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Abstract

The aim of this investigation has been the design and validation of an oligonucleotide microarray in
order to detect 17 different wine-spoilage microorganisms, i.e. 9 yeasts, 5 lactic bacteria and 3
acetic acid bacteria species. Furthermore, several strains belonging to these species has been found
to produce undesirable compounds for wine consumers. Oligonucleotide probes specific for each
microorganism were designed to target the intergenic spacer regions (ISR) between18S-5.8S region
for yeasts and 16S-ITS1 region for bacteria. Prior to hybridization the ISR were amplified by
combining reverse transcriptase and polymerase chain reactions using a designed consensus primer.
Each oligonucleotide-probes exclusively recognized its target without undesired aspecific cross-
hybridizations. Under our experimental condition, the microarray assay analysis was able to detect
the amount of DNA equivalent to 24 (Saccharomyces cerevisiae), 160 (Lactobacillus brevis) and
124 (Gluconobacter oxydans) cells, three species chosen as experimental models for the three
studied microbial classes. Moreover, a novel procedure that allowed the extraction of genomic
DNA from a mixture of eukaryotic and prokaryotic cells from contaminated wine was developed.
The obtained results confirm that the microarray assay is able to detect specifically different
spoilage microorganisms present in mixture in contaminated wines. For the first time the microarray
methodology has been applied for the simultaneous identification of different mixed population of
spoilage yeast and bacteria directly isolated from wine, thus indicating the practicability of

oligonucleotide microarrays as a contamination control in wine industry.

Keywords: biotechnology; wine; wine spoilage; microarray; PCR.
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1. Introduction

Yeasts and bacteria play important roles in winemaking such as catalysing the rapid, complete and
efficient conversion of grape sugar into ethanol as well as reducing wine acidity, improving
microbiological stability and enhancing wine aroma and flavour. However, under uncontrolled
conditions, microbial activity may also be disadvantageous for wine quality (Bartowsky, 2009; M.
Du Toit & Pretorius, 2000). Wine deterioration due to spoilage microorganisms is becoming a
major problem for wine industry because can cause significant economic losses (Krisch,
Chandrasekaran, Kadaikunnan, Alharbi, & Vagvolgyi, 2016; Luo, Schmid, Grbin, & Jiranek, 2012)
also in the light of wine production increased scale all over the world (Mariani, Pomarici, & Boatto,
2012). Moreover, wine consumers, nowadays, demand milder processing, preservation and storage
conditions that also contribute to increase wine spoilage drawback (Lockshin & Corsi, 2012).
Microbial spoilage can occur at different stages during wine production or storage (Rankine, 1995;
Tristezza et al., 2010). Many lactic acid bacteria genera, such as Lactobacillus and Pediococcus, are
among the most concerning microbial contaminants and are well known for their capacity to
depreciate wine (Bartowsky, 2009) as well as to produce undesirable compounds for wine
consumers health such as biogenic ammines ( Mateo, Torija, Mas, & Bartowsky, 2014; Russo et al.,
2016). Also wine alterations due to activity and growth of contaminant yeasts in processed and
bottled wines is a serious concern for wine industry (Krisch et al., 2016; Loureiro & Malfeito-
Ferreira, 2003); wine spoilage yeasts belong to several genera including Dekkera/Brettanomyces,
Hanseniaspora, Candida, Pichia, Zygosaccharomyces (Enrique et al., 2007; Loureiro & Malfeito-
Ferreira, 2003). Furthermore, some strains belonging to these species were able to synthesize
histamine and cadaverine during must fermentation (Tristezza et al., 2013). Even the species
Saccharomyces cerevisiae might be considered as a spoilage organism when associated with re-
fermentation of bottled wines (Deak, 2007; Loureiro & Malfeito-Ferreira, 2003; Tristezza et al.,

2010).
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Consequently, to prevent economical losses, it would be helpful to have tools able to
simultaneously identify the undesirable microorganisms. Microarrays approach has been applied for
microbial identification and detection in food stuffs (McLoughlin, 2011; Rasooly & Herold, 2008).
Microarray technology based on species-specific sequences is rapid, sensitive and unambiguously
allows identification of single species (Southern, 2001) into a mixed microbial community. For
instance, the sensitive and specific detection and identification of ascomycetes has been carried out
drawing primer pairs complementary to the highly conserved 18S and 5.8S regions of rRNA genes
and using oligonucleotide capture probes complementary to the more variable ITS1 regions present
in multiple copies in fungal and yeast genomes, that allow a discrimination of fungal and yeast
species (Healy et al., 2004; Hsiao et al., 2005; Spiess et al., 2007). As far as bacterial detection is
concerned, bacterial 16S rRNA genes, including nine ‘“hyper-variable regions” (V1-V9),
characterized by significant sequence diversity among different bacterial genera, have been utilized
for species identification (Huws, Edwards, Kim, & Scollan, 2007).

Indeed, microarray applications could play an important role for safety and quality supervision,
particularly in the food and beverage industries. DNA microarray tests have been developed for
identification of food-borne bacterial pathogens in the environment (Call, Borucki, & Loge, 2003),
in different food commodities (Wang et al., 2007) and also for the simultaneous detection of
numerous pathogenic and non-pathogenic bacteria in raw milk (Giannino et al., 2009). Moreover,
Weber and coworkers (2008) developed and applied an oligonucleotide microarray able to detect
and identify viable bacterial species, belonging to the genera Lactobacillus, Megasphaera,
Pediococcus and Pectinatus, recognized (Priest, 2006) as biological agents of beer spoilage. In
general extensive studies have been carried out to optimize efficient molecular methods for the
detection of wine spoilage microorganisms (lvey & Phister, 2011), but none of them can ensure the
simultaneous detection of numerous eukaryotic and prokaryotic undesired microorganisms.

The aim of the present study was to develop an alternative diagnostic method for the rapid and

simultaneous detection of wine spoilage yeasts and bacteria directly extracted from contaminated

4



101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

wines. A prototype oligonucleotide microarray, based on species-specific probes targeting rDNA-
specific regions, was designed and assessed as able to detect 17 different wine-spoilage
microorganisms, i.e. 9 yeasts, 5 lactic bacteria and 3 acetic acid bacteria species. To the best of our
knowledge, this is the first report concerning a single microarray-based assay for the concurrent

identification of different eukaryotic and prokaryotic microorganisms responsible for wine spoilage.

2. Materials and methods

2.1 Microbial strain cultures and DNA extraction

Yeast and bacterial strains used in this study (Table 1) were store at -80 °C in 50% glycerol.
Diagnostic ability of the DNA microarray to detect microorganisms was determined using genomic
DNAs extracted from test strains in laboratory media: YPD (1% yeast extract, 2% peptone, 2%
glucose) for yeasts, MRS (Oxoid, Basingstoke, UK) for lactic acid bacteria and GY (5% glucose,
1% yeast extract) for acetic acid bacteria. Genomic DNAs from pure yeast and bacterial cultures
were extracted using the methods respectively described by Tristezza et al. (2009) and Cappello et
al. (2008). The concentration of the extracted DNA was measured using a NanoDrop

spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA).

2.2 DNA extraction from yeast/bacterial mixed cultures isolated from artificially infected wine

Genomic DNAs of mixed bacterial/yeast cells were directly extracted from artificially infected
wine. The wine used was first micro filtrate and subsequently artificially contaminated with known
amounts of microorganisms. The contaminated wines were centrifuged and the sediment was
suspended in a suitably formulated suspension buffer. Briefly, one millilitre of artificially
contaminated wine was centrifuged for 5 minutes at 8000 xg and thereby the wine was removed.

The pellet obtained was washed with 1 mL of Buffer A (60 mM Tris-HCI pH 7.4, 10 mM EDTA

5
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pH 7.4), centrifuged for 5 minutes at 8000 xg and the supernatant was discarded. The washed pellet
was re-suspended using 8 mg of lysozyme (Sigma-Aldrich, Milan, Italy) + 0.8 mg lyticase (Sigma-
Aldrich, Milan, Italy), in a final volume of 200 pL of Buffer A The slurry was mixed by vortex and
incubated at 37°C for 1 hour. Then 400 pug of RNase (20 pL; Sigma-Aldrich, Milan, Italy) were
added to the mixture and incubated for 2 minutes at 25°C. After a further addition of 400 pg of
Proteinase K (20 pL) and 200 pL of Lysis solution [10 mM Tris (pH 8.0), 10 mM EDTA, and 2.0%
SDS], the mixture was mixed by vortex and incubated at 55°C for 10 minutes. The lysate was added
with 200 pL of absolute ethanol and the genomic DNAs were afterward extracted using the
GenElute™ Bacterial Genomic DNA Kit (Sigma-Aldrich, Milan, Italy) according to the

manufacturer’s instructions.

2.3 Primers and probes design

Primers and oligonucleotide probes used for identification of microorganisms, were designed using
the reference sequences (18S-5.8S rRNA genes region for yeasts and 16S rRNA Gene-I1TS1
[Internal Transcribed Spacer] region for bacteria) available in the GenBank database of the NCBI
homepage (http://www.ncbi.nlm.nih.gov/). The selected sequences were compared with at least one
sequence of the same species in the database and they were aligned with ClustalX implemented in
BioEdit 7.0.5.2 software (Hall, 1999) for the selection of regions suitable for oligonucleotide probes
design. The oligonucleotide probes were designed using Primer 3.0 program (http://www-
genome.wi.mit.edu/genome_software/other/primer3.ntml) and the following parameters were
applied: GC-content between 35 and 60%, maximum Tm set at 58°C and probe length between 20
and 30 bp. Probe sequences were tested for duplex and hairpin formation with the Oligo Analyzer

3.1 (http://www.idtdna.com) software. Each designed probe sequence was optimised by deleting or

adding bases at both ends, according to melting temperature and duplex formation. Oligonucleotide
probes were checked by BLAST analysis (http://www.ncbi. nml.nih.gov/BLAST/) against

sequences from all available species within the database.
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Oligonucleotide probes (Invitrogen) were synthesized adding at the 5° end 12 carbon residues as

spacer and a 5’ NH; group.

2.4 Construction of DNA-microarrays

The oligonucleotide probes were modified by adding a sequence of 12 carbon atoms, linked to an
amino group, at 5’ end. By this organic spacer the oligonucleotide probe is spaced out the slide
surface and fully exposed and available to bind target DNA. Interaction between the slide and the
oligonucleotide probes takes place by a covalent bond between the amino group of the
oligonucleotide and the epoxide coating the slide surface. The oligonucleotide probes were
deposited in duplicate on the epoxy slide either manually, according to the scheme reported in
Figure 1, or automatically, according to the scheme reported in Figure 4.

Probes were suspended in 2X saline-sodium citrate (SSC) buffer (1X SSC = 0.15 M sodium
chloride, 15mM trisodium citrate, pH 7) at a final concentration of 40 uM and distributed in a 96-
well plate. The oligonucleotide probes were spotted on the epoxy-coated glass slides (Nexterion®
Slide E) by contact printing using a robotic spotting SpotArrayTM 24 (Perkin Elmer) by the
following protocol: 55-60% humidity; pin contact time of 400 msec; deposition volume of 10 nL;
spot size diameter of 100 pum; distance between two spots of 400 um. The improvement of
background and sensitivity of the spot fluorescence signals was achieved by preliminary study
using a manual contact printing MicroCaster™ Arrayer (Whatman). This method allows a
deposition volume of 50-70 nL; spot size diameter of 400-700 um; distance between two spots of
900-1300 um. The variability of the spot size is due to a different pin contact time, performed by a
manual printing in order to allow the covalent bond between the epoxide group on the slide surface
and the amino group at 5' end of oligonucleotide probes. After deposition, the slide was incubated

in a humid chamber at room temperature for 2 hours and then stored at room temperature.

2.5 DNA labelling



179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

The target DNA was labelled using one of the two primer, forward or reverse, labelled at the 5’ end
with the Cyanine 5 (Cy5) fluorochrome (Invitrogen™ Life Technologies, USA) by a Linear-After-
The-Exponential-PCR (LATE-PCR). The LATE-PCR is an asymmetric PCR based on the
amplification of a single strand of Cy5-labelled DNA at higher amount compared to the
complementary strand, with predictable kinetics for many cycles beyond the exponential phase
(Rice et al., 2007). LATE-PCR increases the number of strands labelled with cyanine in order to
reduce the unlabelled complementary strands that, during the hybridization step on microarray, for
competition effect is able to limit the binding with oligonucleotide probes immobilized on the array.
The LATE-PCR method is a composed by two sequential steps that were carried out as following.

. Traditional Exponential-PCR. The base master mix consisted of 5 pL reaction buffer [10X,
Euroclone; 160 mM (NH,4),S04, 670 mM TRIS HCI pH 8.8; 0.1% Tween-20], 3 mM MgCl, 50 (,
0.2 mM,dNTP mix (Invitrogen, USA), 0.2 uM of each genus primer (Cy5-primer and reverse or
forward prime), 2 uL of DNA template, 2.5 units Taq polymerase (, Euroclone, Italy) and sterile
water to 50 pl. Following an initial denaturation at 95°C for 4 min, products were amplified by 30
cycles of denaturation at 95°C for 30 s, annealing at 58°C for 30 s and elongation at 72°C for 45 s.
Amplification was followed by a final extension at 72°C for 5 min. 10 uL of product (1/5 of PCR
reaction volume) was used for the subsequent Linear-PCR.

o Linear-PCR. Five pL of reaction buffer [10X, Euroclone; 160 mM (NH4),S04, 670 mM
TRIS HCI pH 8.8; 0.1% Tween-20], 3 mM MgCl, 50 mM, 0.2 mMdNTP mix (10, Invitrogen,
USA), 0.2uM of Cy5-primer, 10 pL of the previously obtained PCR product (1/5 of Exponential-
PCR reaction volume), 2.5 pL units Taq polymerase (Euroclone, Italy) and sterile water to 50 pL.
Following an initial denaturation at 95°C for 2 min, products were amplified by 15 cycles of
denaturation at 95°C for 20 s, annealing at 58°C for 20 s and elongation at 72°C for 20 s.
Amplification was followed by a final extension at 72°C for 1 min. The amplified Cy5-labelled
DNA was purified by illustra MicroSpin G-50 Columns (GE Healthcare, USA) and diluted (1:2 v/v)

with hybridization buffer for microarray analysis.
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2.6 Microarray hybridization

Before hybridizations, the spotted slide was incubated twice for 2 min in a solution of 1 mM HClI,
then 10 min in a solution of 100 mM KCI, washed twice in sterile water and blocked for 15 min at
50°C with Blocking solution [SOmM ethanolamine; 0.1% SDS, 0.1M Tris, pH 9], in order to
inactivate residual reactive epoxy groups. After two washing steps with sterile water, the slide was
dried by centrifugation for 5 min at 200 xg and placed into the hybridization chamber.

The Cyb-labelled DNA diluted (1:2 v/v) with hybridization buffer (3X SCC; 0,1% SDS; 30%
deionised form amide, Sigma), was denatured at 95°C for 3 min and then immediately applied into
the well of the hybridization chamber (Nexterion® IC-16, Schott, Germany). Wells were covered
with a plastic layer to avoid evaporation during hybridization and incubated for 4 hours (or
overnight) at 42°C. After hybridization, the slide was removed from hybridization chamber and
washed in 4X SSC for 1 min, twice in 2X SSC with 0.1% SDS for 5 min, in 0.2X SSC for 1 min
and finally in 0.1X SSC for 1 min. After the washing steps, the microarray was dried by

centrifugation for 4 min at 200 xg and analyzed at the laser scanner.

2.7 Scanning and data analysis

The fluorescence signal for Cy5 was determined at 633 nm by using a ScanArray Express laser
scanner (Perkin-Elmer, Foster City, CA, USA). Slides were scanned with a resolution of 10 um and
at the same laser power and sensitivity level of the photomultiplier. The draw fluorescence data
acquired were stored as image files in TIFF format and analyzed quantitatively by ScanArray
Express software (Perkin-Elmer, USA). The fluorescence signal of each spot was calculated as the
difference between the mean of pixel intensities and the mean of background fluorescence signals,

defined by surrounding pixel intensity according to Heiskanen et al. (2000).

3. Results
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3.1 Bioinformatic analysis and design of oligonucleotide probes for microarray construction

The bioinformatic analysis of rDNA cistron sequences (18S-5.8S rRNA genes region for yeasts and
16S rRNA gene-ITS1 region for bacteria) belonging to different strains of each of the 17 species
(Table 2) has produced three separate multiple alignments, deriving respectively from yeast, lactic
and acetic bacteria rDNA sequences. Each output file allowed to highlight both conserved regions
(on which the primer pair used for the preparation of the target DNA has been built) and non-
common regions (on which the oligonucleotide probes to be immobilized on the microarray slides
have been constructed). For yeasts, the forward primer has been identified on the 18S region and the
reverse primer on the 5.8S region, whereas for bacteria the forward primer has been identified on
the 16S region and the reverse primer on the ITS1 region (Table 3). Size of the different specific
fragments is indicated in Table S1 and the obtained amplicons are shown in Figure S1. In the case
of lactic acid bacteria, a 300 bp long amplicon was obtained. The forward primer was used in the
preparation of the each of the three specific-target DNAs by LATE-PCR assay (Table 3). A species-
specific oligonucleotide probe for each microorganism was designed in the region between the two
sequences used to draw the two primers. Each primer was constructed to be 20 nucleotides long and
with hybridization temperature (Tm) of 58-60°C (Table 4) and their ability to exclusively
recognized its species-specific target was confirmed by separately submitting each primer sequence
to BLAST analysis (Figure S2).

Seventeen oligonucleotide probes were designed in order to specifically recognize and hybridize
with the target DNA of the corresponding microorganism, in particular 9 oligonucleotide probes for
the nine species of yeasts and 8 oligonucleotide probes for the acetic acid and lactic acid bacteria

species were constructed, which were immobilized on the epoxy slide.

3.2 Labelling of the target DNA and microarray hybridization

10
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Preparation of the target DNA was carried out by PCR using, in each amplification, the forward
primer labelled with the Cy5 fluorescent tag. In order to obtain a more evident signal, the target
DNA synthesis was carried out by using the Linear-After-The-Exponential (LATE)-PCR, which
allowed to obtain an increased signal with a lower background noise. The Figure 1 shows the results
obtained hybridizing separately the 17 target DNAs with the DNA microarray. In all assays, a very
low background noise was obtained. Furthermore, the experimental conditions used produced a
high intensity fluorescence signal strictly corresponding to the specific oligonucleotide probe
immobilized on the epoxy glass slide. This indicates the absence of aspecific cross-hybridization
signals. In fact, each of the 17 oligonucleotide probes exclusively recognized its target not

hybridizing with any target of the other yeast or bacteria species.

3.3 Microarray sensitivity assessment

To assess sensitivity limit of the microarray, the minimal detectable concentration of target DNA
was determined. The sensitivity test was carried out using three model microorganisms, namely
Saccharomyces cerevisiae (yeast), Gluconobacter oxydans (acetic acid bacteria) and Lactobacillus
brevis (lactic acid bacteria). Different solutions containing decreasing amounts of DNA of the three
model microorganisms (i.e. 50 pg, 10 pg, 2 pg and 0.4 pg) were prepared and used as template in
LATE-PCR reactions using respectively the primer pairs Liev_For _Cy5/Liev_Rev,
Acet_For_Cyb/Acet_Rev, Latt For_Cy5/Latt Rev. The electrophoretic analysis of LATE-PCR
products indicate that the expected amplicons are visible when 50 and 10 pg of template DNA were
used, while no products are observed when using 2 and 0.4 pg of template DNA (Figures S3).

When the LATE-PCR products of the three model microorganisms DNAs (at the four different
concentrations) were utilized for hybridization of the microarray slide, the hybridization signal is
present in all samples. Moreover, a very low level of background noise and no cross-reactions were
observed, thus confirming the high specificity of each target DNA (Figure 2). Under the

experimental condition used, the microarray was able to detect target DNA obtained from LATE-
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PCR performed with 0.4 pg of template, that means the amount of DNA corresponding to 24 (S.

cerevisiae), 160 (L. brevis) and 124 (G. oxydans) cells.

3.4 Simultaneous detection of microorganisms from DNA mixtures

A further step in the optimization of the microarray was the simultaneous amplification of target
DNAs deriving from a mixture of different microorganism in order to verify the specific production
of the expected target DNAs and the absence of undesired non-specific amplification products.
Thus we developed a procedure for extracting genomic DNA from a mixture of prokaryotic and
eukaryotic microbes directly from contaminated wine by the concurrent addition of lysozyme and
Iyticase enzymes, able to respectively degrade the cellular wall of bacteria and yeasts.

Four separate amplification reactions were set up using simultaneously the three pairs of primers
Liev_For_Cy5/Liev_Rev  (yeasts), Latt For Cy5/Latt Rev (lactic acid bacteria) and
Acet_For_Cyb5/Acet_Rev (acetic acid bacteria) and, as substrate, the following mixtures of genomic
DNAs, at the concentration of 20 pg/pL each: Mix 1, S. cerevisiae and Schizosaccharomyces
pombe; Mix 2, S. cerevisiae, Pichia membranifaciens and L. brevis; Mix 3, S. cerevisiae, Candida
stellata, L. brevis and G. oxydans; Mix 4, S. cerevisiae, Pichia anomala, P membranifaciens, L.
brevis and G. oxydans (Figure S4). The four different target DNA preparations were used to
hybridize separately four identical arrays. Figure 3 shows the results obtained after the four
independent hybridizations carried out using the above-described four mixture of target DNASs. In
all the performed experiments a highly specific fluorescence signal was observed. A very low level
of background noise and no undesired cross-hybridization signal were obtained. The results
obtained clearly indicate that the microarray is useful to identify specifically the DNA of different
microorganisms (yeasts, lactic acid and acetic acid bacteria) present in the mixture and to assess that
the contemporary presence of different target DNAs in the hybridization mixture does not cause any

interference among the different amplified targets.

12



308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

3.5 Detection of microorganisms from spoiled wine

In order to detect simultaneously one or more microorganisms directly from spoiled wines, a
procedure was set up that allowed the extraction of genomic DNA from a mixture of eukaryotic and
prokaryotic cells. The wine used was first micro filtered and then artificially contaminated using a
mixture containing known cell concentration of model microorganisms, representative of the three
classes of spoilers, S. cerevisiae (yeasts), L. brevis (lactic acid bacteria) and A. aceti (acetic
bacteria), mixed in the following proportions:

A) S. cerevisiae: 10° CFU/mL; L. brevis: 10° CFU/mL; A. aceti: 10° CFU/mL.

B) S. cerevisiae: 10° CFU/mL; L. brevis: 10° CFU/mL; A. aceti: 10° CFU/mL

C) S. cerevisiae: 10* CFU/mL; L. brevis: 10* CFU/mL; A. aceti: 10 CFU/mL

D) S. cerevisiae: 10° CFU/mL; L. brevis: 10° CFU/mL; A. aceti: 10° CFU/mL

After incubation in wine, the four microorganisms mixtures were concentrated by centrifugation
and each sediment was separately re-suspended in the suspension buffer formulated ad hoc during
this work. In particular the optimization of two enzymatic reactions carried out simultaneously was
achieved by adding to the aforementioned buffer the optimal amount of lysozyme and lyticase that
are respectively able to degrade the cell wall of bacteria and yeasts. Genomic DNA released in the
lysate was purified by chromatography on a silica gel column. Reproducible amplification of the
expected products was obtained by using as substrate the DNA extracted from all the mixtures
except that from mixture D. Target DNAs amplified from the genomic template extracted from
Mixture C were used in the hybridization reaction with the microarray (Figure 4). The experimental
conditions adopted have produced a high intensity fluorescence signal corresponding to the specific
oligonucleotide probe for A. aceti, L. brevis and S. cerevisiae, thus indicating that each DNA target
recognizes only its specific oligonucleotide probe without cross-interference and background noise.
The above described procedure was validated by artificially contaminating sterile wine with 4
different combination of mixed microorganisms, at the above established minimal-detectable

concentration each (10* CFU/mL) i.e. Mix A: S. cerevisiae, P. membranifaciens; Mix B: S.

13
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cerevisiae, L. brevis, P. membranifaciens; Mix C: S. cerevisiae, L. brevis, G. oxydans, C. stellata;
Mix D: S. cerevisiae, L. brevis, P. membranifaciens, P. anomala, G. oxydans. The DNAs extracted
from each mixture were used as substrate for LATE-PCR reactions and the obtained amplicons
were used to separately hybridize the microarrays (Figure 5). The results obtained confirm that the
microarray allows in a specific manner the clear and specific detection of different spoilage

microorganisms directly from contaminated wines.

4. Discussion

Commonly, microbial species present in wine are identified using conventional microbiological
approaches based on cultivation methods (Bester, Cameron, Toit, D, & Witthuhn, 2010). Unluckily,
cultivation is time-consuming and labour intensive (Fleet, 1993; Kopke et al., 2000) whereas
morphological and physiological tests are not always useful to identify and classify different
microorganisms (Hernan-Gémez, Espinosa, & Ubeda, 2000; Muyzer, 1999). Traditional culture
methods, based on biochemical and physiological characteristics, often lead to disappointing results
and misidentification (Van Der Vossen & Hofstra, 1996), whereas methods based on molecular
detection and identification are fast and reliable (Krisch et al., 2016).Many culture-independent
molecular methods allow analysis of total microbial DNA, isolated from mixed microbial
populations, in order to detect and identify single microbes in food ecosystems (Cocolin,
Alessandria, Dolci, Gorra, & Rantsiou, 2013; Ivey & Phister, 2011). Genetic fingerprinting of
complex microbial populations is, at present, used broadly to investigate the microbial ecology of
grape must fermentations (Nisiotou, Spiropoulos, & Nychas, 2007; Rantsiou et al., 2013; Urso et
al., 2008). Polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE) assay
has been also employed, because of its capability to detect, identify individual species and produce
the overall profile of microbial populations (Cocolin et al., 2013). Although the above methods

demonstrated to be able in specifically detect several wine spoilage microbes, the availability of
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quick and sensitive methods to simultaneously monitor the presence of both prokaryotic and
eukaryotic contaminant microorganisms is of crucial importance to reduce economical losses and to
ensure wine safety.

Even though the DNA microarray technology still detains for its application some cons, such as the
needing of extensive bioinformatic analysis, this methodology has several pros when compared to
other molecular approaches. DNA microarray is a molecular identification method by which DNA
probes, grouped and arrayed on a slide, allow simultaneous molecular identification and
characterization of many specific sequences in a single step (Southern, 2001). The detection system
of the signal provides that each DNA fragment in the sample specifically hybridize with the
oligonucleotide probes spotted on the slide in a known position. The power of this technology lies
mainly in the ability to analyze simultaneously a large number of DNA sequences in a single
sample and a high number of samples in a compact and relatively cheap device.

When analyzing food for microbial contamination, this approach provides the opportunity to obtain
detailed information about the presence of contaminant species (Rasooly & Herold, 2008).
Considering the high number of species of bacteria and ascomycetes that could potentially be
responsible for wine alteration (Bartowsky, 2009; Krisch et al., 2016), a broad-spectrum detection
system as microarray technology might be very useful.

The purposes of this research was to develop a method based on the application of bioinformatic,
biochemical and molecular protocol and to validate the use of a DNA microarray, produced during
this work, for the simultaneous detection and identification of spoilage yeast and bacteria after the
isolation of their DNAs directly from wine. Wine is a co-culture of many different microorganisms,
either prokaryotic and eukaryotic, for this reason we also checked whether the microarray could
identify multiple targets in a mixed sample. To achieve this goal, it was essential to develop a
protocol for the extraction of genomic DNA from mixtures of eukaryotes and prokaryotes from
wine. Total DNA isolated from complex food matrices contains large amounts of DNA from

different microbial groups (bacteria and yeasts) that have the potential to interfere with specific

15



386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

amplification of particular DNA sequences (Chen, Wang, & Chen, 2008). The few protocols
available in literature are poorly applicable for the extraction of genomic DNA from wine due to the
presence of high concentrations of polyphenolic compounds, which severely interfere with the
subsequent enzymatic reactions of PCR gene amplification (Garcia-Beneytez, Moreno-Arribas,
Borrego, Polo, & Ibafiez, 2002; Siret, Boursiquot, Merle, Cabanis, & This, 2000). For these reasons,
it was very important to optimize a protocol of genomic DNA extraction from wine with the aim of:
1) extracting in a single step genomic DNA from mixtures of eukaryotic and prokaryotic cells, ii)
achieving DNA yields sufficient to realize subsequent reactions of gene amplification, iii) obtaining
preparations of good quality genomic DNA.

Polymorphisms of sequences coding for ribosomal RNA (rDNA) were selected as barcode for the
identification of bacterial species. In prokaryotes, the locus encoding rRNA contains the highly
conserved three genes, 16S, 23S and 5S, separated by highly variable regions known as "internal
transcribed spacers™ or ITS (Ludwig & Schleifer, 1994).

The rDNA locus has been widely used for the identification of bacterial (Lebonah et al., 2014) and
fungal (Das & Deb, 2015) species because: i) its products are abundant (up 80% of total cellular
RNA), can be isolated and identified easily, ii) the rRNA genes sequences are highly conserved
facilitating amplification by PCR, iii) the presence of highly variable regions allows discrimination
of the different species (Olsen, Lane, Giovannoni, Pace, & Stahl, 1986); moreover the rDNA
sequences of many bacterial species are available in data banks. The spacer region 16S-23S of
rDNA has been widely used also for the identification of Bacillus anthracis (Nibel et al., 2004) and
Campylobacter (Keramas et al., 2003) by microarray. Yeasts characterization was achieved by
designing the oligonucleotide probes considering variations in the ITS region sequences according
to Leinberger and coworkers (2005).

In general, the DNA microarray designed in this study allows the identification of five species of
lactic acid bacteria (belonging to the genera Lactobacillus and Pediococcus) and three species of

acetic acid (belonging to genera Acetobacter and Gluconobacter) as well as nine species of yeasts,
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all together representing the ‘etiological cause’ of major alterations in the wine industry (Comi,
2005). The data produced by this work have shown that: i) an efficient procedure to obtain good
quality DNA preparations, to be used as PCR-template form microbial mixture, was developed, ii)
the oligonucleotide probes, specific for each considered microorganism, recognize only their
specific target, with the exception of the L hilgardi oligo that had also a 100% match with L
buchneri and also with the wine-unrelated species L. parabuchneri, L. keferi and L. rapi; iii) the
microarray is able to detect the presence of yeasts, lactic and acetic acid bacteria at very low
concentrations (10° CFU/mL). The probes produced are suitable to distinguish their own target
DNAs from other target DNAs present on the microarray (Liu, Mirzabekov, & Stahl, 2001, Liu et
al. 2001) giving signal of high intensity and absence of background noise. Our findings indicate that
the probes used are characterized by a discrimination capacity better than those previously reported
(Drobyshev et al., 1997; Yershov et al., 1996; Zheng, Alm, Stahl, & Raskin, 1996). However, to
discriminate two closely related species like L hilgardii and L. buchneri it will be important to test
additional probes that could target other regions of rDNA, such as that between 23S and 5S pre-
rRNA. Other possible strategies to obtain increased specificity and sensitivity could consider the
use of PNA (peptide nucleic acids) as an alternative to DNA as probes (Weiler, Gausepohl, Hauser,
Jensen, & Hoheisel, 1997) or the preparation of longer probes (Relégio, Schwager, Richter,
Ansorge, & Valcarcel, 2002).

In conclusion, in this study for the first time the microarray methodology was applied for the
simultaneous identification of different species of yeasts and bacteria directly from wine. The
microarray developed is a novel tool, which not only allows the identification of the most
representative species of the microbial community responsible for wine spoilage but also the
investigation of population dynamics of indigenous wine yeast and bacteria populations. However, the
number of possible secondary wine spoilage agents is higher than the microbial species considered

in this investigation and it is likely to increase in the future, because of the identification of new
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spoilage microorganisms. Further studies will be required in order to expand progressively the

specific target range by adding other oligonucleotide probes specific for novel microbial species.
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Captions to figures

Figure 1. Microarray analyses carried out using a specific target-DNA for each array.The
oligonucleotide probes were deposited by a manual contact printing MicroCaster™ Arrayer
(Whatman, Maidstone, UK). The schematic representation of the array used is reported.

Figure 2. Microarray analyses carried out using for each array a target-DNA specific to the
organism designated at the indicated concentrations of DNA template. The oligonucleotide probes
were deposited by a manual contact printing MicroCaster ™ Arrayer (Whatman, Maidstone, UK).

Figure 3. Microarray analysis performed using for each array target-DNAs specific for different
organisms in the following mixtures: (A) S. cerevisiae, S. pombe; (B) S. cerevisiae, P.
membranifaciens, L. brevis; (C) S. cerevisiae, C. stellata, L. brevis, G. oxydans; (D) S. cerevisiae,
P. anomala, P. membranifaciens, L. brevis, G. oxydans. The oligonucleotide probes were deposited
by a manual contact printing MicroCaster™ Arrayer (Whatman, Maidstone, UK).The schematic

representation of the array used is reported.

Figure 4. Microarray analyses performed using: (A) genomic DNA extracted from wine artificially
inoculated with a mixture of the following microorganisms: A. aceti LMG1261, L. brevis
LMG11435, S. cerevisiae CBS1171; (B) not inoculated wine. The oligonucleotide probes were
deposited by robotic spotting SpotArray™24 (Perkin Elmer, Waltham, USA). The schematic

representation of the array used is reported.

Figure 5. Microarray analysis performed using genomic DNA extracted from wine artificially
inoculated with a mixture of the following microorganisms: (A) S. cerevisiae, P. membranifaciens;
(B) S. cerevisiae, L. brevis, P. membranifaciens; (C) S. cerevisiae, L. brevis, G. oxydans, C.
stellata; (D), S. cerevisiae, L. brevis, P. membranifaciens, P. anomala, G. oxydans; (E) not
inoculated wine. The oligonucleotide probes were deposited by robotic spotting SpotArrayTM 24
(Perkin Elmer, Waltham, USA). The schematic representation of the array used is reported.
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Table 1. Microorganism strains utilized in this study.

674
675
Organism Strain
YEASTS
Saccharomyces cerevisiae S288c
Zygosaccharomyces rouxii CBS 732
Zygosaccharomyces bailii GKO02
Brettanomyces bruxellensis CBS 72
Schizosaccharomyces pombe 972
Pichia membranifaciens CBS 107
Pichia anomala CBS 5759
Candida stellata CBS 157
Hanseniaspora vineae CBS 2171
LACTIC BACTERIA
Lactobacillus plantarum WCFS1
Lactobacillus brevis ATCC 367
Lactobacillus hilgardii ATCC 8290
Pediococcus damnosus ATCC 29358
Pediococcus pentosaceus SL4
ACETIC BACTERIA
Gluconobacter oxydans 621H
Acetobacter aceti DSM3508
Acetobacter pasteurianus ATCC33445
676
677
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678 Table 2. Accession numbers of the sequences utilized to design primers and probes.

Organism

Sequence Acc. Nr.

YEASTS

Saccharomyces cerevisiae

Zygosaccharomyces rouxii

Zygosaccharomyces bailii

Brettanomyces bruxellensis

Schizosaccharomyces pombe

Pichia membranifaciens

Pichia anomala

Candida stellata
Hanseniaspora vineae

LACTIC BACTERIA

Lactobacillus plantarum

Lactobacillus brevis

Lactobacillus hilgardii

Pediococcus damnosus

Pediococcus pentosaceus

ACETIC BACTERIA
Gluconobacter oxydans
Acetobacter aceti

Acetobacter pasteurianus

NC_001144.5, MF118616.1, MF118614.1, MF118613.1 , MF118612.1,

MF118611.1 , MF118610.1 , MF118609.1, MF118608.1, MF118606.1,
F118605.1, MF118604.1, LC269189.1, KY693710.1, KY693708.1,
KY315926.1 , KY962551.1, KY962550.1, KY962549.1, KX434761.1,
Y794751.1, LC215450.1, KY488348.1, CP011466.1, KY794729.1,
X859535.1

KY106065, KY106071.1, KY106069.1, KY106068.1, KY106066.1,
KY106065.1, KY106064.1, KY106063.1, KY106062.1, KY106061.1,
KX539236.1, KX539235.1, KX539234.1, KX539233.1, KJ507666.1,
KM249341.1, LN849134.1

KJ433981.1, KY106027.1, KY106026.1, KY106023.1, KY106022.1,
KY106020.1, KY076624.1, NR_138201.1, LN849135.1, KP241898.1,
KP132936.1, JX458104.1 , JX458102.1, JX458100.1

KY103308.1, KY103322.1, KY103321.1, KY103320.1, KY103319.1,
KY103318.1, KY103316.1, KY103315.1, KY103313.1, KY103312.1,
KY103311.1, KY103309.1, KY103307.1, KU729031.1

CU329672, KY105378.1, NR_121563.1, JQ726610.1, EU916982.1,
AY?251633.1, V01361.1, AB054041.1, Z19578.1

KY104614.1, KY104631.1, KY104630.1, KY104628.1, KY104627.1,
KY104625.1, KY104624.1, KY104622.1, KY104621.1, KY104620.1,
KY104619.1, KY104618.1, KY104617.1, KY104616.1, KY104615.1,
KY104613.1, KY104611.1, KY104610.1, KY104609.1, Y104608.1
KY105894.1, KY105896.1, KY105895.1, KY105893.1, KY105892.1,
KY105890.1, KY105889.1, KY105888.1, KY105887.1, KY105886.1,
KY105883.1, KY105882.1, KY105880.1, KY105877.1, KY105876.1,
KY105875.1, KY105874.1, KY105873.1, KY105872.1, KY105871.1,
KY105870.1, KY105867.1, KY105865.1

KY102416.1, AY160766.1, AY188852.1

KY103580.1, KY693711.1, KY103584.1, KY103583.1, KY103582.1,

KY103581.1, KY076611.1, NR_138203.1, KM384180.1, KM384177.1,

KM384176.1, KM384175.1, FJ231441.1, FJ231440.1

NC_004567, CP021501.1, CP017379.1, CP017374.1, CP017363.1,
CP017354.1, CP018209.1, CP020816.1, CP020861.1, CP019348.1,
CP019722.1, CP017406.1, CP018324.1, CP013149.1, CP017954.1,
CP015308.1, CP013753.1, CP013749.1, CP016071.1, CP015857.1
CP000416, CP005977.1, CP015398.1, AP012167.1, JN383920.1,
JN368473.1, IN368472.1, IN368471.1, EF412991.1, EF412994.1,
EF412993.1, EF412992.1, AY582720.1, AB102858.1, AY821851.1,
AY839298.1, AF429617.1, AF429584.1, AF429583.1, AF429547. ,
AF429542.1, AF405353.1, X74221.1

NZ_GG670001.1, U161617.1, EF536365.1, EF536366.1, AJ616222.1,
KU922755.1

AF405365, AJ318414, CP012294.1, CP012288.1, CP012283.1,
CP012275.1, CP012269.1, AF405385.1, AF405366.1, AF405376.1,
AF405367.1

NC_022780, CP015918.1, CP021474.1, CP006854.1, KC767943.1,
JN696685.1, IN696705.1, CP000422.1

CP000009, CP003926.1, CP004373.1, AB163823.1, AB163824.1,
AB163830.1, AB163833.1, CP016328.1, AB163865.1, AB163861.1,
AB163859.1, AB163841.1, AB163825.1

X74066, AB111902.1, AJ007831.1, AB161358.1, CP014692.1
X71863, AJ007834, AJ007834.1, AB086017.1, AP014881.1,
HF677570.1, AP011170.1, AP011163.1, AP011156.1, AP011149.1,
AP011142.1, AP011135.1, AP011128.1, AP011121.1, AM049398.1

679
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681

682 Table 3. Primer pairs for the specific amplification of the target
683 sequence of yeasts, lactic and acetic bacteria.
684
Primer name Primer sequence Tm (°C)
YEASTS
Liev_For CAAGGTTTCCGTAGGTGAAC 58
Liev_Rev CCAAGAGATCCRTTGYTGAA 58
LACTIC BACTERIA
Latt_For AACAAGGTAGCCGTAGGAGA 58
Latt_Rev GTTAGTCCCGTCCTTCATCG 60
ACETIC BACTERIA
Acet_For TCGTAACAAGGTAGCCGTAG 58
Acet_Rev CAAGCGTGTGCTCTAACCAA 60
685
686
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687

ggg Table 4. Oligo probes immobilized onto the epoxydated surface of the glass slide.
Microorganism Oligo sequence Lenght TM (°C)
YEASTS
S. cerevisiae ACTCTCCATCTCTTGTCTTCTTGCCCAG 28 70
Z. bailii GAACACAACTACTCCAGACTCGTCAATC 28 68
Z. rouxii CCCTCCAACACTTTGAGAGAACTCCGT 27 70
B. bruxellensis TTATCCTTGCTTATCCACGTGTCTGCAC 28 68
S. pombe TTCACAGAAAGGTAAATGGATAAGAGAAGAAA 32 66
P. membranifaciens TGACGTGTGTATACTCCAGGTTTAGGTGTTT 31 70
P. anomala TGTTTAGACCTTTGGGCAGTAAGCCAG 27 68
C. stellata GACCGAAGTCTTGGCTGTTCACAGTGG 27 71
H. vineae CGCGCAAACTACAGCCAATAGCAAGAAC 28 70
LACTIC BACTERIA
L. plantarum AACGGTAAATGCGATTAATGAGTTTAGCGATAA 33 68
L. brevis TCAACAAGTATGTGTAGCCTCCGTATATTCCTT 33 70
L. hilgardii GTTAACAAACTCAAAATAACGCGGTGTTCTCG 32 70
P. damnosus CGACATATGTGTAGGTTTCCGTTTCTAAATATCC 34 70
P. pentosaceus CCTACGGTAAAGTGATTAATTGAGTTTAGCG 31 68
ACETIC BACTERIA
G. oxydans AAATTATAGGAAGGGATATGTTGACGGCG 29 67
A. aceti CAAACCCAGTCCAATCTGTGAGTTGAAA 28 67
A. pasteurianus AAACCCGACTGAATAACCTAGACAATACAT 30 67
690
691
692
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Table S1. Length of the amplicons
produced after PCR assay
respectively using the Liev_For/
Liev_Rev, Latt_For/ Latt Rev and
Acet_For/Acet_Rev primer primes on
yeasts, lactic and acetic bacteria
genomic DNA templates.

Microorganims Lenght (bp)
YEASTS

Saccharomyces cerevisiae 423
Zygosaccharomyces rouxii 287
Zygosaccharomyces bailii 426
Brettanomyces bruxellensis 154
Schizosaccharomyces pombe 483
Pichia membranifaciens 150
Pichia anomala 244
Candida stellata 187
Hanseniaspora vineae 350

LACTIC BACTERIA

Lactobacillus plantarum 315
Lactobacillus brevis 326
Lactobacillus hilgardii 334
Pediococcus damnosus 342
Pediococcus pentosaceus 327

ACETIC BACTERIA

Gluconobacter oxydans 212
Acetobacter aceti 280
Acetobacter pasteurianus 298
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Figura S1. Electrophoretic profiles of amplification products of the chromosomal
region corresponding to the gene cluster encoding the ribosomal RNA of bacteria (16S-
ITS1) and yeasts (18S-5.8). The amplification was performed using the primers pairs
Acet_For/Acet_Rev for acetic acid bacteria, Latt_For/Latt_Rev lactic acid bacteria and
Liev_For/Liev_Rev for yeasts. Lane 1, Gluconobacter oxydans; lane 2, Acetobacter
pasteurianus; lane 3, A. aceti; lane 4, Lactobacillus plantarum; lane 5, L. hilgardii; lane
6, L. brevis; lane 7, Pediococus damnosus; lane 8, P. pentosaceus; lane 9,
Brettanomyces bruxellensis; lane 10, Pichia membranifaciens; lane 11, Saccharomyces
cerevisiae; lane 12, Zygosaccharomyces bailii; lane 13, Hanseniaspora vineae; lane 14,
Pichia anomala; lane 15, Schizosaccharomyces pombe; lane 16, Z. rouxii; lane 17,
Candida stellata; lane M, DNA Ladder 100bp (Euroclone).
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Figure S2.

S. cerevisiae ACTCTCCATCTCTTGTCTTCTTGCCCAG
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Z. rouxii CCCTCCAACACTTTGAGAGAACTCCGT

Alignments

Downioad  CanBank Graghicy
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D. bruxellensis TTATCCTTGCTTATCCACGTGTCTGCAC

ignments

Download  GenBank Graphics
Brett: bruxellensis culty llection CBS:2796 small subunit ribosomal RNA gene, partial sequence; intemal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence;
Sequence ID: KY103322.1 Length: 792 Number of Matches: 1

Range 1: 74 t0 101 Gerbark Graphics
Seore Ex Tdentities Gaps
56.0 bits(28) 2¢-05 28/28(100%) 0/28(0%)

Query 1 THACCTGIATCCKCETOICTGUE 28

Sbjet 181 TTATECTTGETTATCCACGTGTCTGLAL 74

Download  GenBank Graphics
Brett: bruxellensis culty llection CBS:74 small subunit ribosomal RNA gene, partial sequence; intemal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; an
Sequence ID: KY103321.1 Length: 609 Mumber of Matches: 1

Range 1: 212 16 238 GenBark Grashics
Seore Ex Tdentities Gaps
56.0 bits(28) 2¢-05 28/28(100%) 0/28(0%)

Strand

Gery 1 THACCTEIATCCKETOICRGE 28

Sbjet 233 TTATECTTGETTATCCACGTGTCTGLAE 212

Download  GenBank Graphics
Brettanomyces bruxellensis culture-collection CBS:98 small subunit ribosomal RNA gene, partial sequence; intemal transcribed spacer 1, 5.88 ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; an
Sequence ID: KY'103320.1 Length: 469 Number of Matches: 1

Range 1: 65 to 82 Genfank Graphics

Score Ex; Tdentities Gaps Strand
56.0 bits(28) 2e-05 28/28(100%) 0/28(0%) Plus/Minus

Qery 1 TIECTGIACGCETEICTR 28

Sbjet 92 TTATCCTTGCTTATCCACGTGTCTGLAC 65

Downioad  GenBank Graphics
Breftanomyces bruxeliensis culture-coliection CBS:75 small subunit ribosomal RIMA gene, partial sequence; intemal transcribed spacer 1, 5.8 ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; an
Sequence ID: KY'103319.1 Length: 477 Number of Matches: 1

Range 1: 65 to 82 Genfank Graphiss

Strand
Minus

Seore Ex Tdentities Gaps
56.0 bits(28) 2205 28/28(100%) 0/28(0%)

Query 1 TTECTIGTIAICOCETEICTRC 28

Sbjet 92 TTATCCTTGCTTATCCACGTGTCTGLAC 65

Dovmload ~ GenBank Graphics
Breftanomyces bruxeliensis culture-coliection CBS:5206 internal transcribed spacer 1, partial sequence; 5.8 ribosomal RNA gene and internal transcribed spacer 2, complete sequence; and large subunit ribosomal RNA ge
Sequence ID: KY'103318.1 Length: 438 Number of Matches: 1

Range 1: 28 to 55 Genfank Graphiss

Score Ex; Tdentities Gaps Strand
56.0 bits(28] 2e-05 28/28(100%) 0/28(0%) Plus/Minus

Query 1 TTECTIGTIAICOCETEICTRC 28

Sbjet 55 TTATCCTTGCTTATCCACGTGTCTGLAC 28



61

62
63

64

C. pombe TTCACAGAAAGGTAAATGGATAAGAGAAGAAA

Alignments

Download ~ GenBank Graphics
pombe cult llection CBS:1062 small subunit rivosomal RMNA gene. parfial sequence; intemal transcribed spacer 1, complete sequence; and 5.85 ribosomal RNA gene, partial sequence

hi;
Sequence ID: Cr105378.1 Length: 551 Mumber of Matches: 1

Range 1: 206 to 237 Gengank Graphics
Scare Expect Tdentities Gaps Strand
60.2 bits(32) 4207 32/32(100%) 0/32{0%)

Query TTCACAGAMAGGTAMTGATASGAGIAGAR 32

sbjet 237 Al LB AL e

Download ~ GenBank Graphics

Schizosaccharomyces pombe ATCG 383686 ITS region, from verified material
Saquence ID: NR_ 1215831 Length: 1077 Number of Matches: 1

Range 1: 168 to 188 Genzank Grapnics
Seare Expect Taentities Gap= Strana
60.2 bits(32) 4207 32/32(100%) 0/32(0%)

Query TTCACACAMAGGTAMTCOATAMGAGACARS 32

soger 100 HULUUEMMIUIUIILIL

Download ~ GenBank Graphics
Schizesaccharomyces sp. UFLA CHYES.39 185 ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.85 ribosomal RNA gene, and infernal transcribed spacer 2, complete sequence; and 265 ribosomal RNA gene
Sequence ID: JQ728510.1 Length: 768 Number of Matches: 1

Range 1: 43 t0 74
Scare Expect Tdentities

Gaps
60.2 bits(32) 4207 32/32(100%) 0/32{0%)
Query 1 TTCACAGMMAGGTAAATGGATAAGAGMAGARA 32

sbject 74 At AR EARLL o

rahics

Download ~ GenBank Graphics

Schizesaccharomyees pombe strain CHEY0201 185 ribosomal RNA gene, parlial sequence; intemal franseribed spacer 1, 5.8 ribosomal RNA gene, and intemal transcribed spacer 2, complete sequence; and 268 ribosomal RNA g
Sequence ID- EUD18032 1 Length: 1808 Mumber of Matches: 1

Range 1: 122 to 153 Genzank Grapnics
Seare Expect Taentities Gap= Strana
60.2 bits(32) 4=-07 32/32(100%) 0/32(0%)

Query TTCACAGAAAGGTAMTCOAT AMGAGAACAAR

e 1ev OUCILTTLAEIRLT |

Download ~ GenBank Graphics sortny: [E value ¥

Schizesaccharomyces pombe chromosome Ill, complete sequence

Sequence ID: CU320672.1 Length: 2452883 Number of Matches: 3

Range 1: 10320 to 10351 Gensark Nt Matcn
Scare Expect Edentities Gaps Strand
60.2 bits(32) 4207 32/32(100%) 0/32(0%) 5/
Query TCACAGARAGGTAMATGGATAMGIGAAGAAS 12

shjct 18328 “ca.umc:rmucarwuéh;m 10351

Ranme 3: 21180 tn 21391 Gonpant Gmnnis Nt Match

P. membranifacens TGACGTGTGTATACTCCAGGTTTAGGTGTTT

gnments

Download GenBank Graphics
Pichia membranifaciens culture-collection CBS 636 small subunit ribosomal RNA gene. partial sequence; intemal transcribed spacer 1, 5 85 ribosomal RMNA gene, and intemal franscribed spacer 2. complete sequence: and large €
‘Sequence ID: KY104831.1 Length: 761 Number of Matches: 1

Range 1: 206 to 235 Gensank Grapnice
Score Expect Tdentities

G
60,0 bits(30) 1e-06 30/30(100%) 0/30(0%)

Query 1 TGACGTGTGTATACTCCAGGTTTAGGTGTT 38

sujer 235 AALHUEHHEUIELLE o

Download  GenBank Graphics
Pichia membranifaciens culture-collection CBS:1320 small subunit ribosomal RNA gene. partial sequence; internal transcribed spacer 1, 5.85 ribosomal RNA gene, and intemnal transcribed spacer 2. complete sequence: and large
Sequence ID: KY104830.1 Length: 523 Number of Matches: 1

Range 1: 220 to 248 Gensank Graphics
Seare Expect Tdentities

o
60.0 bits(30) 1e-06 30/30(100%) 0/30(0%)

Query 1 TGACGTGTGTATACTCCAGGTTTAGGTGTT 38

jet 249 fehebrbrbtle i U e

Download ~ GenBank Graphics

Pichia membranifaciens culture-collection CBS:213 small subunit ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.85 ribosomal RMA gene, and intemal transcribed spacer 2, complete sequence; and large 5
Sequence ID: K¥104822.1 Length: 485 Number of Matches: 1

See 1 more titie(=)

Range 1: 82 to 111 Seabark G

Score Expect Tdentitie Gapz Strand
600 birs{30) 1e-06 30/30(100%) 0/30(0%) P

Query 1 TGACGTGTGTAT: Acr::.mcc“r:crra
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Download ~ GenBank Graphics

Pichia membranifaciens culture-collection CBS:4707 small subunit ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.35 ribosomal RNA gene, and infemal transcribed spacer 2. complete sequence; and large
Sequence ID: KXY 104627.1 Length: 783 Number of Matches: 1

Range 1: 214 t6 243 Cengank Graphics

Expect Tdentitiez Gapz Strand

Score v
600 birs(30) 12-06 30/30(100%) 0/30(0%)

Query 1 TGACGTGTGTATACTCCAGETTTAGGTGTT
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Download GenBank Graphics
Pichia membranifaciens culture-collection CBS:184 small subunit ribosomal RNA gene. partial sequence; internal transcribed spacer 1, 5.85 ribosomal RNA gene, and intemal franscribed spacer 2. complete sequence: and large s
‘Sequence ID: KXY 104625.1 Length: 477 Number of Matches: 1
Range 1: 79 to 108 enbary Graphics

Score Expect Tdentities Gaps Staand
600 bits{30) 1e-06 30/30(100%) 0/30(0%) Pl

Query 1 TGACGTGTGTATACTEL
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P. anomala TGTTTAGACCTTTGGGCAGTAAGCCAG

Alignments

Download  GenBank Graphics

Wickerhamomyces anomalus isclate HN1 infernal transcribed spacer 1, partial sequence: 58S ribosomal RNA gene and intemal franscribed spacer 2, complete sequence: and large subunit ribosomal RNA gene, partial sequence
Sequence ID- MF115003 1 Length: 815 Mumber of Matches: 1

Range 1: 111t 137 Gendonk Graphics
Scare Expect Edentities Gaps Strand
54.0 bits(27) 6205 27/27(100%) 0/27(0%) Pluz/Minus

Query 1 TCTTTAGACCTTTGOGOAGTAAGCCAG

e o TR 2

Download  GenBank Graphics sortoy: |E value v

Wickerhamomyces anomalus strain CHY22 small subunit ribosomal RNA gene. partial sequence; infernal franscribed spacer 1 and 5.85 ribosomal RNA gens, complete sequence; and inlemal franscribed spacer 2, partial sequence
Sequence ID- KY626334.1 Length- 845 Mumber of Matches: 2

Range 1: 441 to 467 Gengsnk Graphics Nt Match
Scare Expect Edentities Gaps Strand
54.0 bits(27) 605 27/27(100%) 0/27(0%) Pluz/Minus.

Query 1 TETTTAGACCTITGOGCAGTAAGCCAG 27

sugee a7 Wb MM o

Range 2: 197 to 222 gensank Gmpnics Frevious Match  First Mateh
Scare Expect Tdentities Gaps Strand
38.2 birs[19) 34 26/27(96%) 1/27{3%) Pluz/Plus

Query 1 TGTTTAGMCTITGGGCAGTAAGCCAG 27

Downlosd  GenBank Graphics Sertby: [E value v

‘Wickerhamomyces anomalus strain STY20 small subunit ribosomal RMA gene. partial sequence; internal transcribed spacer 1 and 5.85 ribosomal RNA gene, complete sequence; and internal franscribed spacer 2, partial sequence
Sequence ID: KV626332.1 Length: 918 Number of Matches: 2

Range 1 461 to 487 fensank Gmonics Next Match
Scare Expect dentities Gaps Strand
54.0 bits[27) 6e-05 27/27(100%} 0/27(0%) Plus/Minus

TTGGGCAGTAAGCCA 27

HEUBEL 2o

Query 1 TETTTAGAC

sujer asr HtreAdd

Range 2: 217 to 242 Genfonk Graphics First Mazen
Scare Expect Tdentities Gapz
38.2 bits(18) 34 26/27(96%) 1/27(3%)

Query 1 TGTTTAGMCTITGGGCAGTAAGCCAG 27

soger 2r MM UL <.

Download  GenBank Graphics  sortoy: [E value T

Wickerhamomyces anomalus strain STY53 small subunit ribosomal RMA gene. partial sequence; internal transcribed spacer 1 and 5.85 ribosomal RNA gene, complete sequence; and internal franscribed spacer 2, partial sequence

Sequence ID: K62 Length: 827 Number of Matches: 2

Range 1: 466 t6 402 Cendonk Graphics Nt Macn
Scare Expect Edentities Gaps Strand
54.0 bits(27) 6205 27/27(100%) 0/27(0%) Pluz/Minus

Query 1 TGTTTAGMCTITGGGCAGTAAGCCAG 27

soger as2 WML oo

ez Mateh
Tdentities Gaps Strand
26/27(96%) 1/27(3%) Flus/Flus

GGCAGTAAGCCAG 27
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Range Z: 223 to 248 Gendank Graphics

Score
38.2 birs(15)

C. stellata GACCGAAGTCTTGGCTGTTCACAGTGG

ignments

Dovmicad GenBank Graphics

Candida stellata culture-collection CBS: 157 small subunit ribosemal RNA gene, partial sequence; internal transcribed spacer 1, 5.85 ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and large subunit 1
Sequence ID: KY'102416.1 Length: 468 Number of Matches: 1

Range 1: 63 to 89

ik Graphics

Seore Exj Taentities Gaps Strand
54.0 bits(27) £2-05 27/27(100%) 0/27(0%) Fluz/Minus

1 GACCGAAGTCTTGGETGTTCACAGTES 27

Qu
LECLLLELELLELET LT

Sbjct 89 GALCGAAGTCTTGGLTGTTCACAGTGG 63

Dovmicad GenBank Graphics

Candida stellata CBS 157 internal transcribed spacer 1, pariial sequence; 5.85 ribosomal RNA gene, complete sequence, and internal franscribed spacer 2, pariial sequence
Sequence ID: AY160768.1 Length: 432 Mumber of Matches: 1

Range 1: 51 to 77

Bank Grap!

Seore Expect Tdentities Gaps
54.0 bits(27) 6e-05 27/27(100%) 0/27(0%)

1 GACCGAAGTCTTGGETGTTCACAGTES 27

quer:
LUCLLLELLEEELTELLELET LT
Sbjet 77 GALCGAAGTCTTGGLTGTTCACAGTGE 51

Dovmicad GenBank Graphics

Candida stellata sirain CBS 157 185 ribosomal RNA gene, partial sequence; intemal transcribed spacer 1, 5.85 ribosomal RNA gene and internal transcribed spacer 2, complete sequence; and 265 ribosomal RNA gene, partial st
Sequence ID: AY188852.1 Length: 365 Number of Matches: 1

Range 1: 1to 24 Genank Graohics

Seore Ex; Tdentities Gaps Erand
48.1 birs(24) 0.003 24/24(100%) 0/24[0%) Plus/Minus

1 GACCGAAGTCTTGGCTGTTCACAG 24
LULLTLELETEELT LT

26 GALCGAAGTCTTGGETGITCACAG 1
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H. vineae CGCGCAAACTACAGCCAATAGCAAGAAC

Alignments

Dowmload GenBank Graphics

Hanseniaspora vineae isolate IT2-021 internal transcribed spacer 1, partial sequence; 5.85 ribosomal RNA gene, complete sequence; and internal franscribed spacer 2, partial sequence
Sequence ID: KYB93711.1 Length: 657 Number of Matches: 1

Range 1: 78 ta 105 Graphizs

= Gaps Strand
00%) 0/28{0%) Elus/Minus

Seore Ex;
56.0 bits(28) 28-05

Query 1 cccc‘iAATﬂacﬁccﬁF:cl.‘u:aﬁ 2

Stjct 105 CGCGCARACTACAGCCAATAGCAAGAAC 78

Dovmnload ~ GenBank Graphics
Hanseniaspora vineae culture-collection CBS:256& small subunit ribosomal RMA gene, partial sequence; internal transcribed spacer 1 and 5.8S ribosomal RNA gene, complete sequence; and internal franscribed spacer 2, partial sequ
Sequence ID- K¥103584.1 Length- 696 Number of Matshes: 1

Range 1: 132 to 159 CenBank Graphics
Seore Ex; Tdentities Gaps Strand
56.0 bits(28) 2e-05 28/ 0/28(0%) Plus/Minus

Query 1 cccc‘iAATﬂAcﬁccﬁFaﬁaaaﬁ 3

Stjet 159 CGCGCARACTACAGCCAATAGCAAGAAC 112

Dovmload  GenBank Graphics
Hanseniaspora vineae culture-collection CBS:8031 small subunit ribosomal RNA gene, partial sequence; internal transcribed spacer 1 and 5.8S ribosomal RNA gene, complete sequence; and intemal franscribed spacer 2, partial sequ
Sequence ID- K¥103583.1 Length: 812 Number of Matshes: 1

Range 1: 239 to 266 GenBank Graphics
Score Expect Gaps Strand
56.0 bits(28) 2e-05 0/28{0%) Plus/Minus

Query 1 cccﬁAATﬂacﬁccﬁFaﬂaaaﬁ 13

Stjct 266 CGCGCAAACTACAGCCAATAGCARGAAC 218

Dovmicad GenBank Graphics
Hanseniaspora vineae culture-collection CBS:277 small subunit ribosomal RNA gene, partial sequence: internal franscribed spacer 1 and 5 85 ribosomal RNA gene, complete sequence; and internal transcribed spacer 2, partial seque
Sequence ID: KY103562.1 Length: 819 Number of Matshes: 1

Range 1: 235 to 262 CenBank Graphics

Score Expect
56.0 bits(28) 2e-05

Gaps Strand
0/28(0%) Plus/Minus

Guery 1 CECCCAMCTACGCOMTAGCLGIAC 28

Stjet 262 CGCGCARACTACAGCCAATAGCARGAAC 235

Dovmicad GenBank Graphics
Hanseniaspora vineae culture-collection CBS:2827 small subunit ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.85 ribosomal RNA gene, and internal transcribed spacer 2, complete sequence, and large subu
Sequence ID: KY103581.1 Length: 740 Number of Matches: 1

Range 1: 135 to 162 GenBank Graphics
Score Ex) Tdentities Gaps Strand
56.0 bits(28) 2e-05 28/28(100%) 0/28(0%) Plus/Minus

Query 1 :c:ﬁaa,inﬂac?r‘;:cﬁ{aucﬁaw?\i %

Sejct 162 CGLGCAAACTACACCCAATAGCASGAAC 135

L. plantarum AACGGTAAATGCGATTAATGAGTTTAGCGATAA

Download GenBank Graphics sortby: |E value M

Lactobacillus plantarum subsp. plantarum isolate SRCM100434, complete genome
Sequence ID: CP021528.1 Length: 3223586 Number of Matches: 5

Range 1: 323393 to 323425 GenBank Graphics Next Match
Score Expect Identities Gaps Strand
£2.1 bits(33) 2e-07 33/33(100%) 0/33{0%) Flus/Minus
1 .

Sbjct 323425 AACGLTAAATGCGATTAATGAGTTTAGCGATAA 3223333

Download GenBank Graphics Sortby: |E value v

Lactobacillus plantarum strain SRCM102022, complete genome
Sequence ID: CP021501.1 Length: 3252258 Mumber of Matches: 5

Range 1: 499189 to 499221 GenBank ics Next Match
Score Expect Identities Gaps Strand
£2.1 bits{33}) 2e-07 33/33(100%) 0/23{0%) Plus/Minus
e NN a2

Shjct 299221 AACGETARATGLGATTAATGAGTTTAGLGATAA 499183

Download GenBank Graphics Sortby: |E value hd

Lactobacillus plantarum strain TMW 1.1623, complete genome
Sequence ID: CP017379.1 Length: 3141573 Mumber of Matches: 5

Range 1: 483650 to 483682 GenBank Graphics Next Match

Score Expect Tdentities Gaps Strand

£2.1 bits(332) 2e-07 33/33(100%) 0/22(0%) Plus/Minus

Query AAATGCGATTAATGAGTTTAGCGATAA 33
IIIIIIIIIIIIIIIIIIIIIIIIIHHIIH

Sbict 483682 AACGLTAAATGCGATTAATGAGTTTAGLGATAA 483658

Download GenBank Graphics Sortby:

Lactobacillus plantarum strain TMW 1.708, complete genome
Sequence 10: CPO17374.1 Length: 3133208 Mumber of Matches: 5

Range 1: 478702 to 478725 GenBank Graphi et Match
Score Expect Identities Gaps Strand
2.1 bits{33) 2e-07 33/33(100%) 0/23(0%) Plus/Minus

quary 1 AACGETASATGCGATT/
LITLITELTLT L
ATGCGATT:

| TTTGAG'ITThGCGATx\ 33
Shict 478733 AACGGTAAATG

AATGAGTTTAGCGATAA 478783
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L. brevis TCAACAAGTATGTGTAGCCTCCGTATATTCCTT

Download GenBank Graphics sort by: |E value v |

Lactobacillus brevis strain SRCM101106, complete genome
Sequence ID: CP021674.1 Length: 2440326 MNumber of Matches: 5

Range 1: 374866 to 374898 GenBank Graphics Mext Match
Score Expect Identities Gaps Strand
62.1 bits{33) 2e-07 33/33(100%) 0/33{0%) Plus/Minus
e I 2

Sbjct 374858 TCAACAAGTATGTGTAGCCTCCGTATATTCCTT 374866

Download GenBank Graphics sort by: |E value v |

Lactobacillus brevis strain SRCIWI101174, complete genome
sequence ID: CP021479.1 Length: 2411324 Number of Matches: 5

Range 1: 94538 to 94570 GenBank Graphics MNext Match
Score Expect Identities Gaps Strand
652.1 bits(33) 2e-07 33/33(100%) 0/33(0%) Plus/Minus

Query 1 TCAACAAGTATGTOTAGCCTCCOTATATTCOTT 33

Sbjct 94578 TCAACAAGTATGTGTAGCCTCCGTATATTCOTT 94538

Download GenBank Graphics sort by: |E value v

Lactabacillus brevis strain 100D8, complete genome
sequence ID: CP015338.1 Length: 2351988 Number of Matches: 5

Range 1: 37758 to 27790 GenBank Graphics MNext Match
Score Expect Identities Gaps Strand
62.1 bits(33) 2e-07 33/33(100%) 0/33(0%) Plus/Plus
e I 2
Sbjct 37758 TCAACAAGTATGTGTAGCCTCCGTATATTCCTT 37790
L. hilgardii GTTAACAAACTCAAAATAACGCGGTGTTCTCG

[EDownload v GenBank Graphics

Lactobacillus hilgardii strain ATCC 8290 1685-233 ribosomal RMA intergenic spacer and 233 ribosomal RMA gene, pariial sequence
Sequence ID: EU161617.1 Length: 834 Number of Matches: 1

Range 1; 251 to 282 GenBank Graphics
Score Expect Identities Gaps Strand
60.2 bits(32) 2e-12  32/32(100%) 0/32(0%) Plus/Minus

Query 1  GTTAACAAACICARRATARCGOGETGITCIOS 32
FELEELEEEREEETERE TR L EEREErrrry
Sbjcc 282 GTTRACRRACTCARRATARCGOSETGTICTOR 2

@®IDownload ~ GenBank Graphics

Lactobacillus hilgardii strain E112 165 ribosomal RMNA gene, partial sequence; 165-235 intergenic spacer, complete sequence; and 235 ribosomal RMNA gene, par

Sequence ID: EF535386.1 Length: 562 Number of Matches: 1

Range 1: 350 to 381 GerBark Graphics

Seore Expect Tdentities Gaps Strand
60.2 bits(32) 2e-12 32/32(100%) 0/32(0%) Blus/Minus
Qrarp 1

GTTAACARACTCARRATAACGOSSTSTICTOR 32
LELEELEEERLEETERETEEELEEETErLrry
Sbjet 381 CGTIAACAAACTCAARATAACGCEETETICIOE 350

[ElDownload ~ GenBank Graphics

Lactobacillus hilgardii strain E91 165 ribosomal RMA gene, partial sequence; 165-235 intergenic spacer, complete sequence; and 235 ribosomal RMA gene, parti

Sequence 1D: EFS363685.1 Length: 582 Number of Matches: 1

Range 1; 350 to 381 GenBank Graphics
Seore Expect Identities Gaps Strand
60.2 bits(22) 2e-12  22/22(100%) 0/32(0%:) Blus/Minus

Query 1 GTTAACARACTCAARATARCGOGSTGTICTOS a2
FEURELERERREELRRE R Rl
Shjes 381 GTTAACRAACTCAAMATAMCGOSGTSTICTOE 250

[EDownload v GenBank Graphics

Lactobacillus hilgardii intergenic spacer and partial 233 rRNA gene, strain DSM 20176
Sequence ID: AJE16222.1 Length: 715 Number of Matches: 1

Range 1; 136 to 167 GerBank Graphics

Score Expect Identities Gaps Strand
60.2 bits(32) 2e-12 _ 32/32(100%) 0/32(0%) Plus/Minus
Query 1

GTTAACARACTCARRATARCGOSETETICTOR 32
FELEELEEEREEETERE TR L EEREErrrry
Sbjcs 167 GTTAACRAACTCARRAT
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P. damnosus CGACATATGTGTAGGTTTCCGTTTCTAAATATCC
il

Download GenBank Graphics sortby: |E value

Pediococcus damnosus strain TMW 2.1536. complete genome
Sequence ID: CPO12204 1 Length: 2125430 Mumber of Matches: 4

Range 1: 189901 to 189934 Genank Graphics Mext Match
Score Expect Identities Gaps Strand
63.9 hils-'34) 4e=-08 34/34(100%) 0/34{0%) Plus/Flus
Queary COACATATOTOTAGSTTTCOGTTTCTARATATIC 34
Sbijct  1E99€l CEALHJA'IETET)L(U:‘HTCCE]"'H'}MATA‘I’!& 189834

Download GenBank Graphics $ortby: |E value ¥

Pediccoccus damnosus strain TMW 2.1535, complete genome
Sequence ID: CP012238.1 Length: 2247318 Mumber of Matches: 4

Range 1: 200860 to 200893 Genfank Graohics Maxt Match
Score Expect Identities Gaps Strand
63.9% bits{34) “=-08 34/34[100%) 0/34(0%) Plus/Plus
Qe COACATATOGTGTAGGTTTCOGTTTCTARATATOC 34
5b_|1.L 2B2BEE EEA&.H)HETETM‘I'ITCEE]"’H'}AMTA‘I‘&& 2BpEs1
Diownload GenBank Graphics Soriby: |E walus b

Pediccoccus damnosus sfrain TMW 21534, complete genome
Saquence I0: CPO12282.1 Length: 2172287 Mumber of Matches: 4

Range 1: 140956 to 140989 Gengank Graphics Mext Match
Score Expect Identities Gaps Stramd
63.5 birs(34) 4=-08 34/34(100%:) 0/34{ %) Plus/Plus
Quary 1 COACATATOTGTAGGTTTCOGTTTCTARATATIC 324
Sbict 148956 EEALL‘LHETETM‘HTCCE]’l’H'lMATA‘I'!& 1ip28%
Download GenBank Graphics Sortby: |E walue v

Pediccoccus damnosus strain TMW 2.1533, complete genome
Sequence ID: CPO12275.1 Length: 2148374 Mumber of Matches: 4

Range 1: 44416 to 44449 Senbank  Graohics Next Match
Score Expect Identities Gaps Strand
2.9 hits(34) 42-08 34/34(100%) 1/ 2400%) Plus/Minus
Query 1 COACATATCTGTAGGTTTCOGTTTCTARATATLLC

Shjct 44443 CGAEL+JA'|'4TGT§A(LH4CCETT|’&'I’AMTAT&& 43115

P. pentosaceus CCTACGGTAAAGTGATTAATTGAGTTTAGCG

Download GenBank Graphics Sortby: |E walua v |

Pediccoccus pentosaceus strain SRCM100892, complete genome
Sequence I0x CP021474.1 Length: 17352668 Mumber of Matches: 5

Range 1: 325609 to 325639 Geniank Graphics Mt Match
Score Expect Identities Gaps Strand
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G. oxydans AAATTATAGGAAGGGATATGTTGACGGCG
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A. aceti CAAACCCAGTCCAATCTGTGAGTTGAAA
Download GenBank Graphics

Acetobacter aceti DNA, 165-235 rRNA ITS region. strain:NBRC 14818
Sequence ID: AB111902.1 Length: 900 Number of Matches: 1

Range 1: 192 to 219 GenBank Graphics

Score Expect Identities Gaps Strand
56.0 bits(28) 2e-05 28/28(100%) 0/28(0%) Plus/Minus
w2 IO 22
Spjct 219 CARACCCAGTCCAATCTGTGAGTTGAAA 192

Download GenBank Graphics

Acetobacter aceti internal transcribed spacer 1 (IT51), type strain DSM 3508
sequence ID: AJOO7831.1 Length: 724 Mumber of Matches: 1

Range 1: 171 to 198 GenBank Graphics

Score Expect Identities Gaps Strand
56.0 bits(28) 2e-05 28/28(100%) 0/28(0%) Plus/Minus
o Ty
Spjct 198 CAAACCCAGTCCAATCTGTGAGTTGAAA 171

Download GenBank Graphics

Acetobacter aceti genes for 165 rRNA, 165-235 rRNA ITS, and 235 rRNA, partial and complete sequences
Sequence ID: AB161358.1 Length: 923 Number of Matches: 1

Range 1: 260 to 287 GenBank Graphics

Score Expect Identities Gaps Strand
48.1 bits(24) 0.004 27/28(95%) 0/28(0%) Plus/Minus
e I 2
Spjct 287 CARACCCAGTCCAATCTGCGAGTTGAAA 262

100
101



102

103
104

105
106

107
108
109
110

A. pasteurianus AAACCCGACTGAATAACCTAGACAATACAT
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Figure S2. Evaluation of the specificity of the 17 species-specific oligoprobes by sequence alignment and
similarity search carries out by BLAST. Each primer sequence and the source organism are indicated.
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Figure S2. Panel A. Electrophoretic profiles of amplification
products of rDNA region 18S-5.8S from S. cerevisiae. The
amplification was performed using the pair of primers
Liev_For_Cy5/Liev_Rev and different amounts of target-DNA: lane
1, 50 pg; lane 2, 10 pg; lane 3, 2 pg; lane 4, 0.4 pg; M, DNA
Ladder 100 bp (Euroclone). Panel B. Electrophoretic profiles of
amplification products of rDNA region 16S-1TS1 from G. oxydans.
The amplification was performed using the pair of primers
Acet_For_Cy5/Acet_Rev. and different amounts of target-DNA:
lane 1, 50 pg; lane 2, 10 pg; lane 3, 2 pg; lane 4, 0.4 pg; M, DNA
Ladder 100 bp (Euroclone). Panel C. Electrophoretic profiles of
amplification products of rDNA region 16S-ITS1 from L. brevis.
The amplification was performed using the pair of primers
Latt For_Cyb/Latt_Rev. and different amounts of target-DNA:
lane 1, 50 pg; lane 2, 10 pg; lane 3, 2 pg; lane 4, 0.4 pg; M, DNA
Ladder 100 bp (Euroclone).
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Figure S3. Electrophoretic profiles of amplification products obtained by PCR
multiplex of the chromosomal region corresponding to the gene cluster encoding
the ribosomal RNA of bacteria (16S-1TS1) and yeasts (18S-5.8). The
amplification was performed using the pairs of primers Acet_For/Acet_Rev for
acetic acid bacteria, Latt For/Latt Rev lactic acid bacteria and
Liev_For/Liev_Rev for yeasts. Lane 1, S. cerevisiae, S. pombe; lane 2, S.
cerevisiae, P. membranifaciens, L. brevis; lane, S. cerevisiae, C. stellata, L.
brevis, G. oxydans; lane 4, S. cerevisiae, P. anomala, P. membranifaciens, L.
brevis, G. oxydans; lane M, DNA Ladder 100 bp (Euroclone).
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