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Hydrodynamics of granular particles on a line
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We investigate a lattice model representing a granular gas in a thin channel. We deduce the hydrodynamic
description for the model from the microscopic dynamics in the large-system limit, including the lowest finite-size
corrections. The main prediction from hydrodynamics, when finite-size corrections are neglected, is the existence
of a steady “uniform longitudinal flow” (ULF), with the granular temperature and the velocity gradient both
uniform and directly related. Extensive numerical simulations of the system show that such a state can be observed
in the bulk of a finite-size system by attaching two thermostats with the same temperature at its boundaries. The
relation between the ULF state and the shocks appearing in the late stage of a cooling gas of inelastic hard rods
is discussed.
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I. INTRODUCTION

Statistical physics offers a systematic computational
scheme for averages and fluctuations, suitable for systems
of particles at thermal equilibrium [1]. A similar scheme for
systems far from equilibrium is lacking and represents an
open challenge [2]. An example of a nonequilibrium statistical
system pervading many human activities is given by granular
fluids, an assembly of inelastic hard particles agitated by some
external driving mechanism [3–5].

The fluidized state of granular matter is an excellent testing
ground for kinetic theory [6–8]. One of the most widely used
models in granular kinetic theory is a system composed of
inelastic smooth hard particles [9–11]. In this context, the
inelastic Boltzmann (or Enskog) equation has been shown to
be a powerful tool. However, the structure of the collision
term for inelastic hard particles makes the corresponding
kinetic equation a tough mathematical problem, for which
exact solutions and rigorous results are difficult to obtain.

In view of the above issue, models that simplify the collision
term have been proposed to make their analytical investigation
easier, while preserving similar physics. This is the spirit
of the Maxwell-like collision model, either elastic [12] or
inelastic [13], in which the collision rate is assumed to be
independent of the relative velocity. Some experts claim that
“What harmonic oscillators are for quantum mechanics, and
dumbbells for polymer physics, is what elastic and inelastic
Maxwell models are for kinetic theory” [14]. Indeed, many
rigorous results in the inelastic case have been derived, both in
the freely cooling [13–21] and the uniformly heated [13,22,23]
cases. As pointed out in a review article by Villani [24], the
most relevant questions in inelastic Maxwell models have been
solved in homogeneous situations and, rather than going for
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refinements, the current priority is to deal with inhomogeneous
states.

The nonconservation of energy has several, physically
relevant, implications. First, the distribution function is in
general non-Gaussian [25,26], even for the stationary states
reached when some external mechanism injects energy into
the system. Second, and most importantly, kinetic theory es-
tablishes a link between the microscopic and the macroscopic,
hydrodynamic, descriptions, by making it possible to derive
the latter from the former [6,10,11]. Along this route, the
nonconservation of energy introduces another timescale that
makes more delicate the critical requirement on separation
of scales needed to accomplish it [27–29]. However, there are
many situations, typically in dimensions larger than one and for
dilute quasielastic systems, in which hydrodynamic equations
fairly reproduce real granular experiments qualitatively [30] or
even quantitatively [31,32].

Here we aim at building and verifying the hydrodynamic
equations for an idealized one-dimensional (1d) lattice model
[15,33] with a Maxwell-like collision rule. The model sim-
plifies the dynamics of a granular fluid in a 1d channel with
negligible density fluctuations, a condition that reasonably
holds in not too dilute systems. A strong connection between
this idealized model and an inelastic 1d gas of hard rods [34]
has been established in previous studies [15]. Specifically,
there appears a nontrivial correspondence between the velocity
profiles of the lattice model and the shocklike structures of the
granular gas of hard rods in the asymptotic cooling regime.
The 1d lattice model has been further studied in [35,36] and
also generalized to two dimensions [37].

In spite of the above described strong connection between
1d granular gases and the 1d Maxwell model, the hydro-
dynamic equations of the latter have been neither written
nor analyzed. Then, in the present study, first we derive
the hydrodynamic equations from the microscopic dynamics.
Afterwards, we focus on a solution of them: the steady uniform
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longitudinal flow (ULF). We argue that such a state resembles
the shock profiles observed in the late cooling regime of many
1d granular systems. Also, we incorporate finite-size correc-
tions and compare them with simulations of the microscopic
dynamics.

Section II is devoted to a brief overview of previous studies
on granular models in 1d and their comparison with hydrody-
namic theories. Our model is introduced in Sec. III; in the same
section its hydrodynamic equations are derived and the ULF
solution is discussed. Section IV presents the numerical results
and their comparison with theory. Finite-size corrections and
boundary layers are discussed in Sec. V. Conclusions are drawn
in Sec. VI. Appendices illustrate the technical aspects of the
derivation of the hydrodynamics (Appendix A) and of the
boundary layer calculations (Appendix B), and give also some
numerical results for the local velocity distributions and spatial
correlations (Appendix C).

II. 1D GRANULAR HYDRODYNAMICS:
A BRIEF OVERVIEW

Despite the progress made during the last decades in the
realm of granular kinetic theory and hydrodynamics, the
validity of a hydrodynamic description in 1d systems is still
under debate. It should be stressed that 1d systems essentially
differ from higher-dimensional setups in which the gradients
have a well-defined direction: particles cannot hop over their
nearest neighbors, which hinders the necessary “mixing” to
obtain a continuum description.

We briefly review some of the main results on 1d granular
hydrodynamics below. The 1d version of the granular Navier-
Stokes equations reads

Dtρ = −ρ∂xu, (1a)

ρDtu = −∂xP, (1b)

ρDtT = −2P∂xu − 2∂xq − ρζT , (1c)

where the density ρ, the mean velocity u, the granular temper-
ature T , the pressure P , the heat flux q, and the cooling rate ζ

depend on (x,t). See, for instance, [38] for their microscopic
definitions. As usual, we have used the notation Dt ≡ ∂t + u∂x

for the material derivative.
One of the first tests of 1d granular hydrodynamics was

carried out in [39]. Therein, a gas of inelastic hard rods
was confined by one or two thermostatted walls. Numerical
simulations revealed an incompatibility between Eqs. (1) and
the observed steady hydrodynamic profiles. Later, the same
system has been demonstrated to lack a pure thermodynamic
limit, i.e., infinite size at constant restitution coefficient [40,41].

Subsequent studies of the 1d granular gas focused on the
cooling state, that is, with periodic boundary conditions and
no external driving. The 1d gas of hard rods develops strong
inhomogeneities, which include clusters and shocks, for long
enough times [34]. Extensive numerical simulations [42] have
revealed that this 1d gas becomes then indistinguishable from
a perfectly “sticky” gas [34,43,44], regardless of its actual
inelasticity, a conjecture analyzed also in higher dimensions
[45,46] and for wet particles [47]. Interestingly, the (inviscid)
Burgers equation Dtu = μ∂2

xu [48,49], with μ → 0, describes

the sticky gas [50–52]. Notwithstanding, to the best of our
knowledge, an analytical justification of the Burgers equation
in 1d granular gases has not been obtained yet. A first step
in this direction would be a neat derivation of 1d granular
hydrodynamics.

1d continuum equations can appear also in higher dimen-
sions, when only one direction develops a gradient, as in
[53] for a steady case under gravity or in cooling systems
with high aspect ratio without gravity [54–56]. In the latter
case, granular hydrodynamics predicts that the so-called flow
by inertia Dtu = 0 sets in during the highly inhomogeneous
stage of cooling. Therefore, there also appear shocks in u(x,t),
which imply a singularity in ρ(x,t). In addition, molecular
dynamics simulations of this channel system have made clear
that such singularities are approached following the hydrody-
namic predictions, that is, the flow by inertia scenario [55].
Eventually, when close-packing is almost reached, the flow by
inertia picture breaks down [56,57].

III. THE MODEL AND ITS HYDRODYNAMICS

Here, we study the 1d lattice model first introduced in
Refs. [15,33] to mimic the evolution of a 1d granular gas, but
neglecting density fluctuations. The model is a 1d space-time
discretized cellular automaton, where we have one unit-mass
particle at each site l, l = 1, . . . ,N . Particles are characterized
by their (scalar) “velocity” vl , which evolves according to
a collisional dynamics. Note that particles do not move but
remain on the same site; in this way density fluctuations are
neglected.

At each discrete time step, a random pair of adjacent sites
is chosen and their corresponding velocities, say v and ṽ, are
updated according to

v′ =v + 1 + α

2
(ṽ − v), ṽ′ =ṽ − 1 + α

2
(ṽ − v), (2)

if v and ṽ satisfy the so-called kinematic constraint, that is, if
the corresponding particles are “approaching” and not ‘moving
apart’, see Fig. 1. In Eq. (2), v′ and ṽ′ are the postcollisional
velocities, and α ∈ (0,1) is the restitution coefficient. Momen-
tum is conserved in collisions, v′ + ṽ′ = v + ṽ, but energy
is not: K ′ − K = 1

2 (α2 − 1)(ṽ − v)2 < 0, with K = v2 + ṽ2.
The choice of the (candidate) colliding pair is uniformly
distributed among all nearest-neighbor pairs, as for “pseudo-
Maxwell” molecules [12,13,15,24].

The dropping of the kinematic constraint leads to a com-
pletely different class of models without kinematic constraint
[58–66]. This choice is justified by a different physical picture:
the on-site velocities on the lattice are thought as transverse,
not longitudinal, velocities. This interpretation is confirmed by

FIG. 1. Allowed (green, left) and forbidden (red, right) collision,
according to the kinematic constraint. Arrows show (precollisional)
velocities of a pair of (candidate) colliding particles. Green pairs
actually collide; red pairs do not collide.
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the equivalence of the corresponding hydrodynamic equations
with those for the shear mode of inelastic gases in higher
dimension [60,61]. Also, variants of the model without kine-
matic constraint have been employed to analyze the dynamical
evolution of social and economic systems [20,67–72].

A physical comment on our adoption of nonmoving par-
ticles on a lattice is in order. This may be understood as if
we were adopting a Lagrangian coordinate in the actual 1d
granular gas, by characterizing the particle positions by their
index i instead of their real positions xi . The corresponding
Lagrangian density profile, defined by the mass per unit of
space measured by i, would be uniform. Within this physical
picture, the partial time derivative ∂t in our model is expected to
play the role of the material derivative Dt in the 1d granular gas.

A. Microscopic evolution of velocity and energy

At discrete time p, the pair {yp,yp + 1} that may undergo a
collision is chosen at random and the velocity on site l at time
p + 1 is given by

vl,p+1 − vl,p = −jl,p + jl−1,p, (3)

where we have defined the microscopic momentum flux from
site l to site l + 1 at time p:

jl,p = δyp,l �(vl,p − vl+1,p)
1 + α

2
(vl,p − vl+1,p). (4)

Therein, δij is Kronecker’s delta, which identifies the colliding
pair, and �(x) is Heaviside’s step function, which imposes
the kinematic constraint. The random integer yp is uniformly
distributed in [1,L], where L is basically equal to N but
depends on the boundary conditions. For a thermostatted
system L = N + 1. Obviously, jl,p only differs from zero
when the pair (l,l + 1) actually collides. Note that no external
volume forces (like gravity, for instance) are being considered,
but they could be incorporated by adding a term fl,p to the
right-hand side of Eq. (3).

The evolution of the kinetic energy is obtained by squaring
Eq. (3), which after some algebra yields

v2
l,p+1 − v2

l,p = α2 − 1

4
[δyp,l�(vl,p − vl+1,p)

× (vl,p − vl+1,p)2 + δyp,l−1�(vl−1,p − vl,p)

× (vl−1,p − vl,p)2] − Jl,p + Jl−1,p. (5)

The microscopic energy current is Jl,p = (vl,p + vl+1,p)jl,p.
The sink terms in squared brackets on the right-hand side of
Eq. (5) stem from the inelasticity of collisions and lead to a
monotonic decrease of the total energy. The last two terms
are a discrete spatial derivative and correspond to the energy
flux between neighboring sites, which is already present in the
conservative case α = 1.

B. Equations for the velocity and temperature fields
in the continuum limit

The average (over realizations) velocity field ul,p = 〈vl,p〉
evolves according to

ul,p+1 − ul,p = −〈jl,p − jl−1,p〉. (6)

To compute the last average, we introduce a local equilibrium
assumption

P2(vl,vl+1) � 1

2π
√

Tl,pTl+1,p

e
− (vl−ul,p )2

2Tl,p
− (vl+1−ul+1,p )2

2Tl+1,p . (7)

We also assume that ul,p and Tl,p are smooth functions of l

in the large system size limit L 	 1, more specifically that
the discrete derivatives ul+1,p − ul,p = O(L−1) and Tl+1,p −
Tl,p = O(L−1), which gives

〈�(vl,p − vl+1,p)(vl,p − vl+1,p)〉 ∼ √
Tl,p/π. (8)

This is a “modified” pressure; the usual ideal gas equation of
state ρT is replaced by

√
T because (i) collisions do not occur

at a rate proportional to
√

T , but at constant rate and (ii) density
ρ is uniform, ρ = 1. Therefore,

ul,p+1 − ul,p ∼ −1 + α

2L
(
√

Tl,p/π − √
Tl−1,p/π ). (9)

Now we introduce a continuum limit by defining spatial and
temporal variables as

x = ε l, t = ε2 p, ε = L−1 � 1, (10)

to obtain

∂tu(x,t) = −1 + α

2
∂x

√
T (x,t)/π + O(ε). (11)

We now discuss the average of Eq. (5) for the kinetic energy,
which contains both dissipative and transport terms. Within the
local equilibrium approximation, the average of the dissipative
or cooling term is

α2 − 1

4L
(Tl,p + Tl−1,p) = (α2 − 1)ε

2
Tl,p + O((α2 − 1)ε2),

(12)
which in the continuum limit reads

(α2 − 1)ε

2
T (x,t) + O((α2 − 1)ε2). (13)

This linear cooling, instead of the typical T 3/2 behavior, also
stems from the constant collision rate.

The average of the energy current, again under local equi-
librium, reads 〈Jl,p〉 = (1 + α) ε ul,p

√
Tl,p/π + O(ε2), so that

the average of the last two terms in Eq. (5) goes in the
continuum limit to

−(1 + α) ε2 ∂x[u(x,t)
√

T (x,t)/π ] + O(ε3). (14)

Comparing Eqs. (13) and (14), we see that they are of the
same order only when α2 − 1 = O(ε): this choice makes them
of order ε2, consistently with the scaling of the finite-time
difference on the left-hand side of Eq. (5), 
t = ε2. Therefore,
we introduce a “macroscopic inelasticity”

ν = L(1 − α2)/2 � 0. (15)

Taking into account that 〈v2〉 = u2 + T , we get

∂tT (x,t) = −νT (x,t) − 2
√

T (x,t)/π ∂xu(x,t) + O(ε),
(16)

where we have also made use of 1 + α ∼ 2 for L 	 1 with
constant ν. Moreover, Eq. (11) becomes

∂tu(x,t) = −∂x

√
T (x,t)/π + O(ε). (17)
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Equations (17) and (16) are the hydrodynamic equations
of the model to the lowest order. They coincide with the
hydrodynamic Eqs. (1) after identifying Dt → ∂t (Lagrangian
coordinate), ρ → 1, P → √

T/π [Eq. (8)], ζ → ν, and ∂xq =
0. The absence of dissipative transport (viscous stress and heat
flow) makes these equations close relatives of the so-called
ideal granular hydrodynamics [56,57,73].

C. Steady uniform longitudinal flow

In the large-system size limit, the stationary solution of
Eqs. (17) and (16) can be obtained. It suffices to ask that the
velocity flow in the middle of the system is 0 [74] to get the
following steady ULF profiles:

Ts(x) = T0, us(x) = ν

2

√
πT0

(
1

2
− x

)
, (18)

in which the constant T0 remains undetermined at this level
of description [75]. The steady ULF in Eq. (18) does not
require the presence of thermostats at the boundaries; it is self-
sustained. Nevertheless, as demonstrated numerically below,
one can recover the above steady ULF profile at the system bulk
in a finite-size system by attaching two identical thermostats
at the boundaries. Also, note that this ULF, at difference with
the one discussed in Ref. [38], is incompressible because no
mass flow is allowed in our lattice system by definition.

Quite strikingly, regions with a linear velocity profile with
negative slope are also observed in the Lagrangian coordinate
during the formation of shocks, in numerical simulations of
the inelastic 1d gas of hard rods [15,34], in the inelastic hard
disk gas in a channel [55], and in the lattice model [15], all in
the cooling regime at long times. This suggests an interesting
connection between the ULF and the shocks characterizing
granular cooling in 1d (or quasi-1d) systems.

IV. NUMERICAL RESULTS

Numerical simulations of the model have been carried out
and compared with the previous theory. A system with N

particles is initialized with uncorrelated, normally distributed
random velocities. We introduce thermostats at its boundaries,
at sites 0 and N + 1, to make the system reach a steady state.
Then, at each time step p, the uniformly distributed random
integer yp choosing the candidate colliding pair {yp,yp + 1} is
drawn between 0 and N , that is, L = N + 1. The velocities
for the peripheral sites of indexes 0,L are randomly and
independently drawn from a normal distribution with zero
average and unit variance [76]. Due to the kinematic constraint,
the collision described by Eq. (2) only takes place if vyp

−
vyp+1 > 0. Otherwise, velocities remain unchanged. A large
number of independent long runs has been performed to get
average stationary profiles of velocity and energy. Typically,
our data correspond to 105 runs of more than 102L2 steps each,
starting from independent normally distributed velocities.

Our numerical results for the average temperature profiles
are shown in Fig. 2 for different values of the macroscopic
inelasticity ν. From them, we measure the temperature of the
largest system at mid-position, denoting it by T1/2 ≡ T (x =
1/2). Later, we compare T1/2 with the bulk temperature T0

FIG. 2. Average profile for the steady temperature, for different
values of the macroscopic inelasticity ν. The solid (red) lines stand
for the estimated value of the temperature T1/2 in the system bulk.

of Eq. (18), which predicts a constant-temperature profile, in
quite good agreement with our observed numerical profiles.

Numerical results for the average velocity profiles are
reported in Fig. 3. Again, the comparison with the theory is
satisfactory: in the bulk, the profiles are linear with a slope
almost perfectly matching the one given by the value of T1/2

in Fig. 2. Both for the temperature and the average velocity,
deviations from the theoretical ULF profiles are apparent near
the boundaries, especially for ν = 2. See below for a closer
look at this issue.

V. FINITE-SIZE CORRECTIONS
AND BOUNDARY LAYERS

In Appendix A, we show how to incorporate finite-size
corrections. Still, we do so assuming local equilibrium, in order

FIG. 3. Average profile for the stationary velocity, for the same
values of ν considered in Fig. 2. The solid (red) lines stand for the
theoretical expression for us(x) in Eq. (18), with T0 given by the
numerical estimate T1/2 for the bulk temperature in Fig. 2.
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FIG. 4. Average temperature profiles T (x) in the stationary state
for different values of ν (blowup of data in Fig. 2). Red lines stand
for the numerical estimate T1/2 for the bulk temperature, see Fig. 2,
whereas black lines give our analytical prediction T0, as given by
Eq. (20).

to estimate in the simplest way the effect of these higher-
order terms. Specifically, these O(ε) corrections introduce
second-order spatial derivatives in the evolution equations, and
these viscous terms make it possible to accommodate all the
boundary conditions. The considered thermostats impose that

u(0,t) = u(1,t) = 0, T (0,t) = T (1,t) = 1. (19)

The smallness of the viscous terms brings to bear two
boundary layers close to the thermostats at x = 0,1; see
Appendix B for details. Therein, we determine the unknown
bulk temperature T0 by asymptotic matching [77], which yields

ϕ(T0) =
√

π

4
ν, with ϕ(T0) ≡

√
1

3
+ 2

3
T

−3/2
0 − T −1

0 . (20)

The function ϕ(T0) decreases monotonically from infinity to
zero as T0 is varied from zero to unity. Therefore, Eq. (20)
tells us that T0 is a monotonically decreasing function of the
macroscopic inelasticity ν, with

lim
ν→0

T0 = 1, lim
ν→∞ T0 = 0. (21)

These two limit results are expected on a physical basis: in
the elastic limit ν → 0, the system should be in equilibrium
at the temperature of the heat baths whereas in the strongly
dissipative limit ν → ∞ all the energy is dissipated in the
boundary layers before reaching the bulk, which is then at
zero temperature [78].

A more precise inspection of the temperature profiles is
shown in Fig. 4, aimed to emphasize the deviation from the
uniform bulk profile in Eq. (18). Interestingly, the estimate for
the bulk temperature T0 stemming from our finite-size analysis,

as given by Eq. (20), is quite close to our numerical estimation
T1/2. Most importantly, the success of our theory is good for
very different values of ν, both small and large. The absolute
error |T0 − T1/2| increases very slowly with ν, ranging from
0.01 for ν = 0.2 to 0.02 for ν = 20. The relative error is also
reasonable, remaining under ten percent for ν � 2.

In Appendix C, we look into possible sources of discrepancy
between simulations and theory. We focus on violations of
local equilibrium, Eq. (7): both non-Gaussian local velocity
distributions and nearest-neighbor correlations. Our prelimi-
nary conclusion is that the former are more important than the
latter.

VI. CONCLUDING REMARKS

We have analyzed a 1d lattice model, which by construc-
tion does not contain density fluctuations. Our derivation of
hydrodynamics can be thought as if carried out in an off-lattice
system but using a Lagrangian coordinate at the microscopic
level. The resulting Eqs. (17) and (16), in which finite-size
corrections have been neglected, tell us that a self-sustained
ULF steady state appears in the bulk. Therein, the granular
temperature is uniform and the average velocity has a linear
profile, whose slope is directly related to the temperature. In
order to observe such a steady state in a finite-size system, ther-
mostats at the boundaries must be introduced, as shown in our
numerical simulations which fairly compare with our theory.
The dependence of the bulk temperature on the temperature of
the thermostats is only obtained after incorporating finite-size
corrections to the theory.

Our work demonstrates that 1d granular hydrodynamic
equations, whose validity is still under debate, can be derived
by means of a proper continuum limit that keeps a finite macro-
scopic inelasticity, but in which the microscopic dynamics is
quasielastic. Our main assumption is the local equilibrium ap-
proximation, which has been shown to be valid in other simple
models for a wide range of the system parameters [60,61,79].
How to improve upon the current results by going beyond local
equilibrium is an open perspective for future work.

An emerging interesting conjecture is whether the system in
the cooling regime is still well described by our hydrodynamic
equations. In fact, the ULF discussed here seems to be similar
to the linear velocity profiles in shock regions of 1d cooling
granular gases, specifically for either hard rods on a line [34]
or hard disks in a channel geometry [55]. A verification of this
conjecture, together with a route to connect our theory with
the Burgers or flow-by-inertia equations, is currently under
investigation.
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APPENDIX A: HYDRODYNAMIC EQUATIONS WITH FINITE-SIZE CORRECTIONS

Here we derive the hydrodynamic equations, incorporating into them finite-size, O(L−1), corrections. First, we analyze the
evolution equation for the velocity: our starting point is Eq. (6), in which the average momentum current at site l is exactly
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given as

〈jl,p〉 = (1 + α)ε

2
〈�(vl,p − vl+1,p)(vl,p − vl+1,p)〉, ε = L−1, (A1)

since yp is an independent, uniformly distributed, stochastic integer choosing the specific pair that collides. We recall that L is
the total number of possible colliding pairs, whose relation to the number of sites N depends on the boundary conditions. The
average on the right-hand side of the above equation is done over all the velocities {vl,p,vl+1,p}, by assuming the local equilibrium
approximation written in Eq. (7) of the main text. The result is

〈�(vl,p − vl+1,p)(vl,p − vl+1,p)〉 = ul,p − ul+1,p

2

[
erf

(
ul,p − ul+1,p√
2(Tl+1,p + Tl,p)

)
+ 1

]
+ exp

[
− (ul,p − ul+1,p)2

2(Tl+1,p + Tl,p)

]√
Tl+1,p + Tl,p

2π
,

(A2)
where erf(z) is the error function defined by

erf(z) = 2√
π

∫ z

0
dt e−t2

. (A3)

Now we go to a continuum limit in space by assuming that both ul,p and Tl,p vary smoothly with the site index l. Then,
we define a continuous spatial variable x = εl, with ε = L−1 � 1, and make the mapping ul,p → u(x; p), Tl,p → T (x; p)
and, consistently, ul±1,p → u(x ± ε; p), Tl±1,p → T (x ± ε; p). Of course, this is also done for the current, jl,p → j (x; p) and
jl±1;p → j (x ± ε; p). In addition, we expand all the functions evaluated at x ± ε in powers of the small parameter ε, which
transforms the exact momentum balance Eq. (6) into

u(x; p + 1) − u(x; p) = − (1 + α)ε2

2

[
∂x

√
T (x; p)

π
− ε

2
∂2
xu(x; p) + O

(
ε2

)]
. (A4)

It is clearly seen that the evolution of u(x; p), being proportional to ε2, is very slow in discrete time. This suggests the introduction
of a continuous timescale t = p
t , with 
t = ε2 [80]. Over this scale, u(x; p + 1) − u(x; p) = 
t ∂tu(x,t) + O(ε4) and we
thus finally have

∂tu(x,t) = 1 + α

2

[
−∂x

√
T (x,t)

π
+ ε

2
∂2
xu(x,t) + O

(
ε2

)]
. (A5)

Next, we repeat the above procedure for the balance of energy equation. The corresponding expressions are much lengthier
than those for the average velocity above and thus we only give the final expressions for the averages of the dissipative and flux
terms on the right-hand side of Eq. (5). For the dissipative term, we have

(α2 − 1)ε

4
〈�(vl,p − vl+1,p)(vl,p − vl+1,p)2 + �(vl−1,p − vl,p)(vl−1,p − vl,p)2〉

= (α2 − 1)ε

2

[
T (x; p) − 2ε

√
T (x; p)

π
∂xu(x; p)

]
+ O

(
(α2 − 1)ε3

)
, (A6)

again within the local equilibrium approximation. For the flux terms,

〈Jl,p − Jl−1,p〉 = (1 + α)ε2

{
∂x

[
u(x; p)

√
T (x; p)

π

]
− 1

4
ε
{
∂2
xT (x; p) + 2 ∂x[u(x; p)∂xu(x; p)]

} + O
(
ε2

)}
. (A7)

The evolution equation for the energy e is then

〈e(x; p + 1) − e(x; p)〉 = (α2 − 1)ε

2

[
T (x; p) − 2ε

√
T (x; p)

π
∂xu(x; p)

]

− (1 + α)

{
ε2∂x

[
u(x; p)

√
T (x; p)

π

]
− 1

4
ε3

{
∂2
xT (x; p) + 2∂x[u(x; p)∂xu(x; p)]

}}

+O((α2 − 1)ε3) + O(ε4). (A8)

Going again to the continuous time variable,

∂te(x,t) + O(ε2) = α2 − 1

2ε

[
T (x,t) − 2ε

√
T (x,t)

π
∂xu(x,t)

]
− (1 + α)∂x

[
u(x,t)

√
T (x,t)

π

]

+ 1 + α

4
ε
{
∂2
x T (x; p) + 2∂x[u(x; p)∂xu(x; p)]

} + O(ε2) + O
(
(α2 − 1)ε

)
. (A9)
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In order to have a consistent limit over the continuous time t , α2 − 1 must be of the order of ε. Hence, we introduce the macroscopic
inelasticity ν, as defined in Eq. (15), which is assumed to be of order unity. This implicitly assumes that the underlying microscopic
dynamics is quasielastic, since 1 − α ∼ νε = ν/L � 1 [81]. With this definition,

∂te(x,t) = −νT (x,t) − (2 − νε)∂x

[
u(x,t)

√
T (x,t)

π

]
+ ε

{
2ν

√
T (x,t)

π
∂xu(x,t) + 1

2
∂2
x T (x,t) + ∂x[u(x,t)∂xu(x,t)]

}
+ O(ε2).

(A10)

Finally, the hydrodynamic equations for the average velocity and the temperature up to order ε = L−1 are obtained by taking
into account the definition of the macroscopic inelasticity (15) and the identity e(x,t) = u2(x,t) + T (x,t), which yields

∂tu(x,t) = −∂x

√
T (x,t)

π
+ ε

2

[
ν ∂x

√
T (x,t)

π
+ ∂2

xu(x,t)

]
+ O

(
ε2

)
, (A11a)

∂tT (x,t) = −νT (x,t) − 2

√
T (x,t)

π
∂xu(x,t) + ε

{
3ν

√
T (x,t)

π
∂xu(x,t) + 1

2
∂2
x T (x,t) + [∂xu(x,t)]2

}
+ O(ε2). (A11b)

Note that the parameter ε can be understood as the ratio of a microscopic length (1 lattice site) to a macroscopic length (the
total length L). In this way, the condition ε � 1 can be conceived as the usual small Knudsen number condition for the validity
of a continuum description. A more detailed look at this issue can be found in the following appendix.

APPENDIX B: BOUNDARY LAYER CALCULATIONS

Now we solve the hydrodynamic equations to the lowest
order, but incorporating the boundary layers close to the
system edges. Thus, we consider Eqs. (A11) with the boundary
conditions in the half interval [0,1/2]:

u(0,t) = 0, T (0,t) = 1, (B1a)

u(1/2,t) = 0, ∂xT (x,t)|x=1/2 = 0. (B1b)

The boundary conditions at x = 1/2 stem from u(x,t) and
T (x,t) being an odd and an even function with respect to x =
1/2, respectively.

We focus on stationary solutions of the hydrodynamic equa-
tions. Then, we can simplify the notation by introducing ′ ≡ ∂x .
Using the terminology in Ref. [77], the “outer” solutions
{uout(x),Tout(x)} satisfy the equations(√

Tout

π

)′
= 0, − νTout − 2

√
Tout

π
u′

out = 0. (B2)

These equations are first order in space and thus we can only
impose the boundary conditions at one of the end points of the
half interval [0,1/2], specifically those at the system center
x = 1/2. Then,

Tout = T0, uout(x) = −ν

2

√
π T0

(
x − 1

2

)
, (B3)

where T0 remains undetermined.
The explicit form of the outer (bulk) solutions allows us to

have a more precise look at the necessary condition to have a
meaningful continuum description. Making use of Eq. (B3),
we can readily identify a macroscopic length ξ = (ν

√
π2)−1

[the inverse of the factor in front of the expression for uout(x),
apart from

√
T0 that carries with it the velocity dimensions].

The microscopic length scale in the continuum is ε = L−1,
corresponding to one lattice site, and then the sought condition

would be

ε

ξ
= ν

√
π

2L
= (1 − α2)

√
π

4
� 1, (B4)

where we have again used the definition of ν, Eq. (15). This is
nothing but a condition of quasielasticity for the microscopic
dynamics, a restriction that is already known for other lattice
models [60,61,79]. Several comments are in order. First,
note that this condition has already been imposed when we have
derived the hydrodynamic equations, specifically when we
have assumed that the macroscopic inelasticity ν is of the order
of unity. Second, this is physically reasonable: the magnitude of
the gradients in granular systems is often typically controlled
by the inelasticity, not by the imposed boundary conditions.
Therefore, the microscopic inelasticity 1 − α must be small
in lattice models to ensure that the gradients are not so
large that the lattice is unavoidable “seen” and a continuum
description is not possible. Third, despite the quasielasticity of
the microscopic dynamics, the observed macroscopic behavior
does not correspond to a quasielastic granular fluid, because
the macroscopic inelasticity ν (also called the cooling rate) is
not small.

A different distinguished limit is obtained within the bound-
ary layer, with the scaling

x = εX,
d

dx
= ε−1 d

dX
. (B5)

It is X that the “inner” solution within the boundary layer,
which we denote by {uinn(X),Tinn(X)}, depends on. The dom-
inant terms in the balance equations become

− d

dX

(√
Tinn

π

)
+ 1

2

d2

dX2
uinn = 0, (B6a)

−2

√
Tinn

π

d

dX
uinn + 1

2

d2

dX2
Tinn +

(
d

dX
uinn

)2

= 0. (B6b)
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We have to solve the above equations with the boundary
conditions (B1a) at X = 0, that is,

uinn(X = 0) = 0, Tinn(X = 0) = 1, (B7)

and the matching conditions [77]

lim
X→∞

uinn(X) = lim
x→0

uout(x) = ν

4

√
πT0, (B8a)

lim
X→∞

Tinn(X) = lim
x→0

Tout(x) = T0. (B8b)

The latter conditions assure that the solution in the boundary
layer smoothly match the outer solution in the bulk. These
matching conditions make it possible to determine the un-
known bulk temperature T0, as shown below.

Equation (B6a) is integrated straightforwardly to give

d

dX
uinn − 2

√
Tinn

π
= −2

√
T0

π
, (B9)

where the constant on the right-hand side has been obtained
by matching the outer and inner solutions to the lowest order;
note that duinn/dX → 0 for X → ∞. Substitution of (B9) into
(B6b) yields, after some simple algebra,

d2

dX2
θ + 8

π
(1 −

√
θ ) = 0, θ = Tinn

T0
. (B10)

A first integral can be directly derived from this equation,

1

2

(
d

dX
θ

)2

+ 8

π

[
θ − 2

3
θ3/2

]
= D, (B11)

where D is a constant. Again, D is obtained by matching
arguments in the limit as X → ∞, for which we have that
θ → 1 and dθ/dX → 0. Therefore, D = 8

3π
and

d

dX
θ = − 4√

π

√
1

3
+ 2

3
θ3/2 − θ. (B12)

We have chosen the minus sign on the right-hand side because
dθ/dX must be negative in the boundary layer, since the
bulk temperature T0 < 1 as a consequence of the dissipative
character of the dynamics.

We do not need to solve Eq. (B12) to obtain T0, which is
our main goal. Going back to Eq. (B9), we can rewrite it as

d

dX
uinn = 2

√
T0

π
(
√

θ − 1) (B13)

and combining it with Eq. (B12),

duinn = −
√

T0

2

√
θ − 1√

1
3 + 2

3θ3/2 − θ

dθ. (B14)

This equation allows us to calculate uinn as a function of
θ , taking into account that uinn(X = 0) = 0 and θ (X = 0) =
T −1

0 ,

uinn(θ ) =
√

T0

[ √
1

3
+2

3
T

−3/2
0 −T −1

0 −
√

1

3
+ 2

3
θ3/2 − θ

]
.

(B15)

Now we impose the matching conditions in Eq. (B8), that is,
{uinn → ν

√
πT0/4,θ → 1} in the limit asX → ∞. Hence, one

can write that
√

π

4
ν = ϕ(T0), ϕ(T0) =

√
1

3
+ 2

3
T

−3/2
0 − T −1

0 . (B16)

The function ϕ(T0) on the right-hand side is a monotonically
decreasing function of T0 (recall that 0 � T0 � 1),

lim
T0→0

ϕ(T0) = ∞, lim
T0→1

ϕ(T0) = 0,
dϕ(T0)

dT0
< 0. (B17)

Thus, Eq. (B16) is the desired expression for the bulk temper-
ature as a function of the macroscopic inelasticity ν, since it
univocally gives T0 for each value of ν.

In Fig. 4, a good agreement is shown between the prediction
for T0 obtained here and numerical simulations. The discrepan-
cies remain quite small for ν � 2, becoming only larger for the
highly dissipative case ν = 20. It must be taken into account
that the bulk temperature T0 has been assumed to be of order
unity in our theory, whereas Eq. (B16) implies that it becomes
very small for high ν, specifically

T0 ∼
(

32

3π

)2/3

ν−4/3, ν 	 1. (B18)

This means that a more elaborate theory, corresponding to a
different dominant balance in the hydrodynamic equations,
might be necessary in the highly dissipative limit ν 	 1. See
also the next appendix for other possible sources of discrepancy
between our theory and the numerical results as ν increases.

One can also examine the role of the boundary layers in
Fig. 4. The boundary layers are barely noticeable for the
smaller values of ν, ν = 0.2 and ν = 0.02, for which the bulk
temperature is close to unity. In addition, these small values
of ν necessarily bring about a stronger noise in the averages,
since the bulk temperature is larger. As ν increases, the bulk
temperature decreases and so do the fluctuations while the
boundary layers become more visible. In Figs. 2 and 4, it seems
that the boundary layer is wider for ν = 2 than for ν = 20.
This is reasonable and consistent with the behavior observed in
other models in the strongly dissipative limit ν 	 1 [79,82], in
which the width of the boundary layer algebraically decreases
with ν and vanishes in the limit as ν → ∞. Besides the above
calculations show that, as a function of the system size, the
width of the boundary layer in the x variable is expected to
be of order L−1. This scaling is not clearly confirmed in our
simulations, which seem to indicate that this width does not
go to zero in the limit as L → ∞, especially for the highest
macroscopic inelasticity ν = 20. This discrepancy might also
be mended by a more elaborate theory in the highly dissipative
case; see also next section.

Finally, some kind of “boundary resistance” should also
be noted, that is, a difference between the actual value of T

at the boundary and the value imposed by the thermostat in
the simulation (T = 1). This phenomenon is known to appear
in nonlinear transport problems [83,84] and has been already
observed in other models [79].

APPENDIX C: NON-GAUSSIAN LOCAL DISTRIBUTIONS
AND SPATIAL CORRELATIONS

Here we investigate the validity of the local equilibrium
approximation. A first check is obtained by measuring the local
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FIG. 5. Local velocity distributions P (v,x) in the stationary state for different values of ν and different positions. All the plots corresponds
to the largest considered system size N = 1600. Top row: Position close to the left boundary, x → 0 and x = 0.1. Bottom row: Bulk position
x = 0.5.

velocity pdf. This is done in Fig. 5. In the top row, we consider
positions close to the boundaries, and deviations from Gaus-
sianity are already apparent for ν = 0.2, with an anomalous
but localized peak at v = 0. These discrepancies become even
more patent as ν increases, with the emergence of asymmetric
tails in the pdf. The pdf in the bulk of the system is presented in
the bottom row of the same figure. Again, discrepancies arise
and are evident, with an analogous localized peak at v = 0 for
ν = 0.2 that splits into two symmetric peaks for larger ν � 1
[85,86]. Note that the tails remain symmetric with respect to
v = 0 in the bulk, however.

Our conclusion is that some of the observed discrepancies
as ν increases stem from the non-Gaussianities described
above. Certainly, the non-Gaussianities are more important
at the boundary layers than in the bulk, where the deviations
seem to be milder, especially for the not-so-large inelasticity
ν = 2. Anyhow, non-Gaussianities may be responsible for
the deviations of the actual bulk temperature T1/2 from the
theoretical description T0 for ν � 1. It has to be taken into
account that we have assumed that the local equilibrium
approximation holds both in the bulk and at the boundary
layers for deriving Eq. (20). It is remarkable that the relative
error between T0 and T1/2 remains under ten percent for ν = 2,
despite the large discrepancies at the boundaries that include
asymmetry with respect to v = 0.

Also, we have looked into the nearest-neighbor correlations
dl = 〈vl−1vl〉 − 〈vl−1〉〈vl〉, which have been assumed to vanish
upon writing the local equilibrium approximation (7). This
assumption is consistent with the molecular chaos hypothesis,

in which these correlations are assumed to be of order L−1.
Taking into account that we have incorporated O(L−1) correc-
tions into our theory, these correlations are another possible
source for discrepancies and should be investigated. In Fig. 6,
the numerical evaluation of the nearest-neighbor correlations is
displayed. It is clearly seen that dl is always different from zero

FIG. 6. Nearest-neighbor velocity correlation dl in the stationary
state as a function of x = l/L, for different system sizes while keeping
constant the macroscopic inelasticity ν = 19.
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and for large L (keeping ν constant) displays a negative plateau
in the bulk. On the one hand, the value of the correlations at
such a plateau seems to be independent of L, which means that

molecular chaos is violated in the bulk. On the other hand, the
measured value is rather small and thus it seems that correla-
tions are not the main source for the observed discrepancies.
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