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CRISPR/Cas9 technology has greatly accelerated genome engineering research. The CRISPR/Cas9 complex,
a bacterial immune response system, is widely adopted for RNA-driven targeted genome editing. The sys-
tematic mapping study presented in this paper examines the literature on machine learning (ML) tech-
niques employed in the prediction of CRISPR/Cas9 sgRNA on/off-target cleavage, focusing on improving
support in sgRNA design activities and identifying areas currently being researched.
This area of research has greatly expanded recently, and we found it appropriate to work on a

Systematic Mapping Study (SMS), an investigation that has proven to be an effective secondary study
method. Unlike a classic review, in an SMS, no comparison of methods or results is made, while this task
can instead be the subject of a systematic literature review that chooses one theme among those high-
lighted in this SMS. The study is illustrated in this paper. To the best of the authors’ knowledge, no other
SMS studies have been published on this topic.
Fifty-seven papers published in the period 2017–2022 (April, 30) were analyzed. This study reveals that

the most widely used ML model is the convolutional neural network (CNN), followed by the feedforward
neural network (FNN), while the use of other models is marginal. Other interesting information has
emerged, such as the wide availability of both open code and platforms dedicated to supporting the activ-
ity of researchers or the fact that there is a clear prevalence of public funds that finance research on this
topic.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Genetic engineering in several living organisms is increasingly
used for treating specific diseases, creating species with particular
genetic characteristics, and many other tasks. These objectives can
be achieved with various biotechnological techniques, which are
generally quite complex. However, the introduction of CRISPR-
based techniques, an acronym for clustered regularly interspaced
short palindromic repeats, has facilitated genome editing with
specific objectives. The first clues about the CRISPR system were
noticed in bacteria and archaea in the late eighties. A group of
DNA segments was discovered containing short palindromic
repeated sequences separated by DNA fragments (spacers). These
spacers appear after cellular infection by viruses, and form an
adaptive immune system, because after a viral infection, viral
DNA is embedded into the CRISPR site in the form of spacers. This
recurrent cluster is associated with a set of genes called CRISPR-Cas
genes that transcribe CRISPR-associated system proteins.

In a possible subsequent viral attack, part of the CRISPR locus is
transcribed into crRNA (CRISPR RNA), which joins a transactivating
RNA (tracrRNA). These sequences bind to a Cas9 protein and guide
it to the DNA target site of the virus. The Cas9 protein inactivates
the virus by unwinding its DNA and performing a double-
stranded cut.

The sequence targeted by Cas9 is closed with a n-base pair
sequence (n = 2–6) called PAM (protospacer adjacent motif), which
is part of the attacker virus DNA but not of the CRISPR locus; Cas9
will avoid binding to a target sequence if it is not followed by PAM.
This way it will prevent cutting the CRISPR locus itself.

Following the study of Jinek et al. [1], Doudna and Charpentier
[2] redesigned the union of CRISPR-RNA and transactivating RNA
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by creating single-RNA sequences called single guide RNAs
(sgRNAs). These guides, when linked to Cas9, identify and cut the
target DNA specified by the sgRNA. By manipulating the sequence,
the Cas9 system can identify and cut any DNA sequence. The
CRISPR/Cas9 system thus has become a powerful genome editing
technique: its activity is based on a 23-base pair (bp) sequence,
of which the last 3 bp make up the PAM sequence, to perform
recognition and knockout.

Proper development of a sgRNA is extremely delicate because
not all of them are equally effective. The efficiency of sgRNA
depends on characteristics such as the target site, the properties
of the endonuclease and the profile of the sequence itself. Further-
more, the cell tends to repair the cut DNA, possibly resulting in
more or less severe mutations. The prediction of DNA cleavage effi-
ciency together with its effects and mutations (off-target profile or
effects) plays a fundamental role in the design of sgRNAs. Further-
more, it would be of great help for researchers to obtain the param-
eters of a sequence performing genetic modification in silico,
saving valuable resources by performing only a limited number
of in vitro experiments.

Software systems are therefore of particular interest, including
those that use artificial intelligence techniques, to automatically
extract and learn the characteristics and determinants of the
sequence and predict the cleavage efficiency on the target.

The aim of this study is the analysis of the literature related to
the ML techniques employed in the prediction of CRISPR/Cas9
sgRNA on/off-target cleavage by means of a SMS, considered as
one of the optimal approaches, since it defines an accurate process
for data retrieval and interpretation [3].

This document has the following structure: Section 2 underlines
the need for a SMS; Section 3 shows the method implemented in
this study to select/classify documents; Section 4 reports the
results of the analysis Section 5 discloses and briefly discuss the
answers to research questions and finally, Section 6 summarizes
conclusions, together with possible future research directions.
2. The reason for a systematic mapping study

Systematic investigations have proven to be a secondary study
method over the past two decades, evolving from research based
on evidence-based primary studies. Recently, the concept of sys-
tematic investigation has been adopted in various fields, such as
software engineering [4–7], education [8,9], digital clinical diagno-
sis and human care [10,11]. The lack of studies that collect and
summarize the results of the primary empirical studies was
addressed by Pickard as early as 1998 [12]. The proposal of com-
bining the results of primary studies by means of meta-analysis
and the idea of research synthesis were addressed by Miller and
Hayes, respectively [13,14]. Basili’s work in the field of software
engineering [15], is the first attempt to create knowledge by syn-
thesizing primary studies.

Bioinformatics is a methodological approach that supports
more than one discipline frommedicine to engineering to informa-
tion technology; research that provides results based on empirical
evidence can benefit these disciplines. In the field of bioinformat-
ics, ML techniques employed in the prediction of CRISPR/Cas9
sgRNA on/off-target cleavage focusing on improving support in
sgRNA design are attracting the interest of researchers.

As this area of research has expanded recently, the authors
found it appropriate to work on an SMS. Research communities
could benefit from the results of this study, and to the best of the
authors’ knowledge, no other SMS messages have been sent on
the subject.

Aimed to a wide overview of this research area, this work used
the SMS approach described in [3] to collect data and interpret
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results on research/development alignment, scope of interest,
and empirical evidence collected in the literature. The results of
this SMS can identify areas suitable for conducting systematic lit-
erature reviews (SLR), and areas where a primary study is more
appropriate. An SLR is a means of interpreting available and empir-
ically relevant research on a particular research question or phe-
nomenon of interest [3,6].

The SMS is illustrated, and if risks (or biases) are detected by
other investigators in this study, they can vary the SMS process
in such a way that the risk can be mitigated, the results strength-
ened, and the review window or objectives changed/extended.
3. Research method

The research process adopted here follows the guidelines pro-
posed by Kitchenham [3] to perform the SMS.
3.1. Research questions

The SMS presented here uses the population, intervention, out-
put (PIO) paradigm described in [3]: the use of a ‘‘comparison” fac-
tor is also proposed there, but this factor is not taken into
consideration here since documents are partially scanned in the
SMS. The components of the PIO paradigm, for the purposes of this
study, are defined below:

- Population: researchers, biotechnologists, doctors, institutions,
pharmaceutical companies;

- Intervention: machine learning/deep learning techniques to
design CRISPR/Cas9 sgRNA and predict target cleavage;

- Output: all of the benefits that lead to better CRISPR/Cas9 sgRNA
on-target cleavage, clinical applications, gene editing applica-
tions, and investigation of RNA functions.

Taking into consideration what is suggested by Arksey et al.
[16] and in accordance with the PIO paradigm defined by the
authors, the general questions of the SMS have been structured
to make them correspond to the dimensions we intend to investi-
gate in this mapping study. Table 1 lists the research questions
(RQ).
3.2. Search protocol

3.2.1. Search string
A well-constructed search string ensures that we automatically

extract a good sample of literature papers relevant to our study. To
construct the string, it is necessary to identify some terms com-
monly used in the literature relating to the principles of the above-
mentioned PIO. These words are collected through the validation
process described in Section 3.2.2; the words are the following:

- Population: researcher, doctor, hospital, drug company, medi-
cine, CRISPR/Cas9, sgRNA, on-target, off-target, cleavage, gen-
ome engineering, genome editing, knockout efficacy;

- Intervention: machine learning, deep learning;
- Output: prediction of CRISPR/Cas9 sgRNA on-target and off-
target cleavage, gRNA design, enhancing CRISPR–Cas9 gRNA
efficiency, accurate prediction, identification of sgRNA sites,
interactive gRNA design webserver, cloud-based service.

The search strings used in 3.2.2 were constructed with the
above words, linked with ‘‘OR” or ‘‘AND”.



Table 2
Number of documents found in Scopus/WoS.

Source # papers retrieved

Scopus 176
WoS 94
Unique papers 210

Table 1
Research questions.

ID Question Reason

RQ1 What is the temporal and
geographical distribution of
the research?

Understand how documents develop
over time and how they are
distributed among countries
interested in genome editing,
specifically on deep
learning/machine learning
techniques to predict CRISPR/Cas9
sgRNA target cleavage

RQ2 Which stakeholders do the
documents refer to?

Identify specific stakeholders
interested in this research

RQ3 What are the ML models of
interest?

Discern the themes that stimulate
researchers, listing the use of the
most used models. Identify possible
techniques that are considered to be
most effective by researchers.

RQ4 What are the most frequent
research objectives?

Understand the objectives to which
the researchers aim, in particular
with reference to the target on/off.

RQ5 What types of cells are used in
the studies?

Identify the datasets used in the
documents, to understand the
species involved and the availability
of the data.

RQ6 What results are presented in
the papers supporting the
research?

Understand if the solutions
developed by the researchers are
working and if they are freely offered
to research.

RQ7 Financing? Investigate which lenders are most
interested in this type of research,
which indirectly also helps to
identify any stakeholders.
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3.2.2. Search strategy, string generation, and validation
A search string should be designed before searching for the

overall timeframe elected to ensure that possibly most of the rep-
resentative studies of the literature on deep/machine learning
techniques used to predict CRISPR/Cas9 sgRNA on/off-target cleav-
age are extracted from automated search. To design the search
string, the method recommended by Zhang [17] was followed, tak-
ing into consideration the number of significant studies found on
the topic under investigation, automatically extracted, and manu-
ally extracted significant studies.

A 12-months publication period has been chosen for the val-
idation of the search string [17] runs from May 2021 to April
2022. First, we conducted a manual search based on the snow-
ball technique; this technique of searching for relevant literature
guarantees good completeness of the automatic search. Refer-
ences were selected and collected from each eligible paper,
and then, focusing on these references we found further relevant
studies on the topic of this SMS. Then, the articles that were
cited in each paper of interest were also taken into considera-
tion. Specifically, the most significant papers in the period May
2021 – Apr. 2022 were searched from specialized sources, such
as the following:

� Nature biotechnology
� Nucleic acid research
� Nature communications
� Bioinformatics

In that period, three relevant papers were discovered
[18,19,75], and the references included in those papers were ana-
lyzed and collected, thus increasing the group of relevant papers
on this topic. Then, we made different assemblies of the search
strings that contained the most interesting keywords; as chosen
by the authors, a search was conducted by using well-known
repositories, with the following scheme:
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� Scopus (https://www.scopus.com/) considering the following
filters:
o Search within: Article title, Abstract, Keywords.
o Year: 2017–2022.
o Article.
o Journal.
o English.

� WoS (https://www.webofscience.com) considering the follow-
ing filters:
o Search within: ALL.
o Year: 2017–2022.
o Article.
o NOT Document Types: Proceedings Papers.
o English.

A different quantity of papers was extracted, with the aim of
verifying the string validation described in [17]. The final search
string used is:

- Scopus: ((Machine learning) OR (Deep learning)) AND (CRISPR)
AND ((cas9) OR (sgrna))

- WoS: (ALL=(‘‘machine learning” or ‘‘Deep learning”)) AND ALL=
(‘‘CRISPR”) AND (ALL=(‘‘Cas900) OR ALL=(”sgrna‘‘))

Despite the numerous words included in the PIO, the search
string that gave a satisfactory result is slim. The opinion of the
authors is that many authors use many keywords and concepts,
even quite different from each other, while addressing the same
themes. Therefore, a more comprehensive string made it possible
to find as many relevant papers as possible. In any case, for the
purpose of this study the goal of the collection is achieved.

With the above strings, the search for papers in the two Scopus
and WoS databases, using the same filters indicated, for the entire
research period defined by the authors, i.e., January 2017 – April
2022 produced the search results shown in Table 2. The documents
extracted from Scopus andWoS were compared to eliminate dupli-
cates, finally obtaining 210 unique documents.
3.2.3. Random assignment of articles to reviewing authors and
screening

The role of a reviewer was assumed by the authors who evalu-
ated all papers, primarily to decide on inclusion or exclusion and,
for the included papers, analyze the content according to the rules
of the SMS. For each of the 210 articles to be guaranteed three revi-
sions, the papers were divided into 3 groups of 105 papers (210 *
3 = 630 = 105 * 6). The eligibility of each study and therefore its
inclusion or exclusion was decided through a screening process:
as stated above, each paper has undergone three reviews from
three reviewers; each reviewer decided whether to include or
not the study; and subsequently, the reviewers had a short discus-
sion to reach an agreement and if an agreement was not reached,
the acceptance or exclusion of the document was decided by
majority.

As indicated above, articles published between January 2017
and April 2022 were taken into consideration. The publication per-
iod can be chosen as an arbitrary parameter [3]: we consider a per-
iod of approximately 5 years to be adequate for the purpose of this

https://www.scopus.com/
https://www.webofscience.com


Table 3
Selected documents.

Source Number of publications

Retrieved Excluded Included Included (%)

Digital libraries 210 153 57 27.14

Fig. 1. Distribution of documents based on years.

Fig. 2. Most productive countries in the SMS topic.

G. Dimauro, V.S. Barletta, C.R. Catacchio et al. Computational and Structural Biotechnology Journal 20 (2022) 5813–5823
study. The document quality was not considered to be a critical
factor, because all documents can provide useful information for
the SMS. In any case, we have adopted rather stringent criteria,
i.e., inclusion only of papers in journals, only in English, and only
in the ’article’ category. Furthermore, having used the Scopus and
WoS databases, to a certain extent already guarantees the exclu-
sion of documents of dubious quality level. Table 3 reports the
quantity of the selected and included publications.

From each document included, we then extracted phrases and
concepts that could be useful to set up classification schemes
and map them in the research questions.

The reviewers extracted words from the title and abstracts.
Where the abstract was found to be insufficient, the introduction
and possibly also the conclusions were analyzed. An article would
have been excluded if a reviewer could not extract any useful
words to classify the document and answer the RQs, but this cir-
cumstance did not occur. A total of 57 documents were classified
[18,19,24–78].

4. Results

This section presents the results obtained during the screening
process useful to answer the 7 RQs and briefly argue the results
that relate to each ‘‘dimension”.

4.1. Time and geographic distribution of publications

Fig. 1 shows the number of documents published annually and
how they varied from 2017 to 2022 (April, 30). It is evident that
interest in studying the topic discussed in this paper is growing.
Given the young age of CRISPR/Cas9 technology combined with
machine learning techniques, a positive evolution is expected in
the coming years; however, this aspect is also discussed later.
Fig. 2 shows the geographical distribution of the documents. In
the case of articles with authors from multiple countries, the
majority of the authors was taken into consideration; in the case
in which there is no evident majority among the nationalities,
the document was classified as belonging to the country of the first
author. The 57 selected studies were conducted in only 13
countries.

The most active countries on the subject appear to be China and
the USA, with 22 and 16 documents, respectively, and many stud-
ies classified as ‘‘USA” in the research teams include researchers
working at other universities, including Chinese. This result could
be due to many factors that are difficult to determine, with one
of the many factors being China’s strong investment in artificial
intelligence techniques in recent years as well as a growing inter-
est in biotechnologies and specifically in CRISPR techniques. The
latter is a promising technology, and it is almost certain that it will
represent the future of biotechnology. The scope of this technique
is as relevant to the future of biotechnology as machine learning is
to the future of the IT industry, and not only. The most industrial-
ized countries are aware of this circumstance, and have wasted no
time in promoting, through a government program, the facilitation
of the vast applications of genomics and other biotechnologies and
the large-scale development of personalized medical treatments,
new drugs, and next-generation biotechnology products and ser-
vices. Parallel to what is occurring for biotechnologies, China has
5816
quickly caught up with the United States in the field of artificial
intelligence (e.g., machine learning), which is proving to be an
excellent enabling technology. Europe appears to be far behind
on the topic of this SMS.
4.2. Stakeholder

In general, the systems described in the documents seek to opti-
mize the design of sgRNAs by maximizing their activity on the tar-
get and minimizing their potential off-target mutations. This field
of study is focused on a very specific objective that can find extre-
mely interesting applications in a myriad of fields of science.
CRISPR/Cas9 is a revolutionary gene-editing technology that can
be widely utilized in biology, biotechnology and medicine. The
use of machine learning techniques or, more specifically, deep
learning techniques could provide useful guidelines for selecting
effective target sites and assist users in designing more efficient
gRNAs. The analysis of the selected studies therefore does not pro-
vide significant specific indications on the objective of each of
them, since CRISPR/Cas9 is a basic genetic technique. We can share
the opinion expressed by the authors in some documents, for
example, the reference to practical uses of this system for clinical
applications such as cancer modeling [20], treatment of HIV [21],
or other gene editing applications, including the defining mecha-
nisms of neurodegenerative diseases [22]. These are of course only
a few examples. For the benefit of the readers, we report that inter-
esting application perspectives for the technique have been out-
lined since 2014 in [23]. Essentially, identification of single-guide
RNA activity is critical for theoretical research, such as investiga-
tion of RNA functions, and new applications in the genome editing
and synthetic biology fields.



Table 4
Hybrid Models: DCDNN (deep convolutional denoising neural network), BGRU
(bidirectional gated recurrent unit), SVR (support vector regression).

Hybrid models n.

BiLSTM + CNN 2
CNN-XGboost 1
DCDNN + CNN 1
CNN + LSTM 1
CNN + LRCN 1
CNN + RNN 1
CNN + BGRU 1
CNN + SVR 1
Random Forest + SVM 1
SVM + XGBoost + Linear regression 1
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4.3. Machine learning techniques

Fig. 3 and Table 4 show the machine learning techniques most
commonly used by the scientific community in the relevant docu-
ments found.

As shown in Fig. 3, the most commonly used model is the CNN
(convolutional neural network). Most documents use this model
for learning and inference, and this result is most likely due to
the model’s ability to automatically extract the input features nec-
essary for training, organized in matrices (e.g., images). In digital
images, pixel values are organized in a two-dimensional array of
numbers. A small set of parameters, an optimizable feature extrac-
tor, is applied at each image zone, which makes CNNs highly effi-
cient for image analysis since a feature can occur anywhere in
the image. The process of defining optimal parameters such as ker-
nels is known as training. This group of neural networks is becom-
ing dominant in many computer vision tasks and interesting across
a variety of domains, including biology. In many cases, as in [46],
an attempt was made to organize data into matrices assimilated
to images, thus making it possible to adopt this powerful deep
learning model. In 8 studies, FNN networks were used and were
often also used as a comparison model. A single document adopts
an RNN network that shows the ability to process long and entire
sequences such as genetic sequences. Other models and techniques
used in the documents are LSTM-bidirectional, an extension of tra-
ditional LSTM networks that improve their performance; LRCN
(long-term recurrent convolutional network), consisting of an
LSTM as an input model and a CNN as an output model; and
GCN (graph convolutional network), a neural network architecture
used in machine learning on graphs. Other studies adopt hybrid
models by combining the basic models listed above. These models,
indicated in Table 4, do not rely solely on a single machine learning
model (such as a CNN, an FNN or a random forest), but are compos-
ite models formed by two or more basic models. It is interesting to
note that the majority of the hybrid models identified still use a
convolutional neural network. In fact, 9 out of 11 models are com-
posed of a CNN joint with another model, and only two models
have in common the use of an SVM (support vector machine).

Fig. 4 shows further ML models, which in the analyzed docu-
ments are mainly used for a comparison of the obtained perfor-
mances with proposed models.
5. Research objectives

The objective of the studies analyzed is the result that is given
by the solution proposed and discussed. Because it is easy to guess
from the terms themselves, the papers that we indicate with the
objective ’on-target site prediction’ are those that develop models
Fig. 3. Most used machine learning models: CNN (convolutional neural networks),
FNN (feedforward neural networks), BiLSTM (bidirectional long short-term mem-
ory), RNN (recurrent neural network), LRCN (long-term recurrent convolutional
networks), GCN (graph convolutional networks).

5817
that aim to provide a prediction of the on-target cleavage effi-
ciency, while those indicated as ’off site prediction – target’
develop models that aim to provide a prediction of the off-target
cleavage efficiency. Some papers study techniques for predicting
the cleavage efficiency at both sites. Fig. 5 shows that more than
50 % of the models designed, built and described in the documents
aim to predict the on-target cleavage efficiency and approximately
30 % the off-target cleavage efficiency; only 10 documents,
describe ML models that provide an efficiency prediction at both
sites. On the sidelines, from the review of the documents, it
emerged that authors mainly propose the creation of new models
or experiments on different sets of data or different arrangement of
the features.

5.1. Cells used in the experiment

In Fig. 6 below, a pie chart is shown that summarizes the cell
types that are included in the datasets used for the studies. The
majority uses human cells (70 %), while 9 % used datasets contain-
ing human and mouse cells; the minority uses datasets that con-
tain cells of the following species: Zebrafish, Ciona,
Caenorhabditis elegans, Ascidians, Drosophila, Mouse, or bacterial
cell lines and plant cell lines.

5.2. Resources provided by the authors

In Table 5, we can observe that 63 % (36) of the studies provide a
link to a GitHub or Code Ocean repository, containing the source
code of the models proposed, while 14 % (8) of the research groups
offer both the link to a repository containing the software designed
and an online service to support researchers in sgRNA design by
providing an estimate of the on/off-target cleavage efficiency. In
10 % (6) of the cases, only the public online platform was made
available, and few of the studies did not share online functions
or source code of the models developed and illustrated. See Appen-
dixes 2 and 3.

5.3. Trends

Table 6 shows a couple of cases in multiple dimensions to high-
light some trends in the selected literature, specifically the tempo-
ral distribution of the two models that have been the most trusted
by researchers over time. From the graph, it can be seen that in
2019 and 2021, studies were published that were mainly based
on CNN experimentation. However, CNN is used throughout the
period under observation, and considering the partial figure of
2022, confidence in CNNs appears to be growing. Among the
selected documents, FNNs appeared in 2018, and they continue
to attract marginal interest. All other models, at least up to the date



Fig. 4. Popular machine learning models used mainly for comparison.

Fig. 5. Objective of the models presented in the studies.

Fig. 6. Cell types used in studies.

Table 5
Services or software made available.

Resources provided Papers

just the code 36
web server 6
code + webserver 8
nothing 7

Table 6
ML models per year.

Models 2017 2018 2019 2020 2021 2022

CNN 1 2 5 4 9 3
FNN 0 3 1 4 1 0

Fig. 7. Financing.
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of our research, appear to be the basis of occasional experiments,
and they are understood to be attempts to identify more effective
models.
5.4. Financing

The graph in Fig. 7 is intended to highlight the interests of the
lenders. There is no doubt that today, the main interest is in the
public sphere. This circumstance is not very surprising, because
this area is basic research with a rather uncertain future, and thus,
private lenders are still watching, perhaps with extreme caution.
The problems that relate to the lack of explainability of machine
learning models, the effectiveness of prediction, and the impossi-
bility of operating on the genome with a significant margin of
uncertainty are issues that still require a large amount of effort
from the scientific community. In essence, this research, albeit fas-
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cinating, does not appear to be attractive at the moment for those
who want to transform it into business.
6. Discussion

As already mentioned, the purpose of this work is to analyze
how research is developing in the context of the ML techniques
used in the prediction of CRISPR/Cas9 sgRNA on/off-target cleav-
age. Unlike a classic review, in an SMS, no comparison of methods
or results is made, and no suggestion is given about the use of one
method or technique rather than another. These themes can
instead be the subject of a systematic literature review that
chooses one theme among those highlighted in this SMS, for exam-
ple, the comparison of studies using the CNN. This study which can
be conducted later. The analysis conducted and the results found
allow us to partially answer the RQs listed in Table 1.

(RQ1) Section 4.1, Fig. 1, shows the temporal distribution of
documents: it should be noted that from 2017 to 2021, the number
of documents increased significantly. Some papers published at the
beginning of 2022, may not be available on the date of the search.
It can be observed that in 2022 (January-April), 3 articles have been
published, which is a value that is comparable to those of previous
years, and thus, it is expected that at the end of 2022, the number
of documents could align with previous years or possibly increase.
It should be considered that other articles could actually be pub-
lished, at least online, by their respective publishers, but they are
not yet on Scopus/WoS due to the delay in the inclusion times of
the papers in those repositories, which on average are 8 weeks
but can arrive even after several months, when the papers have
not yet been effectively assigned an issue. With reference to the
geographic distribution of the studies, the two nations that are
most likely farther ahead in both artificial intelligence and biotech-
nology techniques are the USA and China; therefore, the result that
we proposed in Fig. 2 confirms this.

(RQ2) We do not think that we can give an actually useful
answer about the specific stakeholders interested in the research
indicated in the selected papers. In Section 4.2, we have provided
our interpretation, and here, we can conclude that identification
of single-guide RNA activity is critical for theoretical research, such
as investigation of RNA functions, and new applications in the gen-
ome editing and synthetic biology fields and that the adoption of
machine learning techniques or, more specifically, CNN techniques
could provide useful support for selecting effective target sites and
assisting biotechnologists in designing efficient gRNAs.

(RQ3) Section 4.3, by means of Fig. 3 and Table 4, highlights that
the most used technique is the CNN, which is an interesting solu-
tion for the analysis of genomic sequences due to the ability to per-
form automatic and ’parallel’ extraction of features. In addition, 11
documents present projects and realizations of hybrid solutions,
but 9 of these hybrid solutions still employ a CNN. To underline
the advantage of using a CNN, many authors compare this tech-
nique with many others, the first being random forest. A more pre-
cise indication can be deduced from Table 4. Furthermore, in
Section 4.7 in Table 6, the 2 machine learning models most used
in the documents are related to their respective temporal trends.

(RQ4) In Section 4.4 in Fig. 5, it is noted how in most of the stud-
ies, models based on ML or hybrid are designed that predict the on-
target site.

(RQ5) Section 4.5 in Fig. 6 shows how most of the datasets used
in the documents refer to human cells. Only two studies tend to
generalize and use mixed datasets, making use of both human
and other species cells, in which five research groups employ
human and mouse cell lines, and the remainder employ datasets
that contain cell lines from a single species, such as bacteria, plants
or mouse.
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(RQ6) Section 4.6 in Table 5 shows the solutions offered to sup-
port researchers; surprisingly, in a positive sense, source code is
made available in most documents. Other authors, on the other
hand, offer a more sophisticated solution, i.e., a free online plat-
form made available to other research groups or different
stakeholders.

(RQ7) Section 4.8 in Fig. 7 shows the distribution on the origin
of the funds declared by the authors. Generally, as it should be,
there is no mention of the amount of economic effort; in several
cases, part of the funds, or the fund offered by ’other’ than public
financiers, is dedicated to paying scholarships for researchers. Up
to date, the presence of typical lenders in the medical/biological/
pharmaceutical sector, i.e., industrial companies, specifically phar-
maceutical companies, is not significant.

In the Appendix 1 we have introduced a description of the CNN
approach, which we believe is useful to enable the reader to imme-
diately understand the issues to be addressed and the benefits that
can be obtained. We chose the CNN model because, as reported
above, it is the most chosen model and of growing interest to
address the research in prediction of CRISPR/Cas9 sgRNA target
cleavage. The researcher who is interested will then have to dee-
pen the literature that we have identified in the study and will
be able to try his hand at some experiments using the large amount
of code and on-line services publicly available.
7. Conclusions

The Cas9 nucleases are proving to be valid tools for genome
editing. Their broad applications are slowed by the lack of knowl-
edge of the rules governing guide RNA activity. A key prerequisite
for CRISPR/Cas9 success is its ability to distinguish between on-
target single guide RNA and off-target homologous sites. Therefore,
rigorous design of sgRNAs that maximize their on-target activity
and minimize their potential flaws are crucial concerns for this
technique. Early in 2015, the importance of eliminating errors
was emphasized, and in [79], it was highlighted that the margins
of error in the use of CRISPR were still too high to be able to apply
the technique (in that case on embryos) safely.

In recent years, numerous documents have been published that
aim to create classic or hybrid ML models that aim to predict the
on/off-target site with the least possible margin of error. In many
cases, such utilities are made available to the research world in
the form of free online services or source code.

The aim of this paper was to present a systematic mapping
study that summarizes the existing knowledge on the models
studied by numerous research groups. From an initial series of
210 scientific articles, 57 were selected, those that are most rele-
vant to this study. These articles allowed the analysis, discussion
of the results, and answer to the questions posed in the study.

The results showed that the most used model is CNN. Some
research seeks to improve the performance of CNNs by designing
hybrid models, which are in most cases composed of CNN with
LSTM, biLSTM or RNN. CNNs have achieved excellent results across
a variety of domains, recently including biology, while an increas-
ing interest has emerged in biotechnology, specifically for the pre-
diction of sgRNA target cleavage efficacy. Despite it is becoming a
widely used technique in a variety of highly complex tasks, such as
image classification and object detection, it is not the famous
Columbus egg. Being familiar with key concepts and advantages
of deep learning as well as its limitations is essential to leverage
it in biotechnology research with the goal of improving CRISPR per-
formance and, eventually, new concerns.

The models designed in the classified documents aim for the
most part to alternatively estimate on-target or off-target sites.
The models were trained with datasets referenced by a specific cell
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type. This approach makes the algorithms incompatible with other
cell types and species; thus, even if they perform well, it is still
unclear how effectively these models are able to generalize.

In the opinion of the authors, the primary objectives of the
research on this topic remain the reduction of the margin of error
and the explainability of the models used. Second, a possible
research direction is to design and implement systems that have
a greater generalization capacity, to make them easier for research-
ers to use.

Despite its development and positive applications in medicine
and biology, there are several ethical concerns about CRISPR gen-
ome editing technology. CRISPR technology has shown technical
limitations such as mosaicism effect, highly variable efficiency,
and lacking accuracy as reported in experiments on animals and
human cell lines. Moreover, while it is greatly simple to edit a gen-
ome, the duration and the effects are still unknown especially
when the edited genes are transferred to the next generations. Fur-
ther uncertainty resides in the influence of such modifications on
complex biological traits, thus highlighting other potential risks.
The SMS we present here could be helpful in improving the effi-
ciency of CRISPR genome editing technology partially addressing
the concerns raised by the use of this technology.
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Appendix 1. Why CNN for the prediction of CRISPR/Cas9 sgRNA
target cleavage

The sgRNAs designed to cut a target DNA are not equally effective,
while their efficiency depends on the features like the target site,
the properties of the endonuclease, and the design of the sequence.
Furthermore, when DNA gets cut, the cell tries to repair it, leading
to possible mutations. Predicting efficiency in cutting DNAs and its
side effects and mutations is an important task in sgRNA design. To
refine sgRNA design task, various efficiency prediction systems
have been developed, for example, locating PAM sequence (CasFin-
der [80]), scoring efficiencies empirically based on sequence key
features (CHOPCHOP [81]), or predicting them with training mod-
els (sgRNA designer [82], sgRNA scorer [24,83], SSC [84], CRISPRs-
can [85]). Prediction systems based on Convolutional Neural
Networks are becoming competitive both in predicting on-target
and off-target efficiencies. Convolutional Neural Networks have
attracted attention in computational biology because they excel
at pattern recognition, can detect and process important parts of
an image input, can process raw sequences, without manual fea-
ture engineering, which can expedite model creation. Here we cite
a couple of examples to illustrate some of the techniques that are
becoming widespread.

A CNN approach to predict both off-target and on-target effi-
ciencies is described in Chuai [29]. In this system, called Deep-
CRISPR, the sequence is encoded into a one-hot matrix,
composed of 4 rows, one for each nucleobase, and 23 columns,
one for each nucleobase in a 23-bp sgRNA sequence. The matrix
gets augmented with additional rows corresponding to epigenetic
features, to build a generalized model. This matrix then gets passed
as image input to a CNN, which is able to use both linear regression
and classification to predict efficiencies. In the first case, the pre-
dicted value is a real value, while in the second case a class is pre-
dicted (0 low efficiency, 1 high efficiency). Fig. A shows an example
of one-hot encoding of a sequence.
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The system developed by Xue [36], called DeepCas9, uses a CNN
too. A sequence up to 30-bp is encoded into a one-hot matrix using
the same one-hot encoding scheme used in Fig. A. Also, in [36] the
obtained matrix gets passed as input to the CNN that uses linear
regression to predict efficiency represented by a real value. The
above examples use a similar encoding mechanism to transform
each sgRNA sequence into a data format suitable for the CNN. In
fact, CNNs take as input a matrix of values, corresponding to the
pixel matrix of an image. In this way, it is possible to take advan-
tage of CNN’s ability to work with raw data encoded in the form
of images.

Several models have been developed so far, to which we refer in
the references, with comparable performance, while recently Xiang
et Al [19] argued that prediction improvement can be achieved
with large high-quality datasets rather than working on the model.
For a neural network to acquire the ability to provide a useful
result, it must be trained. Network training also uses coded
sequences as images: to make the training effective it is necessary
to have generously sized datasets and high-performance process-
ing systems. As an example, Xue in [36] used different sgRNA effi-
ciency datasets covering several cell species types, some of these
are:

� Chari dataset [83], consisting in 1234 guides targeting Human
293T cells.

� Wang dataset [84], consisting in 2076 guides targeting 221
genes in Human HL-60 cells.

� Doench dataset [82], consisting in 2333 guides targeting
CCDC101, MED12, TADA2B, TADA1, HPRT, CUL3, NF1, and NF2
genes from Human A375 cells.

� Hart dataset [87], consisting in 4239 guides targeting 829 genes
in Human Hct116 cells.

� Moreno-Mateos dataset [85], consisting in 1020 guides target-
ing 128 genes in Zebrafish genome.

Furthermore, many datasets were aggregated in [86], creating a
dataset of 31,625 sgRNAs. Recently Xiang et Al [19] report on the
generation of on-target gRNA activity data for 10,592 gRNAs: inte-
grating these with complementary published data, they train a
deep learning model, called CRISPRon, on 23,902 gRNAs.

When large datasets are not available (for example for a specific
species) typically the results obtained by using a CNN model are
unsatisfactory. Modifying the CNN architecture or changing some
of its hyperparameters do not improve model performances. In this
case, it can be adopted a data augmentation technique. Augment-
ing data has proved to be a key step in improving CNN perfor-
mances. An interesting example is reported in [29].

Many systems have been developed using Python language,
because of its simplicity and popularity compared to other pro-
gramming languages. An example of an integrated development
environment used was Pycharm, in combination with VSCode.
Also, Git version control system was used, in combination with
GitHub. To develop the core of the system, the convolutional neu-
ral network behind the prediction task, Tensorflow has been
mostly used, including Keras. Keras uses a data structure to repre-
sent the way that neural network layers are organized. Other
libraries used are Scipy, an open library dedicated to scientific
computing, NumPy, a library for scientific calculation that provides
many functions for operations between matrices, Scikit-learn, a
library for machine learning supporting algorithms and Python
default libraries for miscellaneous purposes. Interesting examples
of model flow for the CNN models can be found in Supplementary
Fig. 13 in [19], in Table 2 in [46], in Fig. 3 in [72], in Fig. 1 in [71], in
Fig. 10 in [69] and in Fig. 1 in [70].



Fig. A. One-hot encoding of a sequence.
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Appendix 2. Support platforms for researchers (links)

Last accessed October 15, 2022.
[19] https://rth.dk/resources/crispr/.
[26] https://crista.tau.ac.il/.
[27] https://crispr.ml.
[29] https://www.deepcrispr.net/(*).
[35] https://www.crisprindelphi.design/.
[37] https://bioinfolab.miamioh.edu/CRISPR-DT (*).
[42] https://www.DeepHF.com/.
[45] https://deepcrispr.info/DeepSpCas9.
[49] https://deepcrispr.info/DeepxCas9, https://deepcrispr.info/

DeepSpCas9-NG.
[50] https://crisprdb.org/wu-crispr/.
[51] https://bliulab.net/sgRNA-PSM/.
[54] https://big.hanyang.ac.kr:2195/CGD.
[55] https://web.iitd.ac.in/crispcut/off-targets/(*).
[70] https://www.innovebioinfo.com/Sequencing_Analysis/

RNAediting/RNA1.php.
(*) website was down on October 15, 2022.
Appendix 3. Open code (links)

Last accessed October 15, 2022.
[18] https://github.com/vli31/CROTON .
[19] https://github.com/RTH-tools/crispron/.
[25] https://github.com/khaled-buet/CRISPRpred.
[27] https://www.microsoft.com/en-us/research/project/crispr.
[28] https://github.com/BauerLab/TUSCAN.
[30] https://github.com/zhangchonglab/sgRNA-cleavage-activ

ity-prediction.git.
[31] https://github.com/yuuuuzhang/dl-CRISPR_offtarget_

prediction.
[32] https://github.com/MichaelLinn/off_target_prediction.
[33] https://github.com/penn-hui/OfftargetPredict.
[34] gitlab.com/bauerlab/crispro.
[35] https://www.github.com/gifford-lab/inDelphi-dataprocess

inganalysis.
[36] https://github.com/lje00006/DeepCas9.
[38] https://github.com/luslab/crispr-indels.
[40] https://github.com/BauerLab/VARSCOT.
[41] https://www.github.com/czbiohub/Primer3Wrapper.
[42] https://github.com/izhangcd/DeepHF.
[43] https://github.com/biomedBit/DeepSgrnaBacteria.
[44] https://github.com/qiaoliuhub/AttnToCrispr.
[45] https://github.com/MyungjaeSong/Paired-Library, https://

github.com/CRISPRJWCHOI/BaseEditing_tool.
[47] https://github.com/TerminatorJ/GNL_Scorer.
[50] https://github.com/wang-lab/sgDesigner.
[52] https://github.com/LQYoLH/CnnCrispr.
[53] https://github.com/Peppags/C_RNNCrispr.
[54] https://github.com/vipinmenon1989/CGD.
[56] https://github.com/Rafid013/CRISPRpredSEQ.
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[57] https://deepcrispr.info/DeepSpCas9variants.
[58] https://github.com/tsailabSJ/changeseq, https://github.co

m/aryeelab/guideseq.
[59] https://github.com/MyungjaeSong/Paired-Library.
[60] https://codeocean.com/capsule/9553651/tree/v1.
[61] https://github.com/jingry/autoBioSeqpy.
[62] https://github.com/wangyi-fudan/SeqCor.
[63] https://github.com/nmt315320/sgRNACNN.git.
[64] https://github.com/gifford-lab/skipguide-analysis.
[66] https://github.com/Peppags/CRISPRont-CRISPRofft.
[67] https://github.com/kundajelab/PREUSS.
[69] https://github.com/BioinfoVirgo/CRISPR-IP.
[70] https://github.com/wjd198605/EditPredict.
[71] https://github.com/MoonLBH/CNN-XG.
[73] https://github.com/JiazhiHuLab/CNN_predict.
[74] https://github.com/South-Walker/AttCRISPR.
[75] https://github.com/cabbi-bio/cropsr.
[76] https://github.com/dDipankar/DeepGuide.
[77] https://github.com/AWHKU/RunMLDE_SpCas9.
[78] https://github.com/xuhi1996.
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