depends on the amplitude and duration of the surface oscillations leading to a nonlinear response to

surface compression/expansion [63].

4.2. Solutions of polyelectrolyte/surfactant complexes

The mixed adsorption layers of polyelectrolytes and oppositely charged surfactants at the liquid-
gas interface frequently display a nonlinear response to expansion and contraction. Ritacco et al.
showed that this behaviour can be connected with the heterogeneity of the layer [53]. Even at slight
compressions (< 10 %) the thickness of the layer of a copolymer of polyacrylamidopropane
sulfonate with polyacrylamide and dodecyltrimethylammonium bromide (DTAB) became
inhomogeneous at the macroscopic scale leading to poor reproducibility of the dynamic surface
properties and the disagreement between the results of different methods. Similar behaviour was
also observed for the layers of a copolymer of sodium 2-acrylamido-2-methyl-1-propansulfonate
with N-isopropylacrylamide and DTAB [54].

Later on, a strong nonlinear response was discovered for the mixed solutions of
poly(diallyldimethylammonium chloride) with sodium dodecyl sulfate (PDADMAC/SDS) in a
narrow surfactant concentration range close to the concentration of polyelectrolyte monomers,
where the THD parameter increased a few times [50]. In this range the surface tension increased
during surface expansion but almost did not change upon compression. The authors assumed that
the surface layer contained some three-dimensional microparticles (polyelectrolyte/surfactant
aggregates) in this concentration range and the main relaxation process consisted in the matter
exchange between these particles and the surrounding adsorption layer. The characteristic time of
this process was less than the oscillation period when the surface tension approached a critical value
of about 36.4 mN m™' but the relaxation process was frozen at higher surface tensions probably due
to the decrease of the number of aggregates.

Arriaga et al. used similar ideas to explain the nonlinear rheological behavior of lipid monolayers
subjected to a dilational deformation [56]. The assumed matter exchange in this case was between
an expanded continuous two-dimensional phase and condensed domains in it. A model based on the
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Fick’s law for surface diffusion gave a possibility to reproduce some features of the observed
nonlinear effects.

The nonlinear rheological behavior of the mixed solutions of polyacrylic acid with
alkyltrimethylammonium bromides [51, 52], polymethacrylic acid with DTAB [51] and
polyethylenimine with SDS [57] was studied in more detail. It was shown that one can divide the
whole concentration range of surfactant concentrations into four regions characterized by different
kinetic dependencies of the dilational modulus. At low concentrations (region I) the kinetic
dependencies were monotonical, the surface tension oscillations were sinusoidal and the surface
elasticity reached high values at the approach to equilibrium. Beyond a certain critical concentration
the behaviour changed abruptly (region II). The surface dilational modulus near equilibrium
dropped abruptly and its kinetic dependencies became non-monotonical (Fig. 4). The surface
elasticity reached high values in a short time but decreased strongly after that. Simultaneously one
can observe a transition from pure harmonical oscillations to nonlinear behaviour (Fig. 5) with a
strong increase of the THD (Fig. 4). The observed kinetic dependencies allow tracing the changes
of the adsorption layer structure in the course of adsorption. The adsorption layer becomes
heterogeneous if the surface pressure reaches a certain critical value leading to a new mechanism of
the relaxation of surface stresses at the expense of matter exchange between the aggregates and
surrounding monolayer. The gradual increase of the size and/or number of aggregates results in
stronger deviations from linear behaviour, i.e. the increase of higher harmonics of the surface
tension oscillations (Figs. 4, 5 and 6). The transparency of polyacid/DTAB solutions at
concentrations corresponding to the nonlinear surface rheological behaviour excludes a possibility
of the influence of any macroscopic aggregates from the bulk phase on the surface tension
oscillations and the described effects have to be induced by microaggregates at the surface. Note
that one can observe the aggregate formation in the adsorption layer of polyelectrolyte/surfactant
complexes by the ellipsometry [50, 58] and atomic force microscopy at surfactant concentrations

beyond the region of the abrupt drop of the dynamic surface elasticity [59].
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At higher surfactant concentrations (region III) the size and/or number of aggregates increases
further in the course of adsorption. This leads to stronger interactions between the aggregates, the
surface pressure increases and the surface elasticity starts to increase again [51, 52]. At a certain
critical surface pressure some aggregates can be displaced from the surface into subphase. In this
case the surface stresses can be relaxed at the expense of the matter exchange between the two
layers of aggregates and the surface elasticity goes through the second local maximum (Fig. 7). At
even higher concentrations (region IV) the surfactant forms micelles in the bulk phase and the
polyelectrolyte is solubilized in them. The surface properties are determined by the adsorption of

surfactant monomers and the surface tension oscillations become sinusoidal again.
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for PAA/DTAB solutions at PAA concentration of 0.005 wt % and DTAB concentration of 4 x 10° M.

The application of the stress decomposition method confirms the obtained conclusions. The
expansion of the surface tension oscillations into four components allows calculation of the local
surface elasticities, for example, for PAA/DTAB solutions at pH 9.2 (Fig. 8). The local surface
elasticity at the maximal surface compression differs significantly from the value at the maximal
expansion. In the latter case the adsorption layer is almost pure elastic. The real part of the surface
dilational modulus is 24 mNm™ and the imaginary part is 1 mNm™'. These values are characteristic
for the homogeneous adsorption layer at surface pressures just before the aggregate formation. At
the same time, the layer at the maximal compression is viscoelastic with the real part of the
dilational modulus of about 7 mNm™ and the imaginary part of 6 mNm™'. These data agree with the
estimations from Fig. 1 and show that the analysis of the nonlinear system response to surface
compression and expansion gives a possibility to obtain auxiliary information on the adsorption

layer structure.
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concentration of 4 x 10° M. The pure elastic 7;, pure viscous 7, two viscoelastic 73 and 74
components are given in black, green, blue and cyan colors, respectively. The sum of all the

components is a red line.

5. Conclusions

The interfacial adsorption layers exhibit a nonlinear dilational viscoelasticity, with memory, in
dependence of the deformation amplitude.

Nonequilibrium thermodynamic formulations allow the phenomenology of interfacial
viscoelasticity to be interpreted either for small and large area deformations, providing a powerful
theoretical framework to investigate the dynamics of disperse multiphase systems.

A number of mathematical tools can be applied for quantifying the nonlinear interfacial
viscoelastic behaviour, complementing the nonequilibrium thermodynamics. The Volterra series
appears as a good mathematical modelling tool as it is a generalisation, including the memory
effects, of the Taylor’s series. Actually in principle the Volterra series extends the description of the
interfacial viscoelastic properties to the nonlinear domain by n-th order frequency response
functions (or n-th impulse response functions), in addition to the interfacial dilational modulus

pertaining to the linear domain, however up-to-now no specific experimental procedure for
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determining the higher-order properties is devised in the surface-science field. In practice, Fourier-
series analysis (together with the relevant THD-parameter) and the stress decomposition method
appear useful complementary mathematical tools for a quantitative characterization of the nonlinear
interfacial rheological behaviour.

The Fourier analysis gives a global (or intracycle) information on frequency dependence (i.e., on
the amplitude of the harmonics components) of the dynamic surface properties, while the stress
decomposition method analyzes the intercycle nonlinearities of the system in four sections of the
oscillation cycle.

Adsorption and spread layers of polymers, polyelectrolyte/surfactant complexes and
nanoparticles show notable nonlinear interfacial viscoelastic behaviour. The observed nonlinear

findings reveal formation of complexes, patches, and other different interfacial structures.
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Figure(s)

Figure captions

Fig. 1. The dependence of the change of surface tension on relative changes of the surface area
(Lissajous plot) for mixed solutions of polyacrylic acid and dodecyltrimethyl ammonium bromide at
pH 9.2. The tangent slope of the lines corresponds to the real part of the interfacial dilational
modulus at maximal compression (black line), maximal expansion (red line), and at minimum strain

in the course of compression (blue line), in the course of expansion (green line).

Fig. 2. Fig. 2. Surface pressure oscillations for monolayers of PS particles on the surface of

0.01M NaCl solution at IT~= 32 mN/m (red closed squares) and at [T = 49 mN/m (blue open circles).

Fig. 3. A scheme of multilayer formation of silica nanoparticles in the course of oscillations of

the surface area in the Langmuir trough.

Fig. 4. The kinetic dependencies of the real part, €, , of the surface dilational modulus (blue
squares) and total harmonic distortion, THD, (red circles) for PAA/DTAB solutions at PAA
concentration of 0.005 wt % and DTAB concentration of 4 x 10 M.

Fig. 5. Surface tension oscillations for PAA/DTAB solutions at a frequency of 0.075 Hz, PAA
concentration of 0.005 wt % and DTAB concentration of 4 x 10> M after 15 (upper green curve),

19 (central blue curve), and 24 min (lower red curve).

Fig. 6. Spectrum of the surface tension oscillations for PAA/DTAB solutions at a frequency of
0.075 Hz, PAA concentration of 0.005 wt % and DTAB concentration of 4 x 10 M after 24 min
(lower red curve in Fig.5). Total harmonic distortion THD% = 29.83 .

Fig. 7. The kinetic dependencies of the real part, &, , of the surface dilational modulus (squares)
for PAA/DTAB solutions at PAA concentration of 0.005 wt % and DTAB concentration of 4 x 103 M.

Fig. 8. The application of the stress decomposition method to surface tension oscillations for
PAA/DTAB solutions at a frequency of 0.075 Hz, PAA concentration of 0.005 wt % and DTAB
concentration of 4 x 10> M. The pure elastic t;, pure viscous T, two viscoelastic 73 and 14
components are given in black, green, blue and cyan colors, respectively. The sum of all the

components is a red line.
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Fig. 1. The dependence of the change of surface tension on relative changes of the surface area
(Lissajous plot) for mixed solutions of polyacrylic acid and dodecyltrimethyl ammonium bromide at
pH 9.2. The tangent slope of the lines corresponds to the real part of the interfacial dilational
modulus at maximal compression (black line), maximal expansion (red line), and at minimum

strain in the course of compression (blue line), in the course of expansion (green line).
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Fig. 2. Surface pressure oscillations for monolayers of PS particles on the surface of 0.01M NaCl

solution at I'T = 32 mN/m (red closed squares) and at I'T = 49 mN/m (blue open circles).
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Fig. 6. Spectrum of the surface tension oscillations for PAA/DTAB solutions at a frequency of
0.075 Hz, PAA concentration of 0.005 wt % and DTAB concentration of 4 x 10 M after 24 min

(lower red curve in Fig.5). Total harmonic distortion THD% = 29.83 .
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Fig. 7. The kinetic dependencies of the real part, ¢, , of the surface dilational modulus (squares)

for PAA/DTAB solutions at PAA concentration of 0.005 wt % and DTAB concentration of 4 x 10> M.

surface tension (mN m™)

Fig. 8. The application of the stress decomposition method to surface tension oscillations for
PAA/DTAB solutions at a frequency of 0.075 Hz, PAA concentration of 0.005 wt % and DTAB
concentration of 4 x 10° M. The pure elastic t;, pure viscous T, two viscoelastic 73 and 14
components are given in black, green, blue and cyan colors, respectively. The sum of all the

components is a red line.
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