Consigli

s
2

ik
gl

T
.






Enabling Cuts on Multiresolution Representation

Fabio Ganovelli, LE.L. -C.N.R. *
Paolo Cignoni, LE.I. - CN.R. f
Claudio Montani, LE.L. - CN.R. ¥
Roberto Scopigno, CNUCE - CN.R. §

Abstract

Multiresolution representations are widely used in many visvalization contexts and applications.
The adoption of a multiresolution approach provides an optimal management of a data representa-
tion, using at each instant of time the level of detail more adequate for the given action or task to be
performed. Recently, multiresolution has been introduced also in the interactive physically based sim-
ulation of deformable objects (e.g. in virtual surgery applications). In this applications the processing
resources available are often insufficient and pose a critical constraint. The adoption of multireso-
lution allows to improve the accuracy of the simulation in the proximity of the action focus, while
maintaining computations under a given bound.

In this particular context, the user should be able to perform cuts onto the object. The problem is that
most multiresolution models need a preprocessing phase, in which the data structure is consiructed.
Such construction strictly depends on the topology of the object, which is supposed to be invariable.
We propose a new approach for the dynamic topological modification of a multiresolution model,
which allows casy update of the multiresolution data structure (based on the Multiresolution Trian-
gulation framework) and efficient decomposition of the cells intersected by the cut. With respect to
previous methods, our solution supports a much lower degree of fragmentation of the decomposition
and very short processing times, due to the design of a LUT-based split solution,

Categories and Descriptors: 1.3.5 [Computer Graphics]:Physically Based Modeling, 1.3.7 [Com-
puter Graphics]:Animation, 1.6.8 [Simulation and Modeling:]Animation

*Email: ganovell@ijei.pi.cnr.it
TEmail: cignoni@iei.pi.cnr.it
1Email: montani @jei.pi.cnr.it
YEmail: roberto.scopigno@cnuce.cnr.it



1 Introduction

One of the requirements of a surgery training and simulation software is that the surgeon has to be enabled to cut the
represented tissue. This requirement gives rise to the problem of how the cuts change the topology of the mesh. A
cut is in general defined by the surface swept by the movement of the scalpel during two consecutive time steps. For a
sufficiently small time step, such a surface can be approximated by a portion of a plane. In the case of objects represented
by tetrahedral meshes, a trivial solution is to delete the edges intersected by the surface. However, in this manner, we¢
perform an approximated topology change and so we need tetrahedral complexes very dense in order to be sure that such
an operation does not introduce a big hole in the mesh, A more sophisticated solution in presented in [S]. This technique
replaces each tetrahedron intersecting the surface of the cut with a set of tetrahedra having no proper intersections with it
and covering the same space of the original tetrahedron. This technique allows the vse of low resolution meshes, because
they will result refined by the update, according with the cut. We adopt this kind of approach by providing and efficient
implementation which also takes into account possible multiresolution representation of the deformable object.

The paper is organized as follows. An efficient way to implement a multiresolution representation, the MT [8], is briefly
showed in Section 3. In Section 4 we show how the MT can be dynamically updated after a modification of the mesh
topology induced by a cut. Then we describe, in Section 5, how to replace a cut tetrahedron with a set of tetrahedra not
having proper intersections with the plane of the cut in a more efficient way than that proposed in [5]. Finally, resulis are
discussed in Section 6 and concluding remarks are given in Section 7

2 Previous works

A recent survey on deformable objects modeling can be found in [14]. In this paper, we limit oursclves (o briefly describe
the solutions with respect to their suitability to the cuts. Some pioneering works employed a continuum representation
of the object [20, 21] and the theory of elasticity for modeling the material. Another approach based on a continuum
description is the so called Free Form Deformation (FFD) [19]. The idea is that the object is defined as a sct of splines
whose control points are initially (i.e. when the objects is in its rest state) distributed on a regular grid. A displacement of
the control points implies a change of the shape [2, 3, 9, 11]; In a more recent approach, FFD models adopt physical based
behaviour constraining displacement of control points with an energy function [15]. Several authors proposed the use of
the Finite Element Method (FEM): the object is partitioned into finite elements joined at discrete points and a function,
which solves equilibrium problem locally to each element is found. FEM is, in general, the more accurate method and it
was applied to model human tissue for craniofacial surgery planning [10, 18], Recent works [1, 4] employ FEM also for
interactive simulations.

All of the approaches cited above can hardly allow cuts together with interactive frame rate because they require a pre-
processing phase which depends on the topology of the object.

Most of the methods proposed in the last years in the computer graphics community are based on particle systems [17]. A
particle system is a set of elements (the particles) and a set of relationship between the elements. Each particle is basically
described by its position, mass and velocity; a relationship is a description of the interaction between the particles in-
volved. A typical, widely employed, particle system is the Mass Spring System. In this case, the particles are mass points
with no dimension and the relations are springs connecting pairs of mass points. The approaches based on particles present
two main advantages: they are generally very easy to implement and they do not require initialization. On the other hand,
they are not much faster than the other methods, and the computational time strongly depends on the number of particles.
For this reason, a current trend in this field is to introduce multiresolution representation to use selectively more particles
where an higher accuracy is required, e.g. in proximity of the action focus [7, 13}. Up to now these approaches did not
allow cutting. This is because multiresolution is always implemented by static data structures (for example octrees, where
each node defines a representation coarser than those of its children). Hence, when a cut is performed its effect affects
not only the mesh but also the data structure. By our knowledge, no multiresolution framework provides dynamic updates
when the topology of the object changes.

3 The Multiresolution Triangulation

The Multiresolution Triangulation (MT) is a general framework introduced in [6, 16] to manage triangle meshes. Thanks
to its generality, MT can be naturally extended to tetrahedral mesh. In the following, we introduce the MT in an intuitive
way (see Figure 1) and we explain how to build it during a simplification of a mesh (g (a more formal treatment can be
found in [6]).

Given an incremental simplification process, mesh simplification proceeds through a number of atomic local simplification




Figure 1: MT construction on a 2D example (a) four decimation steps (b) The relative DAG

actions that reduce the mesh size. The main idea of the MT is that we may, with some restrictions, apply back all these
mesh updates with an order different from the original simplification sequence. In this way we can decide where we need
more or less detail after the simplification process. Obviously, there are some dependencies between local modifications
operating on the same area. The MT model codifies all these dependencies as a partial order or, equivalently, with a DAG.

This DAG has a root (a node with no incoming arcs) and a drain (a node with no leaving arcs). The nodes of the DAG
are called fragments, where a fragment corresponds to a set of tetrahedra created during a simplification atomic action.
The root fragment corresponds to the whole initial high resolution mesh (g (Root = ).

At the simplification step 4, a set of tetrahedra F; € €;_; is replaced by Z; (note that the tetrahedra F; can be-
long to several fragments, added to the DAG in previous steps): we add to the DAG the fragment 2; and a set of arcs
{52, ENE) I RNZ; # 0}

In other words, we add to ¥; an arc incoming from any fragment ¥; having at least one tetrahcdron that has been
replaced in the ** simplification step, and the set of labels of such arc is the set of the replaced tetrahedrain X;.

If & is the last simplification step, than the tetrahedra in 0, will never be replaced. To complete the MT, we add a node
Yi+1, named drain, that ideally corresponds to a simplification step which replaces all the tetrahedra of £y, and alf the
corresponding arcs as explained above.

The MT allows the extraction of non-uniform Level Of Detail either on the whole mesh domain or on a specified region.
We do not describe in detail the extraction algorithms (sec [6]): it is enough here to know that any constant or variable
resolution mesh extracted from the MT is defincd by a frontier on the DAG, which is a set of arcs containing exactly one
arc for each path from the root to the drain. The corresponding representation is given by the union of all the tetrahedra
labeling the arcs of the frontier.

3.1 Error

Inherent to any multiresolution model there is a error concept that gives us a value of “fineness” of the cells involved.
Usually the cells of the coarser (finest) representation are the ones with the greatest (smallest) error. The definition of
error lypically depends on the application for which the multiresolution model is used, but in general the crror increases
with the dimension of the cell (any characteristic of a domain is better expressed with a great number of small cells rather
than with a small number of big cells). We have found that, for the purpose of simulation through mass-spring models,
we can consider the error of a tetrahedron proportional to its volume and/or the radius of the smallest sphere containing it.



4 Cutting a Mesh

We have seen that the MT does not allow topological modifications to its structure. In this section we define a cutting
operator that incises an MT, with a cutting shape defined as a simple planar convex polygon. In other words we want
the cutting polygon modifies the MT in a way that any representation extracted from it has no proper intersections with
the given cutting shape. Recalling the “error” definition of Section 3.1, we slightly relax the previous definition allowing
to the cutting shape to be approximated inside the MT with an error compatible with the one of the various fragments.
In other words we meant that a very small cut has no effect on the coarser representation, while it is represented almost
exactly only in the finest resolution.

The input to our algorithm consists of an MT and a planar polygon C which represents the current cut through the
mesh, A tetrahedron is cut iff it has a proper intersection with C.
When a cut C is defined, we apply the following steps:

1. Search inI' for all the cut tetrahedra
2. Replace each cut tetrahedron with a set of tetrahedra having no proper intersections with C'
3. Update the DAG

Step 1 can be executed efficiently by exploiting the point location strategy available for MT model [12] and Step 2 will
be discussed in detail in the following section.
The third step needs some more explanations. If a fragment X; is divided into two distinct parts by the cut, we replace it
with two new fragments )j} and f]?, and the incoming and the outcoming arcs of X; have to be replaced or updated. To
achicve a fast update of the DAG, we propose a technique based on local (to the fragment) updates. These updates can be
processed in any order (but non in parallel). The technique guaranices that, when the fragments affected by the cut have
been processed, the MT (or the two MTs, if the cut divides the mesh) is still correct.
We use R(t) to indicate the tetrahedra originated by the cut of cell #: if £ is not cut R() = {¢}. In the following we
describe the operations for updating, incoming and outcoming arcs, respectively.
To simplify notation in the algorithm, we expand the arc (£, £;, F}) relating the ictrahedra F; C Iy that were substituted
atstep 7 of the simplification process with the ones of the fragment X; into the set of arcs { (84, Z;), A =1,...,[|Fil|}. ie.
an arc for each tetrahedron in F;, Each fragment has a flag, that we call sepamted. 1t indicates if the fragment has been
already processed and decomposed in two fragments. So I;.separated == true indicates that there are two fragments
21 and X originated by the splitting of X; and that it will not be in the new MT.

For each fragment we apply the following procedure:

UpdateProcessFragment(Z;, O)
if IsSplit(%;,C)
Decompose(%;)
2;.8eparated = true
UpdateInComingArcs(X;)
UpdateOutcomingAres(¥;)

IsSplit returns frue iff the fragment is split by the cut , i.e. iff the contour of C' intersects no tetrahedron of ;.
The Decompose procedure effectively split the fragment %; into two different fragments 21 and 22 (see Fig. 2), and the
two procedure UpdateIncomingArcs and UpdateQulcomingArcs are explained in the followmg

UpdatelncomingAres(E;) UpdateGutcomingAres(L;)
for each (¢, %;) foreach (t,X;) /& € &,
iftNC==9 il Ty.separated
it E! =t for each ¢’ € R(t)
replace (¢, ;) with (¢,31) it @' N2} = 1)
else / t(12F =t add (¢, 51)
replace (¢, %) with (2, ¥:2) else /(52 =¢'

add (¢, £2)
else
replace (¢, Xx) with {(#', E;) : t' € R(1)}

Note that, if the fragment to which ¢ belongs has not been processed, it is possible that £ [ C i.e. it stand across the cut
C. In that case the updating of the cut {t, Z;) will be done when processing such fragment.



5,6,12,13
21,22,23

Decompose( 21)

Figure 2: An example of the algorithm for dinamic update of the DAG

Figure 2 shows an example of this step.

Suppose to have the relations depicted in Figure 2.a with the heavy line representing the cut. If the fragment X
is processed before T;, the arcs (5, £1)} and (6, 5;) will be replaced with the arcs (18[19, 20], £,) and (21[22, 23], Z4).
When processing the fragment ¥4, the arcs (18[19, 20], £, ) become (18{19, 20], $1y and the arcs (21[22, 23], ;) become
(21[22,23], £2).

Viceversa, if the fragment ; is processed before, the arcs (12[13], %1 ) become (12[13], £1) and the arcs (5(6], 1) do
not change. When processing the fragment Iy, the arcs (5, %; ) and (6, T, they will become respectively (18[19, 20], 21) 1
and (21[22, 23], %2).

Hence, in both cases the final situation is the one depicted in Figure 2.b.

5 Cuiting tetrahedral cells

So far, we have assumed to be able, given a portion of the plane C, to replace a tetrahedron £ with a set of tctrahedra R(t)
so that the union of the space occupied by tetrahedra in R(t) is equal to the space occupied by ¢ and no tetrahedra in R(¢)
has a proper intersection with the half plane C. We describe in detail the way we perform the atomic split efficiently, both
in fime and size of the output.

5.1 Approximating a cutting shape

When C is defined, the replacing operation of a tetrahedron ¢ depends on the topology of iis intersection with C. We
want to have a finite number of possible topologies, so we consider only the ones defined by the intersections of the edges
of ¢ with C. In other words, if C intersects one or more faces of ¢ without intersect any edges of ¢, we disregard such
intersection (see Figure 3).

The error introduced by this approximation depends on the shape and dimension of C relatively to the mesh. If Cisa
segment, the worst case, it could intersect a great number of tetrahedra producing no effects. In general, the approximation
error resides entirely on the contour of C.

A solution for cell culting was proposed in [5]. To support the interactive execution of the splitting phase, the authors
adopt a standard 1:17 splitting scheme (computed in a preprocessing phase, and shown in Figure 4) for any cut occurrence.
This splitting pattern covers all the possible configurations arising from any partial or complete cut of a tetrahedron, with
the restriction previously introduced. On the other hand, becanse they do not differentiate between different cutting
instances, the number of tetrahedral cells generated is often not the optimal one (since each tetrahedron affected by the cut



disregarded portion

Figure 3: The portion of plane C intersects the tetrahedron ¢ without to touch its edges. The approximating cuiting surface
is the one dashed.

Figure 4: Pre-defined 1:17 splitting scheme, applied to any cut instance. Each polyhedral cell is then decomposed into
tetrahedra.

is replaced with seventeen new cells). In fact, the authors experimented a great number of new letrahedra in the proximity
of a cut [5]. This mesh refinement effect becomes even more ¢ritical when mulliple cuts are operated on the same portion
of the represented tissue.

A better solution can be outlined remarking that {due to simplicity of the tetrahedral cell) there are only five configura-
tions of the cut. We show the five possible configurations and the set of new tetrahedra produced in Figure 5; obviously,the
cases, produced by rotating the base cell, are also possible. Since that any of these configurations depends only on the
current set of intersections the cut has with the cell edges, we can simply define and use a look up table (LUT) to encode
and select, at running time, the different configurations. This LUT has 5 entrics (one for each configuration) times the
number of possible symmetrical cases. Each entry stores a set of quadruples, each one defining a single tetrahedron to
be produced in output. Hach quadruple identifies the vertices of each spit tetrahedron {chosen from the vertices of the
original cell and the possible intersection points between Lhe cut and either the cell edges or the cell face); the encoding
adopted js illustrated in Figure 6.

We encode two topologically different intersection points (Figure 6) for each original cell edge. Iniersection points on
the edges are duplicated because the goal of a cut is to allow the separation of the parts, and therefore we need different
cell nodes for each border of the cut. Conversely, points on the faces do not need to be duplicated because they represent
the boundary profile of the cut {case C,D and E in Figure 5).

For example, the first row of the LUT is:

[A] 04685179 1,379 [ 13.27 |

and it encodes the four tetrahedra associated with a type A cut (three edges intersected by the cut, the tetrahedral cell split
into two disconnected parts, see Figure 5).

Our approach uses 4 tetrahedra for the case A, 6 for the case B, 6 for the case C, 8 for the case I and 9 for the case E.
In the results section (see Table 1) we report an empirical comparison between the use of our LUT-based split rule and the
1:17 pre-split scheme proposed in [5]. The two approaches are compared with respect to the number of new tetrahedra
created.



case A case B case C

case D case E

Figure 5: The five possible configurations of a partial or complete cut of a tetrahedral cell.

Figure 6: Encoding rule used to define the possible split cell vertices in the LUT.



# split # split # new tetra #new tetra | time | time for DAG | total
fragments | tetrahedra i 1:17 scheme | LUT splirule | (sec.) | update (sec.) time
205 2.520 42,840 1,612 | 0.277 0.117 | 0.394

36 523 8,891 2,394 | 0.063 0.156 | 0.312

148 1,813 30,821 8,300 | 0.25 0.109 | 0.359

245 3,122 53,0474 14,316 | 0.344 0.141 | 0.485

528 6,552 110,874 29.918 | 0.531 0.344 | 0.875

Table 1: Comparison between the tetrahedra set generated by the pre-split scheme and by our LUT-based split rule. The
original MT is composed by 2,896 vertices, 37,062 tetrahedra and 1,542 nodes (fragments),

The lower mesh refinement ensured by the LUT-based split rule is obtained with a slight time overhead. For each cell
to be split we only need to classify its vertices with respect to the split plane (four comparisons), and then to compute the
location of all the new vertices encoded in the corresponding LUT entry. An empirical evaluation of the overall running
time is also proposed in Section 6.

6 Resulis

Figure 7 shows a run of the algorithm on a mechanical piece (Fig.7.a). The first step is to place the tool used to define
interactively the cut: we use a red disk in the example (Fig.7.b). Figure 7.c shows the two pieces arising from the split of
the original piece with the new tetrahedra (rendered in green). Two independent MTs have been produced to represent the
resulting two pieces. In the last image (Fig.7.d) the same pieces are shown from a different view point and are represented
with two different levels of detail. In Table 1, the first row of contains the data related to the snapshots of Fig.7.

The last three columns of the table show the running time of our solution decomposed into time spent to find and replace
the tetrahedra cut, the time spent to update the DAG and the total time.

To introduce our solution in a virtual surgery application, two considerations on the computational efficiency have to be
done:

e the typical manner to simulate the cut operated with a virtual scalpel is to detect its position on consecutive time
steps and to consider the surface swept (the scalpel is supposed to be a segment) as the surface cut. The time
resulting from our tests are related to a cut that involves many tetrahedra, such that the object is separated into two
parts. It would correspond to the not very realistic case of trespassing the whole object with the scalpel in two
consecutive time steps. Note (hat the running times in Table 1 are linearly proportional to the number of tefrahedra
involved in the cut and that the time to update the DAG is proportional to the number of fragments involved in the
cut.

e when a cut is defined, the algorithm updates the mesh for any resolution (i.e. also the tetrahedra which are not
currently visualized/used) and the DAG. Even il no criteria about the order in which the updates of the fragments
are made, nevertheless the procedure is quite fast. However, we cannot neglect that, in a surgical simulator, other
operations have to be done in a time step, i.e. integration of the differential equations governing the system, collision
detection and response feedback, A time-critical version of the algorithm can be simply obtained by processing
those fragments which are currently visualized first, and postponing the others o successive time steps, having the
only restriction that the resolution cannot change before all the fragments have been processed and updated.

7 Conclusion and Future Works

"This works has been inspired by the need to perform cuts on meshes representing soft tissues in a mutiresolution frame-
work. Both multiresolution and cuts have been previously introduced in deformable object modeling: unfortunately their
employment was mutually exclusive. We have defined an approach to fill this lack in the case of tetrahedral representa-
tions; based on the adoption of the MT multiresolution scheme. In spite of the fact that the implementation can be further
optimized, the experiments show the efficiency of the solution proposed. Our next step will be to adopt this approach in a
prototypal system which implements physical simulation.

Even if simulating a cut is a fundamental feature of a virtual surgery system, the inverse operation as well, the suture,
should have to be treated. A lazy idea to define virtual suture is simply to define pairs of landmarks on two different



(c) (d)

Figure 7: Snapshots of (he application window. The MT associated with the piece (a) is split in two independent MTs
associated with the two parts in (d), The tetrahedra arising from the cut are rendered in green.

surfaces and then {o join them according with such points. This would be a nice tools, but useless, because a realistic
suture procedure implics to sew, i.e. to join with a needle and thread, not simply to indicate the pair of points to join.
More research is needed on this issue.

We conclude introducing a straightforward application of this work, which is not connected with virtual surgery. The
MT scheme allows to perform region interference queries within a given error, i.¢. it is possible to choose a region of
interest and to perform a query only in such region, reducing the time required to solve the query. Note that, even if the
region of interest is always the same in different queries, the whole DAG has to be kept in memory. On very large datasets
this can be a problem, due to limited RAM size. With our algorithm, we can easily create a MT which corresponds to the
specified region, allowing the user to work only with the amount of data related to the region of interest.

References
[1] Morten Bro-Nielsen and Stephane Cotin, Real-time volumetric deformable models for surgery simulation using finite elements
and condensation, Computer Graphics Forum 15 (1996), no. 3, C57-C66, C461.

[2] 8. Coquillatt, Extended free-form deformation: A sculpturing tool for 31 geometric modeling, Computer Graphics (SIGGRAPH
"00 Proceedings) (Forest Baskett, ed.), vol. 24, August 1990, pp. 187-196.



[3] S. Coquillart and Pierre Jancene, Animated free-form deformation: An interactive animation technigue, Computer Graphics 25
{1991}, no. 4, 23-26.

[4] H. Delingette S. Cotin and N. Ayache, A hybrid elastic model allowing real-time cutting, deformations and force-feedback for
surgery training and simulation, CAS99 Proceedings, May 1999, pp. 70-81.

{5] Volker A. Maiwald Daniel Bielser and Markus H.Gross, Shape representation and image segmentation using deformable surfaces,
Computer Graphics Forum (Eurographics’99 Proc.) 18 (1999), no. 3, C31-C38.

{6] L. De Floriani, E. Puppo, and P. Magillo, A formal approach to multivesolution modeling, Geometric Modeling: Theory and
Practice (R. Klein, W. StraBer, and R. Rau, eds.), Springer-Verlag, 1997, pp. 302-323.

{7] P. Cignoni F. Ganovelli and R. Scopigno, Introducing multiresolution representation in deformable modeling, SCCG Proceedings
(Jiri Zara, ed.), April 1999, pp. 149-158.

[8] Leila De Floriani, Paola Magillo, and Enrico Puppe, Efficient implementation of multi-triangulations, Proceedings TEEE Visual-
ization'98, 1IEEE, 1998, pp. 43-50.

[9] William M. Hsu, John F. Hughes, and Henry Kaufman, Direct manipulation of free-form deformations, Computer Graphics 26
(1992), no. 2, 177-184.

[10] ErwinKeeve, Sabine Girod, Paula Pfeifle, and Bernd Girod, Anatomy-based facial tissue modeling using the finite element method,
IEEE Visualization '96, IEEE, October 1996, ISBN 0-89791-864-9.

F11] R.MacCracken and K. L. Joy, Free-form deformations with lattices of arbitrary topology, Computer Graphics (Annual Conference
Series) 30 (1996), 181-188.

[12] P. Magillo, Spatial operations on multiresolution cell complexes, Ph.D. thesis, Universita degli Studi di Genova, 1999.

[13] G.Debunne M.Desbrun A Bamr M.P.Cani, Interactive multiresolution animation of deformable models, Eurographics Workshop
on Computer Animation and Simulation *99 (N.Magnenat-Thalmann and D.Thalmann, eds.}), Springer-Verlag, September 1999,
pp. 133-144,

[14] U.Cugini M.Bordegoni C.Rizzi EDe Angelis M.Prat, Modelling and haptic interaction with non-rigid materials, Computer
Graphics Forum (Eurographics’99 Proc.) 18 (1999}, no. 3, 1-20.

[15] P Faloutsos M. Vande Panne and D.Terzopoulos, Dynamic free-form deformations for animation synthesis, IFEE Transactions on
Visualization and Computer Graphics 3 (1997), no. 3, 201-214,

[16] E. Puppo, Variable resolution terrain surfaces, Proceedings Eight Canadian Conference on Computational Geometry, Ottawa,
Canada, August 12-15 1996, pp. 202-210.

[17] W.T. Reeves, Particle systems — A technique for modeling a class of fuzzy objects, Computer Graphics {SIGGRAPH 83 Proceed-
ings) 17 (1983), no. 3, 359-376.

[18] S. H. Martin Roth, Markus Hans Gross, Silvio Turello, and Friedrich Robert Carls, A Bernstein-Bézier based approdch to soft
tissue simulation, Computer Graphics Forum 17 (1998), no. 3, 285-302.

[19] T.W. Sederberg and S. R. Parry, Free-form deformation of solid geometric models, Computer Graphics 20 (1986), no. 4, 151-160.

[20] D Terzopoulos, J. Platt, A. Barr, and K. Fleisher, Elastically deformable models, Computer Graphics, June 1987 21 (1987), no. 4,
205-214.

[21] Demetri Terzopoulos and Kurt Fleischer, Deformable models, The Visual Computer 4 (1988}, no. 6, 306-331.

10



