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a b s t r a c t

A new technique for nonparametric regression of multichannel signals is presented. The
technique is based on the use of the Rational-Dilation Wavelet Transform (RADWT),
equipped with a tunable Q-factor able to provide sparse representations of functions with
different oscillations persistence. In particular, two different frames are obtained by two
RADWT with different Q-factors that give sparse representations of functions with low
and high resonance. It is assumed that the signals are measured simultaneously on several
independent channels and that they share the low resonance component and the spectral
characteristics of the high resonance component. Then, a regression analysis is performed
by means of the grouped lasso penalty. Furthermore, a result of asymptotic optimality
of the estimator is presented using reasonable assumptions and exploiting recent results
on group-lasso like procedures. Numerical experiments show the performance of the
proposed method in different synthetic scenarios as well as in a real case example for
the analysis and joint detection of sleep spindles and K-complex events for multiple
electroencephalogram (EEG) signals.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

This paper deals with the problem of simultaneously recovering K different signals independently or simultaneously
recorded under the hypothesis that these signals share common characteristics. Indeed, when drawing K independent
or simultaneous experiments over the same (unknown) causal relation among variables, we expect that changing the
experiment should not affect the causal relation but only some experiment specific characteristics. This situation is typical
in the biological field, where scientists make experiments with more replicas because they assume a causal relationship
between genes and response common to all replicas, while retaining a replicate-specific variability, see He et al. (2016),
Ruffalo et al. (2017), Yuan et al. (2016) and Deun et al. (2011); but common characteristics are also expected in the medical
field tomodel special EEG data, where onewaits the simultaneous signals derived from the electrodes located in the subject’s
scalp at specific areas, see Selesnick (2011), Barros et al. (2000) and Parekh et al. (2017). See Bobin et al. (2009) for many
other examples applied to different signal and image processing problems.

Such kind of problem is addressed in many different research areas: in the machine learning community it is well known
as themulti-task learning problem (Liu et al., 2008; Lozano and Swirszcz, 2012; Argyriou et al., 2008), in the signal and image
processing community as themulti-channel recovering problem (Rakotomamonjy, 2011), in econometrics as the panel-data
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problem, in the approximation theory as the conjoint analysis as well as in the mathematical statistics community it is a
special case of the multivariate regression problem. The enormous interest which is growing around this problem is due to
its flexibility in modeling different situations and in the possibility of using fast algorithm to solve it.

In this paper we propose to treat the problem of simultaneous nonparametric regression from a new perspective by
combining results from signal processing and statistical high-dimensional data analysis. In signal processing it is now
well understood that orthogonal basis decompositions are not appropriate for signal recovery, since they can often fail to
represent a particular function of interest efficiently, (Donoho and Elad, 2003). As a result, overcomplete representations
such as wavelets and windowed Fourier expansions became mainstays of modern statistics and signal processing. Such
representations are formalized through the theory of frames. Frames can be generated by the action of operators on a
template function (motherwavelet or Gabor atom), or be unstructured and random (as in compressive sensing). Herewe use
results about RADWT (Selesnick, 2011), which is a modern and fast computational tool for analyzing a very general class of
signals. In statistical high-dimensional data analysis it is established that the grouped-Lasso technique (Yuan and Lin, 2006)
for the selection and estimation of grouped variables is very effective to identify the dictionary elements that guarantee
efficient estimation of the unknown regression function. The advantage of this approach is twofold. First, from a theoretical
point of view, it is possible to control the estimation error by the so called oracle inequalities, and the error rate becomesnearly
parametric providing the function of interest can be represented via a linear combination of just few dictionary elements
satisfying certain assumptions. Second, from a computational point of view, the group gradient descendent method permits
a very fast implementation of the optimization algorithm to find the optimal path.

The remainder of the paper is organized as follows. Section 2 describes the data model we are considering with
the working hypothesis. Section 3 presents and discusses the inference procedure within the paradigm of group-lasso
procedures, enlightening the connections with other existing procedures. Section 4 provides convergence results, while
Section 5 shows numerical experiments.

2. The data model

Consider the problem of recovering K + 1 deterministic vectors c, u(1), . . . , u(K )
∈ Rn×1 from the following data

y(k) = c + u(k)
+ ε(k) k = 1, . . . , K and ε(k)

∼ N(0, σ 2I), (2.1)

where vector y(k) represents n-equispaced observations of function c(t) + u(k)(t) over the equispaced grid design t1 < t2 <
· · · < tn for each channel k = 1, . . . , K , i.e. y(k) ∈ Rn×1. The grid can be thought to be sampled in time, in space, in radiation,
in genome locations or in any other unit of measure according to the physical phenomena. The data model (2.1) represents
the situation where the samples share a common effect, here represented by function c(t) which eventually can be zero,
plus a functional component u(k)(t) which can be different across samples while sharing some common characteristics to
be specified later. We do not hypothesize functions c(t) and u(k)(t) belong to some functional Sobolev space Hs

p,q[a, b] as it
is usually done in functional nonparametric regression setting, instead we let these functions to be much more general
and we restrict our attention to their finite-dimensional representation. Since many physiological and physical signals
are not only non-stationary but also exhibit a mixture of oscillatory and non-oscillatory transient behaviors (for example,
speech, stock-market, biomedical EEG, etc.) we suppose that each signal in each channel is the sum of a ‘high-resonance’
and a ‘low-resonance’ component. By a high-resonance component, we mean a signal consisting of multiple simultaneous
sustained oscillations, in contrast, by a low-resonance component, wemean a signal consisting of non-oscillatory transients
of unspecified shape and duration. We stress that the high and low resonance components of a signal cannot be extracted
from its high and low frequencies components in a time-scale decomposition, but they can be well represented by a high-
Q factor RADWT and a low-Q factor RADWT respectively as very well explained in Selesnick (2011). The RADWT is a
normalized tight frame of L2(R) defined as

{
( qp )

k/2ψ

(
( qp )

kt +
sp
q l
)}

k,l∈Z
whereψ is a wavelet function and (p, q, s) is a triplet

of parameters which gives the time-scale characteristic of the frame. In particular the ratio q/p > 1 is closely related to
the scale (or frequency) dilatation factor, the parameter s is closely related to the time dilatation factor and p

s(q−p) is the
redundant factor. The Q-factor depends on these parameters although there is not an explicit formula, in particular setting
the dilatation factor q/p between 1 and 2 and s > 1 gives a RADWT with high Q-factor, while setting s = 1 we obtain
a low Q-factor RADWT with time-scale characteristic similar to the dyadic wavelet transform. In particular, when q = 2,
p = 1 and s = 1 the frame reduces to the classical wavelet basis. Given a finite energy signal x of length n and J ∈ N levels
of decomposition, the RADWT transform is obtained by a sequence of proper down-sampling operations and fast Fourier
transforms; it ends up with ⌈

npJ

qJ
⌉ scaling coefficients (low-pass filtering) and ⌈

npj

qjs
⌉ wavelet coefficients (high-pass filtering)

at each level j = 1, ..J . See Bayram and Selesnick (2009) for details on fast analysis and synthesis schemes. In this paper
we use these results of signal processing in order to formulate our working hypothesis. LetΨ ∈ Rn×d1 be the finite matrix
representation of the low Q-factor analysis filter and letΦ ∈ Rn×d2 be the finite matrix representation of the high Q-factor
analysis filter (the synthesis operators being just the transpose matrices), then our working hypothesis is the following:

(H1) signal c is sparse inΨ , i.e. setting α0 = Ψ tcwe have that
⏐⏐Sα

0

⏐⏐ =
⏐⏐{j : α0j ̸= 0}

⏐⏐ ≪ d1;
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(H2) signals u(k) have a jointly sparse representation inΦ, i.e. setting β
(k)
0 = Φtu(k) and S(k),β0 = {j : β

(k)
0j

̸= 0} we have that

S(1),β0 = · · · = S(K ),β0 , with the common cardinality denoted by
⏐⏐⏐Sβ

0

⏐⏐⏐ ≪ d2.

(H3) the columns of matricesΨ andΦ are normalized to have norm 1.

Finally it is worth to observe that the role ofΨ andΦ in this model can be interchanged to accomplish cases where the
common effect c has a high Q-factor behavior as opposed to the sample specific effect which has a low Q-factor behavior.

3. Inference

The linear model in (2.1) can be rewritten in terms of RADWT coefficients as follows⎧⎪⎪⎪⎨⎪⎪⎪⎩
y(1) = Ψα + Φβ(1)

+ ε(1)

y(2) = Ψα + Φβ(2)
+ ε(2)

...

y(K ) = Ψα + Φβ(K )
+ ε(K ),

(3.2)

which turns out to be a classical multiple regression model with a special common design matrix. A first and somewhat
naive approach would consist in treating separately each channel ignoring the underlying common structure; however this
is obviously suboptimal. This is the reasonwhy such kind of problem is reformulated in terms of a unique regression problem
in the following form:⎡⎢⎢⎢⎣

y(1)
y(2)
...

y(K )

⎤⎥⎥⎥⎦ =

⎡⎢⎣ Ψ Φ 0 · · · 0
Ψ 0 Φ · · · 0
· · · · · ·

Ψ 0 0 · · · Φ

⎤⎥⎦
⎡⎢⎢⎢⎢⎢⎣

α

β(1)

β(2)

...

β(K )

⎤⎥⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎣
ε(1)

ε(2)

...

ε(K )

⎤⎥⎥⎥⎦ = X θ + ε, (3.3)

with obvious correspondence between elements of the two expression. So, y is a column vector of nK response variables, X a
designmatrix of dimension nK ×d1 +Kd2, θ an unknown regression coefficients column vector of length d1 +Kd2 consisting
of a first sub vector α ∈ Rd1×1 and a second sub vector β =

[(
β(1))t , . . . , (β(K ))t]t

∈ RKd2×1 and, finally, we let ε be a
nK -variate Gaussian random column vector with zero mean and covariance matrix σ 2InK . Under the working hypothesis
(H1) and (H2), we expect the coefficients of the common part α to be sparse into the dictionaryΨ , while on the remaining
part of coefficient vector β we exploit the joint sparsity assumption, i.e. for all j = 1, . . . , d2 we know that β (k)

j = 0, for all
k = 1, . . . , K or β (k)

j ̸= 0 for all k = 1, . . . , K . This provides the following non-overlapping group structure for the whole

vector θ =

[
α
β

]
:

{1, 2..., d1 + Kd2} = {1} ∪ · · · ∪ {d1} ∪ G1 ∪ · · · ∪ Gd2 , (3.4)

with

Gj = {d1 + j, d1 + j + d2, d1 + j + 2d2 . . . , d1 + j + (K − 1)d2}, j = 1, . . . , d2,

group of size K . Let G⋆ =
d1+Kd2
d1+d2 denote the average group size and let us denote

∥θ∥2,1 =

[ α
β

]
2,1

=

√
1
G⋆

d1∑
j=1

|αj| +

√
K
G⋆

d2∑
j=1

∥β(Gj)∥2,

the l1/l2-norm, with β(Gj) denoting the reduction of vector β to the subset of index Gj, then we can consider the following
group lasso problem

θ̂ = argmin
θ∈R(d1+Kd2)×1

{
1
nK

∥y − Xθ∥2
2 + λ

√
G⋆∥θ∥2,1.

}
(3.5)

Finally, we consider as our estimator the following reconstructions:

ĉ = Ψ α̂; û(k)
= Φβ̂

(k)
, k = 1, . . . , K , (3.6)

where θ̂ =

[
α̂

β̂

]
=

[
α̂
t
,

(
β̂
(1))t

, . . . ,

(
β̂
(K ))t]t

is the solution of the optimization problem (3.5).
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3.1. Algorithm

As already mentioned in the introduction one of the great advantages of the grouped Lasso penalization consists in the
availability of efficient algorithms for its solution.

In particular, the most efficient algorithms in the modern statistics literature are the Group Descendent Algorithm,
presented in Breheny and Huang (2015, 2009) and implemented in the R package grpreg available at https://cran.r-
project.org/web/packages/grpreg/, and theGroupwiseMajorizationDescendent Algorithmpresented in Yang andZou (2015)
and implemented in the R package gglasso available at https://cran.r-project.org/web/packages/gglasso/.

Both algorithms work groupwise by using the separability of model (3.5), i.e. update each group of variables iteratively
until convergence. The main difference between the two algorithms is the updating of each group of variables: in grpreg it
occurs through the solution of a single-group lasso, i.e. with amultivariate soft-thresholding operator, under the assumption
of ‘‘orthonormal group", while in gglasso each group of variable is updated as the solution of a quadratic majorization
problem.We stress that the ‘‘orthonormal group" property refers to the condition X(Gj)tX(Gj) = I , not that groups X(Gj) and
X(Gk) are orthogonal each other. When this condition is not satisfied the grpreg automatically orthonormalizes the design
matrix, but this practice leads to a slight modification of the l1/l2-norm contained in the penalty, as pointed out in Huang
et al. (2012) and Simon and Tibshirani (2012). This is not our case, because the design matrix defined in Eq. (3.3) satisfies
the ‘‘orthonormal group" property and we can take complete advantage of the Group Descendent Algorithm in the grpreg
package to solve problem (3.5) exactly.

Let us reorganize the designmatrix X defined in Eq. (3.3) so that the groupmemberships are consecutive. From the group
structure defined in Eq. (3.4) we have that the group membership vector Ig contains only one element for g = 1, 2, . . . , d1,
and K elements for g = d1 + j with j = 1, . . . , d2. Hence, in the latter case the sub matrix X Ig , for g = 1, . . . , d1, is a
one-column matrix defined as

X Ig =

⎡⎢⎣ Ψ (g)

...

Ψ (g)

⎤⎥⎦ ∈ RnK×1,

whereΨ (g) is the gth column of matrixΨ ; while in the last case, for g = d1 + j with j = 1, . . . , d2, the sub matrix X Ig is a
K -column matrix where each column is a shifted version of the jth column of matrixΦ as in the following scheme

X Ig =

⎡⎢⎢⎣
Φ(j) 0 · · · 0
0 Φ(j)

· · · 0
· · · · · · · · · · · ·

0 0 · · · Φ(j)

⎤⎥⎥⎦ ∈ RnK×K .

Finally, it is easy to verify the ‘‘orthonormal group" property, i.e. X t
IgX Ig = I for all g = 1, . . . , d1 + d2.

3.2. Connections with literature

As already stated in the introduction, multi-channel regression and equivalent problems have been investigated by
diverse communities and a lot of literature is available on that.

Problem (3.2) is a particular case of the so-called Simultaneous Sparse Approximation (SSA) (Rakotomamonjy, 2011;
Jenatton et al., 2011; Tropp et al., 2006; Tropp, 2006), defined as follows. Suppose that we have measured K signals {si}Ki=1,
where each signal is of the form si = Ωc i+ε(i), where {si} ∈ Rn×1,Ω ∈ Rn×m is a matrix of unit-norm elementary functions,
c i ∈ Rm×1 is a weighting vector and ε(i) is a noise vector for each i = 1, . . . , K . The overall measurements can be written as

S = ΩC + ε, (3.7)

where S = [s1, . . . , sK ] is a signal matrix, C = [c1, . . . , cK ] a coefficient matrix and ε a noise matrix. For the SSA problem,
the goal is then to recover the matrix C given the signal matrix S and the dictionaryΩ under the hypothesis that all signals
si share the same sparsity profile. This latter hypothesis can be translated into the request that the coefficient matrix C has
a minimal number of non-zero rows, i.e. solving the following problem

min
C

1
2

∥S − ΩC∥
2
F s.t. ∥C∥row−0 ≤ T ,

where

∥C∥row−0 =
⏐⏐{i ∈ [1, . . . ,m] : cij ̸= 0 for some j}

⏐⏐ ,
T is some parameter defined by the user to control the sparsity and ∥·∥F indicates the Frobenius norm.

This problem is not convex, but efficient greedy algorithms have been proposed to get an approximate solution. In
particular, in Tropp et al. (2006), the author proposes the Simultaneous Orthogonal Matching Pursuit (SOMP) algorithm,
which selects, at each iteration, an element from the dictionary maximizing the sum of the absolute correlation between

https://cran.r-project.org/web/packages/grpreg/
https://cran.r-project.org/web/packages/grpreg/
https://cran.r-project.org/web/packages/grpreg/
https://cran.r-project.org/web/packages/gglasso/
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the dictionary elements and the signal residual. As shown in Rakotomamonjy (2011), this greedy algorithm is actually one
of the most efficient to solve the problem.

Another possibility to solve the minimization problem is to relax the constraint by replacing ∥·∥row−0 with a more
tractable row-sparsity measure. A large class of relaxed version of ∥·∥row−0 consider the following constraint

Jp,q (C) =

∑
i

ci,·pq with
ci,·q =

⎛⎝∑
j

⏐⏐ci,j⏐⏐q
⎞⎠1/q

,

where typically p ≤ 1 and q ≥ 1.
Such kind of relaxed problems can be solved in different ways and a deep survey and comparison analysis can be found

in Tropp (2006) and Rakotomamonjy (2011).
In particular, the case p = 1 and q = 2 can be efficiently solved by the Block Coordinate Descent (BCD) algorithm and

has a strong connection with the group-lasso regression. Indeed, our problem (2.1) falls in this relaxed version, considering

S = Y =
[
y(1) . . . y(K )

]
, Ω = [Ψ ,Φ] and C =

[
α(1)

β(1) . . .
α(K )

β(K )

]
.

Moreover, there is also a connection with structured variable selection and structural penalties in the vector formulation
of Eq. (3.3). In fact, the penalty we used in Eq. (3.5) is a particular case of Eq. (1), Section 2, described in Jenatton et al. (2011),
and this permits to use all the optimization algorithms based on the proximal methods.

Finally, it is important to stress a fundamental difference with the proposed methodology, i.e. all reviewed methods do
not take properly into account the constraint of a common low-component

(
α(1)

= · · · = α(K )
)
, hence any multichannel

reconstruction returns different low-resonance components for different channels, loosing in terms of estimation error as it
will be shown in the numerical section.

4. Theoretical properties

The following results are obtained adapting results of Chapter 8 in Bühlmann and van de Geer (2011).

Let estimator
[
ĉ t ,
(
û(1)

)t
, . . . ,

(
û(K )

)t]t
be given by Eq. (3.6); in order to derive an oracle inequality for its error, we

introduce the following notations and assumptions.

Notations. for any subset of indices S ⊆ P = {1, . . . , d1} ∪ {d1 + 1, . . . , d1 + d2}, we denote Sα
= S ∩ {1, . . . , d1} and

Sβ
= {j : 1 ≤ j ≤ d2 and d1 + j ∈ S}, moreover subset Sc is its complement in P and |S| is its cardinality, so that

|P| = d1 +d2. Let us abuse of notations writing d1 +Sβ
= {d1 + j : j ∈ Sβ

}. If S = Sα
∪{d1 +Sβ

} ⊆ P and θ ∈ Rd1+Kd2×1, then
θ(S) =

[
α (Sα) β

(
Sβ
)]

denotes reduction of vector θ to the subset of group index S, as α (Sα) ∈ R|Sα|×1 denotes reduction

of vector α to the subset of variable index Sα and β
(
Sβ
)

=

[(
β(1) (Sβ

))t
, . . . ,

(
β(K ) (Sβ

))t]t
is such that β(k) (Sβ

)
∈ R

⏐⏐⏐Sβ
⏐⏐⏐×1

denotes reduction of vector β(k) to the subset of variables index Sβ for all k = 1, . . . , K .

Assumptions.

(A1) The linear model in Eq. (3.3) holds exactly with some true parameter value θ0 =

[
αt
0,

(
β
(1)
0

)t
, . . . ,

(
β
(K )
0

)t]t
,

S0 = Sα
0 ∪ {d1 + Sβ

0 } being the true active set of groups.
(A2) The compatibility condition holds for the group index set S0 = Sα

0 ∪ {d1 + Sβ

0 } with constant φ(S0) > 0, if for all
θ ∈ Rd1+Kd2×1 such that ∥θ(Sc0)∥2,1 ≤ 3∥θ(S0)∥2,1, it holds that

G⋆ ∥θ(S0)∥2
2,1 ≤ ∥Xθ∥2

2 G⋆ |S0| / nK φ(S0)2. (4.8)

Note that Assumption (A1) means that the true signals c + u(k), for k = 1, . . . , K are exact linear combination of the
columns ofmatricesΨ andΦwhich simplifies the proof, however this assumption can be relaxed and the following theorem
is stated for the best linear approximation of the unknown signals into the span of columns of matricesΨ andΦ. Moreover,
note that in Assumption (A2) G⋆ |S0| is the average group size times the active number of groups and plays the role of the
number of active variables into the compatibility condition. As often observed the compatibility constant φ(S0) is linked to a
condition on the smallest eigenvalue of the matrix X tX/nwhich turns out to be linked to the productΦtΨ which in signal
processing is the coherence between the two filters.

We can now prove the following main result:

Theorem 1. Let θ̂ be one solution of Eq. (3.5) and let assumptions (A1)–(A2) hold; then, for any x > 0 and any λ ≥ 2λ0, with
probability at least 1 − 2e−x2/2

− e−x, it holds that
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1
nK

X(θ̂ − θ0)
2
2
+ λ

√
G⋆
θ̂ − θ0


2,1

≤ 4 λ2 G⋆ |S0|/φ(S0)2, (4.9)

where λ0 = max
{
λα
0 , λ

β

0/
√
K
}
, with

λα
0 =

2 σ
√
nK

√
x2 + 2 log(d1),

and

λ
β

0 =
2 σ
√
nK

(
1 +

√
(4x + 4 log(d2))/K + (4x + 4 log(d2))/K

)
.

Proof is given in the Appendix.
The theorem proves the so called oracle inequality for the group lasso estimator and it directly gives a bound on the

prediction error, indeed if λ is chosen as claimed in the theorem, it follows with high probability

1
nK

X(θ̂ − θ0)
2
2

∼
log(d) σ 2 G⋆

nK
|S0|,

with log(d) = max
{
log(d1), log2(d2)/K 2

}
so that the price for not knowing the true active index groups S0 is of the order

log(d).

5. Simulations and real examples

In order to show the performance of the proposedmethodology, a number of experiments were run on synthetic datasets
and on a real EEG dataset, the first being an ideal modelization of the second.

For all results reported in this section, we used the grpreg package, that implements efficient algorithms for fitting
the regularization path of linear or logistic regression models with different grouped penalties. It includes group selection
methods such as group LASSO (referred to as grlasso in the following), group MCP, and group SCAD as well as bi-level
selectionmethods such as the group exponential LASSO, the compositeMCP, and the group bridge. The smoothing parameter
λ can be estimated by BIC, AIC, GCV and CV.

We used the group LASSO to solve the penalized regression and the V-fold CV criterion to choose the smoothing
parameter λ.

All the codes that have been used to produce the following results are freely available at http://www.iac.cnr.it/~danielad/
software.html.

5.1. Synthetic data

In this sectionwe present results obtained using synthetic data representing different sparse scenarios and different noise
levels. We generated data according to model (3.2)

y(k) = c + u(k)
+ ε(k)

= Ψα + Φβ(k)
+ ε(k) k = 1, . . . , K ,

using three channels (K = 3) and n = 256 observations in each channel. MatrixΨ was generated using the following choice
plow = 1, qlow = 2, slow = 1, Jlow = 4 and matrix Φ was generated using phigh = 8, qhigh = 9, shigh = 3, Jhigh = 10.
These matrices represent RADWT with Q-factor almost 1 and 5 respectively, the first frame resembles the dyadic wavelet
transform and its mother wavelet has almost one pulse, while the second frame has a mother wavelet with almost 5 pulses,
as very well explained in Fig. 1 of Selesnick (2011). We considered three scenarios with different sparsity level:

Scenario 1: low sparsity, corresponding to |Sα| = 24 and
⏐⏐Sβ ⏐⏐ = 24;

Scenario 2: medium sparsity, corresponding to |Sα| = 12 and
⏐⏐Sβ ⏐⏐ = 12;

Scenario 3: high sparsity, corresponding to |Sα| = 6 and
⏐⏐Sβ ⏐⏐ = 6;

and for each scenario we used three signal to noise ratios (SNR): 1.5, 3, 6, defined as

SNR =

1
K

∑K
i=1 Var(Ψα + Φβ(k))

σ 2
SNR

.

Data were generated in each channel, using α0j = 1, j ∈ Sα
0 , and β

(k)
j ∼ Uniform(0,M), with M = ∥c∥∞ /

Φ(Sβ

0 )


∞

, and

ε(k)
∼ N(0, σ 2

SNRI).
In all test cases the proposed procedure, indicated hereafter as multi-c, has been compared with the single-c

procedure, i.e. the procedure where in each channel, the estimator f̂(k) = Ψ α̂ + Φβ̂
(k)

is obtained independently from

http://www.iac.cnr.it/~danielad/software.html
http://www.iac.cnr.it/~danielad/software.html
http://www.iac.cnr.it/~danielad/software.html
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the other channels by the following minimization:(
α̂

β̂
(k)

)
= argmin(

α
β

)
∈Rd1+d2×1

{
1
n

y(k) − [Ψ Φ]

(
α
β

)2
2
+ λ

(
d1∑
i=1

|αi| +

d2∑
i=1

|βi|

)}
,

k = 1, . . . , K .
Performance was evaluated by computing the following indicators:

• Root Mean Square Error (RMSE) defined as

RMSE =

√1
n

n∑
i=1

(
f̂ (k)(ti) − f (k)(ti)

)2
, k = 1, . . . , K ;

with f(k) = c + u(k) and f̂(k) = Ψ α̂ + Φβ̂
(k)

its estimate;
• Root Mean Square Error for the low resonance component (RMSElow) defined as

RMSElow =

√1
n

n∑
i=1

(
ĉ(ti) − c(ti)

)2
;

• Root Mean Square Error for the high resonance component (RMSEhigh) defined as

RMSEhigh =

√1
n

n∑
i=1

(
û(k)(ti) − u(k)(ti)

)2
, k = 1, . . . , K ;

RMSElow and RMSEhigh aim at evaluating a component wise accuracy.

With the aim of exploring the variable selection properties of the considered procedures, we also computed the following
indicators:

• True positives for the low resonance component (TPlow) defined as

TPlow :=

⏐⏐⏐Ŝα
0

⏐⏐⏐ , Ŝα
0 = {j : α̂j ̸= 0 and α0j ̸= 0}.

• False negatives for the low resonance component (FNlow) defined as

FNlow :=

⏐⏐⏐Ŝα,n
0

⏐⏐⏐ , Ŝα,n
0 :=

{
j : α̂j = 0 and α0j ̸= 0

}
.

For the single-c procedure TPlow and FNlow will be dependent on the channels, while for the multi-c procedure they
will not.

• True positives for the high resonance component (TPhigh) defined as

TPhigh :=

⏐⏐⏐Ŝβ

0

⏐⏐⏐ =

⏐⏐⏐Ŝ(k),β0

⏐⏐⏐ , Ŝ(k),β0 =

{
j : β̂

(k)
j ̸= 0 and β (k)

0j
̸= 0

}
,

∀k = 1, . . . , K .
• False negatives for the high resonance component (FNhigh) defined as

FNhigh :=

⏐⏐⏐Ŝβ,n
0

⏐⏐⏐ =

⏐⏐⏐Ŝ(k),β,n0

⏐⏐⏐ , Ŝ(k),β,n0 :=

{
j : β̂

(k)
j = 0 and β (k)

0j
̸= 0

}
,

∀k = 1, . . . , K .
For the multi-c procedure the sets Ŝ(k),β0 and Ŝ(k),β,n0 are all equal, while for the single-c procedure the sets depend
on the channels.

Note that in general the following relationships hold: TP = NS−FP and TP+FN = NS−FP+FN = pactive, where NS indicates
the number of selected variables, FP indicates the number of false positives and pactive is the true number of active variables.

To be robust with respect to the particular realization in generating synthetic data (and corresponding noise), each
experiment was run several times, in particular we set Nrun = 100 and we evaluated the averaged indicators.

Table 1 shows the results for RMSE, RMSElow and RMSEhigh for Scenario 1 and SNR = 1.5, 3 and 6 respectively, for all
the 3 channels indicated as ch1, ch2, ch3; standard deviation is displayed in parentheses. Table 2 shows the performance
indicators TP and FN for the low resonance component and high resonance component.

Tables 3–5 contain the results for RMSE, RMSElow and RMSEhigh for Scenario 2 and Scenario 3, respectively; analogously
Tables 4–6 illustrate the performance indicators TP and FN for the same scenarios.
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Table 1
Average values (standard deviation between parentheses) of RMSE, RMSElow and RMSEhigh based on 100 simulations with different noise realizations.
Experiment carried out on Scenario 1 with SNR = 1.5, 3 and 6.

RMSE RMSElow RMSEhigh

single-c multi-c single-c multi-c single-c multi-c

SNR = 1.5

ch1 0.2897 (0.0348) 0.2216 (0.0191) 0.2206 (0.0129) 0.1728 (0.0127) 0.2178 (0.0232) 0.2284 (0.0154)
ch2 0.3004 (0.0355) 0.2226 (0.0194) 0.2249 (0.0123) 0.1728 (0.0127) 0.2314 (0.0251) 0.2457 (0.0197)
ch3 0.2968 (0.0379) 0.2130 (0.0187) 0.2244 (0.0145) 0.1728 (0.0127) 0.2236 (0.0227) 0.2337 (0.0194)

SNR = 3

ch1 0.2242 (0.0290) 0.1608 (0.0118) 0.1882 (0.0170) 0.1446 (0.0106) 0.1715 (0.0156) 0.1852 (0.0129)
ch2 0.2277 (0.0297) 0.1628 (0.0113) 0.1926 (0.0161) 0.1446 (0.0106) 0.1842 (0.0175) 0.2024 (0.0144)
ch3 0.2322 (0.0309) 0.1560 (0.0111) 0.1924 (0.0165) 0.1446 (0.0106) 0.1815 (0.0175) 0.1913 (0.0148)

SNR = 6

ch1 0.1611 (0.0234) 0.1153 (0.0092) 0.1457 (0.0149) 0.1199 (0.0096) 0.1329 (0.0140) 0.1501 (0.0120)
ch2 0.1673 (0.0215) 0.1169 (0.0101) 0.1554 (0.0129) 0.1199 (0.0096) 0.1479 (0.0114) 0.1615 (0.0138)
ch3 0.1613 (0.0233) 0.1117 (0.0072) 0.1468 (0.0156) 0.1199 (0.0096) 0.1357 (0.0125) 0.1514 (0.0121)

Table 2
Fraction of correctly retrieved variables

(
TPlow/

⏐⏐Sα
0

⏐⏐) and incorrectly retrieved variables
(
FNlow/

⏐⏐Sα
0

⏐⏐) for the estimated low resonance signal component.

Fraction of correctly retrieved variables
(
TPhigh/

⏐⏐⏐Sβ

0

⏐⏐⏐) and incorrectly retrieved variables
(
FNhigh/

⏐⏐⏐Sβ

0

⏐⏐⏐) for the estimated high resonance signal component.
Values are based on 100 simulations with different noise realizations for Scenario 1 and SNR = 1.5, 3 and 6.

(TPlow)/plow FNlow/plow (TPhigh)/phigh FNhigh/phigh

single-c multi-c single-c multi-c single-c multi-c single-c multi-c

SNR = 1.5

ch1 0.4029 0.8696 0.5971 0.1304 0.4500 0.6508 0.5500 0.3492
ch2 0.3450 0.8696 0.6550 0.1304 0.4129 0.6508 0.5871 0.3492
ch3 0.3629 0.8696 0.6371 0.1304 0.4154 0.6508 0.5846 0.3492

SNR = 3

ch1 0.6800 0.9546 0.3200 0.0454 0.5937 0.8613 0.4063 0.1387
ch2 0.6421 0.9546 0.3579 0.0454 0.5767 0.8613 0.4233 0.1387
ch3 0.6662 0.9546 0.3338 0.0454 0.5742 0.8613 0.4258 0.1387

SNR = 6

ch1 0.8808 0.9912 0.1193 0.0088 0.7137 0.9450 0.2863 0.0550
ch2 0.8487 0.9912 0.1513 0.0088 0.6833 0.9450 0.3167 0.0550
ch3 0.8775 0.9912 0.1225 0.0088 0.7333 0.9450 0.2667 0.0550

Table 3
Average values (standard deviations between parentheses) of RMSE, RMSElow and RMSEhigh based on 100 simulations with different noise realizations.
Experiment carried out on Scenario 2 with SNR = 1.5, 3 and 6.

RMSE RMSElow RMSEhigh

single-c multi-c single-c multi-c single-c multi-c

SNR = 1.5

ch1 0.2151 (0.0187) 0.1662 (0.0143) 0.1664 (0.0105) 0.1122 (0.0105) 0.1619 (0.0187) 0.1486 (0.0163)
ch2 0.2249 (0.0225) 0.1783 (0.0180) 0.1646 (0.0116) 0.1122 (0.0105) 0.1786 (0.0206) 0.1660 (0.0188)
ch3 0.2175 (0.0197) 0.1627 (0.0152) 0.1644 (0.0108) 0.1122 (0.0105) 0.1598 (0.0190) 0.1447 (0.0169)

SNR = 3

ch1 0.1692 (0.0192) 0.1209 (0.0114) 0.1396 (0.0142) 0.0826 (0.0078) 0.1239 (0.0154) 0.1099 (0.0130)
ch2 0.1748 (0.0184) 0.1302 (0.0130) 0.1421 (0.0125) 0.0826 (0.0078) 0.1370 (0.0149) 0.1239 (0.0150)
ch3 0.1679 (0.0163) 0.1154 (0.0099) 0.1378 (0.0013) 0.0826 (0.0078) 0.1202 (0.0128) 0.1038 (0.0120)

SNR = 6

ch1 0.1237 (0.0143) 0.0881 (0.0082) 0.1059 (0.0126) 0.0606 (0.0052) 0.0944 (0.0098) 0.0833 (0.0095)
ch2 0.1254 (0.0151) 0.0941 (0.0089) 0.1078 (0.0122) 0.0606 (0.0052) 0.1047 (0.0102) 0.0924 (0.0090)
ch3 0.1182 (0.0142) 0.0825 (0.0074) 0.1004 (0.0138) 0.0606 (0.0052) 0.0891 (0.0093) 0.0761 (0.0087)

Multi-c procedure always outperforms single-c procedure in terms of RMSE with a consistently lower standard
deviation. This is not surprising because multi-c procedure exploits the joint information among the channels leading
to a more precise (mean) and robust (std) estimation error. We also note that, in almost all scenarios and SNRs, multi-
c outperforms single-c reconstructing the two components except for Scenario 1 where the low and high resonance
components share pieces of signals (see Fig. 1). This is again not surprising, since the two procedures aim to regress f = c+u
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Table 4
Fraction of correctly retrieved variables

(
TPlow/

⏐⏐Sα
0

⏐⏐) and incorrectly retrieved variables
(
FNlow/

⏐⏐Sα
0

⏐⏐) for the estimated low resonance signal component.

Fraction of correctly retrieved variables
(
TPhigh/

⏐⏐⏐Sβ

0

⏐⏐⏐) and incorrectly retrieved variables
(
FNhigh/

⏐⏐⏐Sβ

0

⏐⏐⏐) for the estimated high resonance signal component.
Values are based on 100 simulations with different noise realizations for Scenario 2 and SNR = 1.5, 3 and 6.

(TPlow)/plow FNlow/plow (TPhigh)/phigh FNhigh/phigh

single-c multi-c single-c multi-c single-c multi-c single-c multi-c

SNR = 1.5

ch1 0.4708 0.9508 0.5292 0.0492 0.5708 0.7675 0.4292 0.2325
ch2 0.5017 0.9508 0.4983 0.0492 0.6142 0.7675 0.3858 0.2325
ch3 0.4908 0.9508 0.5092 0.0492 0.5758 0.7675 0.4242 0.2325

SNR = 3

ch1 0.7867 0.9983 0.2133 0.0017 0.6208 0.8150 0.3792 0.1850
ch2 0.7650 0.9983 0.2350 0.0017 0.6675 0.8150 0.3325 0.1850
ch3 0.8242 0.9983 0.1758 0.0017 0.6608 0.8150 0.3392 0.1850

SNR = 6

ch1 0.9800 1 0.0200 0 0.6683 0.8508 0.3317 0.1492
ch2 0.9500 1 0.0500 0 0.6808 0.8508 0.3192 0.1492
ch3 0.9725 1 0.0275 0 0.7017 0.8508 0.2983 0.1492

Table 5
Average values (standard deviations between parentheses) of RMSE, RMSElow and RMSEhigh based on 100 simulations with different noise realizations.
Experiment carried out on Scenario 3 with SNR = 1.5, 3 and 6.

RMSE RMSElow RMSEhigh

single-c multi-c single-c multi-c single-c multi-c

SNR = 1.5

ch1 0.0437 (0.0104) 0.0294 (0.0036) 0.0337 (0.0097) 0.0172 (0.0023) 0.0285 (0.0060) 0.0258 (0.0039)
ch2 0.0426 (0.0977) 0.0260 (0.0030) 0.0347 (0.0093) 0.0172 (0.0023) 0.0259 (0.0044) 0.0218 (0.0034)
ch3 0.0459 (0.0103) 0.0329 (0.0045) 0.0341 (0.0088) 0.0172 (0.0023) 0.0322 (0.0066) 0.0302 (0.0047)

SNR = 3

ch1 0.0298 (0.0053) 0.0202 (0.0024) 0.0228 (0.0045) 0.0121 (0.0017) 0.0205 (0.0039) 0.0180 (0.0029)
ch2 0.0283 (0.0048) 0.0180 (0.0022) 0.0225 (0.0047) 0.0121 (0.0017) 0.0185 (0.0031) 0.0151 (0.0028)
ch3 0.0307 (0.0052) 0.0223 (0.0027) 0.0226 (0.0043) 0.0121 (0.0017) 0.0223 (0.0041) 0.0207 (0.0031)

SNR = 6

ch1 0.0201 (0.0033) 0.0141 (0.0020) 0.0151 (0.0029) 0.0084 (0.0013) 0.0140 (0.0027) 0.0126 (0.0023)
ch2 0.0204 (0.0029) 0.0130 (0.0015) 0.0156 (0.0026) 0.0084 (0.0013) 0.0138 (0.0022) 0.0113 (0.0017)
ch3 0.0217 (0.0032) 0.0167 (0.0020) 0.0155 (0.0028) 0.0084 (0.0013) 0.0160 (0.0027) 0.0151 (0.0022)

Table 6
Fraction of correctly retrieved variables

(
TPlow/

⏐⏐Sα
0

⏐⏐) and incorrectly retrieved variables
(
FNlow/

⏐⏐Sα
0

⏐⏐) for the estimated low resonance signal component.

Fraction of correctly retrieved variables
(
TPhigh/

⏐⏐⏐Sβ

0

⏐⏐⏐) and incorrectly retrieved variables
(
FNhigh/

⏐⏐⏐Sβ

0

⏐⏐⏐) for the estimated high resonance signal component.
Values are based on 100 simulations with different noise realizations for Scenario 3 and SNR = 1.5, 3 and 6.

(TPlow)/plow FNlow/plow (TPhigh)/phigh FNhigh/phigh

single-c multi-c single-c multi-c single-c multi-c single-c multi-c

SNR = 1.5

ch1 0.9767 1 0.0233 0 0.6500 0.9833 0.3500 0.0167
ch2 0.9850 1 0.0150 0 0.4300 0.9833 0.5700 0.0167
ch3 0.9800 1 0.0200 0 0.8400 0.9833 0.1600 0.0167

SNR = 3

ch1 1 1 0 0 0.7633 1 0.2367 0
ch2 1 1 0 0 0.5867 1 0.4133 0
ch3 1 1 0 0 0.9933 1 0.0067 0

SNR = 6

ch1 1 1 0 0 0.8333 1 0.1667 0
ch2 1 1 0 0 0.6633 1 0.3367 0
ch3 1 1 0 0 1 1 0 0

and not the single components (as inMorphological Component Analysis). Hence, when the two components low resonance
(c) and high resonance (u) are confounding single-c can have some advantage with respect to multi-c, remaining the
latter more effective in reconstructing the whole signal f . The advantage of multi-c with respect to single-c is more
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Fig. 1. True signal (first column), perturbed signal for a particular noise realization (second column), true low component (third column), true high
component (fourth column) for each channel for Scenario 1 and SNR = 1.5.

evident looking at the selecting capabilities of the procedure, with a good control of both false positives and false negatives.
Of course performance improves when both SNR and sparsity increase.

For the sake of brevity, we only show the plots of the shape of the unknown signals and the goodness of reconstructions
for the two extreme cases, i.e. Scenario 1 with SNR = 1.5 and Scenario 3 with SNR = 6, see Figs. 1–4.

5.2. Comparisons and further studies

For completeness in this sectionwe compare ourmethodwith two competitors, namely BCD and SOMP. These techniques
handle multi-task learning problems and their effectiveness has been shown in diverse survey papers, see Rakotomamonjy
(2011) and Tropp (2006).

The routines mexSOMP and mexL1L2BCD contained in the Matlab SPAMS package (http://spams-devel.gforge.inria.fr/)
were used to produce the presented results. The synthetic data were generated using the same numerical setting of the
previous experiment, but we relaxed Hypothesis (H2), setting β(3)

= 0. This allowed the data to be different from the correct
RADWT model to test the robustness of the method.

Tables 7, 9 and 11 show the results of RMSE, RMSElow and RMSEhigh considering SNR= 1.5, 3 and 6, for Scenario 1, Scenario
2 and Scenario 3 respectively. The multi-c procedure gets a quite significant improvement in terms of RMSE, especially for
severe noise condition, mostly due to the good estimation of the low-resonance component. This is not surprising since
multi-c takes into proper account the equality constraint on the low-component (α(1)

= · · · = α(K )). It is also very
interesting to note that the multi-c procedure outperforms BCD and SOMP in the retrieval of the high-component of the
third channel (which is zero by construction), in fact it gives very low coefficients β̂ (3) as properly expected.

Finally, consistently with the previous analyses, Tables 8, 10 and 12 show the performance indicators TP and FN for the
low resonance component and high resonance components for Scenario 1, Scenario 2 and Scenario 3 respectively. Note that
indicators TP and FN are reported only for the first two channels, while for the third channel (which is zero) only the number
of falsely non zero retrieved coefficients is reported. It is obvious that, this last index isminimum for thesingle-cprocedure
which works on the third channel independently from the other two, however multi-c is comparable with SOMP and does
a good job with respect to BCD, especially for more severe level of noise.

5.3. Real data

To illustrate our procedure in a real case, we considered the problem of separating the transient and the oscillatory
component in human sleep EEG data. This problem is actually a very hot topic in neuroscience, because several studies have

http://spams-devel.gforge.inria.fr/
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Fig. 2. Retrieved signal (first column), low component of the retrieved signal (second column), high component of the retrieved signal (third column) for
each channel for a particular noise realization, for Scenario 1 and SNR = 1.5. Black line refers to the true signal, cyan line refers to single channel retrieval,
magenta line refers to multi channel retrieval. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

Fig. 3. True signal (first column), perturbed signal for a particular noise realization (second column), true low component (third column), true high
component (fourth column) for each channel for Scenario 3 and SNR = 6.
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Fig. 4. Retrieved signal (first column), low component of the retrieved signal (second column), high component of the retrieved signal (third column) for
each channel for a particular noise realization, for Scenario 3 and SNR = 6. Black line refers to the true signal, cyan line refers to single channel retrieval,
magenta line refers to multi channel retrieval. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

Table 7
Average values (standard deviations between parentheses) of RMSE, RMSElow and RMSEhigh based on 100 simulations with different noise realizations.
Experiment carried out on Scenario 1 with SNR = 1.5, 3 and 6.

RMSE RMSElow RMSEhigh

single-c multi-c BCD SOMP single-c multi-c BCD SOMP single-c multi-c BCD SOMP

SNR =

1.5

ch1 0.2468
(0.0296)

0.1961
(0.0200)

0.2035
(0.0097)

0.2334
(0.0175)

0.2003
(0.0159)

0.1172
(0.0092)

0.1640
(0.0109)

0.2076
(0.0298)

0.1790
(0.0185)

0.1838
(0.0204)

0.1782
(0.0115)

0.2147
(0.0281)

ch2 0.2624
(0.0348)

0.1953
(0.0169)

0.1972
(0.0101)

0.2430
(0.0157)

0.2099
(0.0172)

0.1172
(0.0092)

0.1627
(0.0104)

0.2190
(0.0283)

0.1940
(0.0202)

0.1864
(0.0167)

0.1634
(0.0131)

0.2306
(0.0298)

ch3 0.2280
(0.0258)

0.1218
(0.0094)

0.1763
(0.0102)

0.2268
(0.0171)

0.2309
(0.0220)

0.1172
(0.0092)

0.1574
(0.0112)

0.1959
(0.0223)

0.0237
(0.0283)

0.0455
(0.0135)

0.1197
(0.0109)

0.1941
(0.0226)

SNR = 3

ch1 0.1893
(0.0239)

0.1374
(0.0129)

0.1575
(0.0089)

0.1577
(0.0109)

0.1654
(0.0172)

0.0870
(0.0062)

0.1258
(0.0085)

0.1330
(0.0179)

0.1430
(0.0125)

0.1330
(0.0133)

0.1443
(0.0108)

0.1402
(0.0181)

ch2 0.1995
(0.0282)

0.1420
(0.0129)

0.1435
(0.0088)

0.1598
(0.0123)

0.1727
(0.0163)

0.0870
(0.0062)

0.1230
(0.0099)

0.1388
(0.0206)

0.1561
(0.0152)

0.1419
(0.0138)

0.1230
(0.0100)

0.1474
(0.0198)

ch3 0.1874
(0.0381)

0.0925
(0.0065)

0.1188
(0.0071)

0.1519
(0.0094)

0.1926
(0.0360)

0.0870
(0.0062)

0.1203
(0.0085)

0.1260
(0.0170)

0.0319
(0.0237)

0.0462
(0.0125)

0.0709
(0.0080)

0.1285
(0.0172)

SNR = 6

ch1 0.1317
(0.0181)

0.0968
(0.0072)

0.1396
(0.0077)

0.1061
(0.0081)

0.1213
(0.0141)

0.0626
(0.0049)

0.1048
(0.0072)

0.0874
(0.0132)

0.1099
(0.0104)

0.0968
(0.0083)

0.1255
(0.0086)

0.0906
(0.0131)

ch2 0.1361
(0.0211)

0.1024
(0.0086)

0.1247
(0.0077)

0.1088
(0.0083)

0.1242
(0.0151)

0.0626
(0.0049)

0.1020
(0.0067)

0.0890
(0.0146)

0.1176
(0.0116)

0.1059
(0.0096)

0.1029
(0.0087)

0.0963
(0.0156)

ch3 0.1139
(0.0259)

0.0676
(0.0061)

0.0943
(0.0062)

0.1039
(0.0074)

0.1189
(0.0254)

0.0626
(0.0049)

0.1010
(0.0072)

0.0850
(0.0121)

0.0401
(0.0198)

0.0409
(0.0089)

0.0442
(0.0058)

0.0860
(0.0107)

pointed out the benefit of separating the transients and oscillations before spindle detection, see Coppieters et al. (2016)
and Parekh et al. (2015). There exist already several methods for separating transients and oscillations in EEG data, but
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Table 8
Fraction of correctly retrieved variables

(
TPlow/

⏐⏐Sα
0

⏐⏐) and incorrectly retrieved variables
(
FNlow/

⏐⏐Sα
0

⏐⏐) for the estimated low resonance signal component. Fraction of correctly retrieved variables
(
TPhigh/

⏐⏐⏐Sβ

0

⏐⏐⏐)
and incorrectly retrieved variables

(
FNhigh/

⏐⏐⏐Sβ

0

⏐⏐⏐) for channel 1 and 2 and false positives FPhigh for channel 3 for the estimated high resonance signal component. Values are based on 100 simulationswith different
noise realizations for Scenario 1 and SNR = 1.5, 3 and 6.

(TPlow)/plow FNlow/plow (TPhigh)/phigh FNhigh/phigh FPhigh

single-c multi-c BCD SOMP single-c multi-c BCD SOMP single-c multi-c BCD SOMP single-c multi-c BCD SOMP single-c multi-c BCD SOMP

SNR = 1.5

ch1 0.5713 0.9517 0.9342 0.7792 0.4287 0.0483 0.0658 0.2208 0.4796 0.6667 0.7925 0.5763 0.5204 0.3333 0.2075 0.4238 – – – –
ch2 0.5075 0.9517 0.9342 0.7792 0.4925 0.0483 0.0658 0.2208 0.4638 0.6667 0.7925 0.5763 0.5363 0.3333 0.2075 0.4238 – – – –
ch3 0.2592 0.9517 0.9342 0.7792 0.7408 0.0483 0.0658 0.2208 – – – – – – – – 7.2400 42.8300 141.4500 35.5200

SNR = 3

ch1 0.8000 0.9938 0.9650 0.9383 0.2000 0.0062 0.0350 0.0617 0.5946 0.8075 0.8492 0.7433 0.4054 0.1925 0.1508 0.2567 – – – –
ch2 0.7896 0.9938 0.9650 0.9383 0.2104 0.0062 0.0350 0.0617 0.5929 0.8075 0.8492 0.7433 0.4071 0.1925 0.1508 0.2567 – – – –
ch3 0.6358 0.9938 0.9650 0.9383 0.3642 0.0062 0.0350 0.0617 – – – – – – – – 14.6500 64.7200 101.4200 35.7100

SNR = 6

ch1 0.9238 0.9996 0.9888 0.9888 0.0762 0.0004 0.0113 0.0113 0.7438 0.9062 0.8896 0.8554 0.2563 0.0938 0.1104 0.1446 – – – –
ch2 0.9450 0.9996 0.9888 0.9888 0.0550 0.0004 0.0113 0.0113 0.7200 0.9062 0.8896 0.8554 0.2800 0.0938 0.1104 0.1446 – – – –
ch3 0.9446 0.9996 0.9888 0.9888 0.0554 0.0004 0.0113 0.0113 – – – – – – – – 34.0200 80.3600 62.5500 35.7900
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Table 9
Average values (standard deviations between parentheses) of RMSE, RMSElow and RMSEhigh based on 100 simulations with different noise realizations.
Experiment carried out on Scenario 2 with SNR = 1.5, 3 and 6.

RMSE RMSElow RMSEhigh

single-c multi-c BCD SOMP single-c multi-c BCD SOMP single-c multi-c BCD SOMP

SNR = 1.5

ch1 0.1848
(0.0183)

0.1560
(0.0167)

0.1555
(0.0108)

0.1520
(0.0159)

0.1478
(0.0127)

0.0834
(0.0082)

0.1180
(0.0110)

0.1093
(0.0210)

0.1497
(0.0156)

0.1521
(0.0179)

0.1301
(0.0137)

0.1275
(0.0202)

ch2 0.1795
(0.0211)

0.1360
(0.0126)

0.1494
(0.0097)

0.1486
(0.0141)

0.1455
(0.0129)

0.0834
(0.0082)

0.1122
(0.0109)

0.1102
(0.0201)

0.1318
(0.0160)

0.1237
(0.0135)

0.1204
(0.0105)

0.1212
(0.0176)

ch3 0.1673
(0.0188)

0.0898
(0.0087)

0.1353
(0.0106)

0.1439
(0.0165)

0.1674
(0.0187)

0.0834
(0.0082)

0.1111
(0.0111)

0.1077
(0.0215)

0.0158
(0.0194)

0.0414
(0.0115)

0.0878
(0.0096)

0.1114
(0.0184)

SNR = 3

ch1 0.1374
(0.0153)

0.1094
(0.0105)

0.1113
(0.0084)

0.1027
(0.0117)

0.1165
(0.0122)

0.0603
(0.0061)

0.0851
(0.0077)

0.0723
(0.0151)

0.1103
(0.0111)

0.1069
(0.0112)

0.0964
(0.0108)

0.0808
(0.0149)

ch2 0.1307
(0.0155)

0.1001
(0.0101)

0.1079
(0.0091)

0.1020
(0.0102)

0.1106
(0.0131)

0.0603
(0.0061)

0.0819
(0.0079)

0.0720
(0.0130)

0.0995
(0.0106)

0.0938
(0.0105)

0.0905
(0.0091)

0.0825
(0.0127)

ch3 0.1214
(0.0227)

0.0659
(0.0060)

0.0844
(0.0087)

0.0977
(0.0091)

0.1222
(0.0231)

0.0603
(0.0061)

0.0792
(0.0099)

0.0710
(0.0120)

0.0204
(0.0165)

0.0347
(0.0070)

0.0483
(0.0064)

0.0745
(0.0117)

SNR = 6

ch1 0.0945
(0.0103)

0.0790
(0.0077)

0.0951
(0.0077)

0.0692
(0.0068)

0.0822
(0.0094)

0.0442
(0.0046)

0.0703
(0.0067)

0.0502
(0.0083)

0.0794
(0.0086)

0.0793
(0.0081)

0.0802
(0.0083)

0.0536
(0.0088)

ch2 0.0912
(0.0090)

0.0731
(0.0075)

0.0934
(0.0073)

0.0702
(0.0076)

0.0791
(0.0097)

0.0442
(0.0046)

0.0670
(0.0071)

0.0500
(0.0090)

0.0755
(0.0073)

0.0713
(0.0083)

0.0775
(0.0073)

0.0555
(0.0081)

ch3 0.0804
(0.0152)

0.0483
(0.0047)

0.0645
(0.0069)

0.0688
(0.0077)

0.0780
(0.0159)

0.0442
(0.0046)

0.0637
(0.0076)

0.0493
(0.0096)

0.0261
(0.0183)

0.0276
(0.0061)

0.0278
(0.0053)

0.0532
(0.0092)

here we refer to Lajnef et al. (2015) where the joint detection of sleep spindles and K-complex events are obtained using a
Morphological Component Analysis (MCA) and two different RADWTwith respectively high and low Q-factors, as supposed
in this paper. On the other hand, although the American Academy of Sleep Medicine (AASM) manual recommends using
more the one channel for scoring sleep and associated events, actually only few available methods advocate the use of
multichannel EEG (Barros et al., 2000; Parekh et al., 2017), then our procedure can be considered a possible alternative in
this respect.

In particular in this section we show results obtained by applying our proposed multichannel procedure to one
publicly sleep EEG database, the DREAMS Sleep Spindles Database available at www.tcts.fpms.ac.be/~devuyst/Databases/
DatabaseSpindles/. This database has been produced by the University of MONS — TCTS Laboratory (Stéphanie Devuyst,
Thierry Dutoit) and the Université Libre de Bruxelles — CHU de Charleroi Sleep Laboratory (Myriam Kerkhofs).

These data were acquired in a sleep laboratory of a Belgium hospital using a digital 32-channel polygraph (BrainnetTM
System of MEDATEC, Brussels, Belgium). They consist of height polysomnographic recordings coming from patients with
different pathologies (dysomnia, restless legs syndrome, insomnia, apnoea/hypopnoea syndrome). Two EOG channels (P8-
A1, P18-A1), three EEG channels (CZ-A1 or C3-A1, FP1-A1 and O1-A1) and one submental EMG channel were recorded. The
standard European Data Format (EDF) was used for storing. The sampling frequency was 200 Hz, 100 Hz or 50 Hz. A segment
of 30 min of the central EEG channel was extracted from each whole-night recording for spindles scoring, giving origin to 8
excerpts of 30 min. No effort was made to select good spindle epochs or noise free epochs, in order to reflect reality as much
as possible. These excerpts were given independently to two experts for sleep spindles scoring.

In particular we focus on excerpt2 sampled at 200 Hz extracted from 00:00:00 to 00:30:00 with annotated EEG channels
CZ-A1, FP1-A1 and O1-A1, belonging to a 40-years man, i.e. 3 signals, one for channel, formed by 360000 time points.

We segmented each signal in 360 segments of length 1000 time points, corresponding to 5 s, and we concentrate only
on the 200 segments corresponding to sleep phase 2. In particular we focused on two consecutive segments: 25–30 s and
30–35 s, see Figs. 5–7 respectively. In both the segments the two experts annotated visually spindles events at same times.
Indeed, in the first segment, the first expert annotated a spindle event at 26.09 s of length 1.28 s and the second expert
annotated the event at 26.12 s with length 1 s; in the second segment, the first expert annotated a spindle event at 31.5 s of
length 0.74 s and the second expert annotated the event at 31.515 s with length 1 s.

Following Lajnef et al. (2015), we suppose the oscillatory part to be well described by an RADWTwith Q-factor=5 (which
roughly corresponds to the choice p = 8, q = 9, s = 3, J = 10) and the transient part to be well represented by an
RADWT with Q-factor=1 (which roughly corresponds to the choice p = 1, q = 2, s = 1, J = 4). Moreover we suppose that
hypothesis (H1) is true, since we are considering sleep data where the epochs containing electrode artifacts due to lead and
other bodymovements are not analyzed, hencewe expect the 3 channels share the same underground/transient activity; we
also suppose that hypothesis (H2) is true, since the spindles events, which represent the major and also the most interesting
contribution to the oscillating part, simultaneously activate in the 3 channels, as widely discussed in Parekh et al. (2017).

Figs. 6–8 show the retrieval of the transient and oscillatory components for the two considered segments, 25–30 s and
30–35 s respectively. From the figures we can see how the transient part is really faithful to the underlying trend of the three

http://www.tcts.fpms.ac.be/~devuyst/Databases/DatabaseSpindles/
http://www.tcts.fpms.ac.be/~devuyst/Databases/DatabaseSpindles/
http://www.tcts.fpms.ac.be/~devuyst/Databases/DatabaseSpindles/
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Table 10
Fraction of correctly retrieved variables

(
TPlow/

⏐⏐Sα
0

⏐⏐) and incorrectly retrieved variables
(
FNlow/

⏐⏐Sα
0

⏐⏐) for the estimated low resonance signal component. Fraction of correctly retrieved variables
(
TPhigh/

⏐⏐⏐Sβ

0

⏐⏐⏐)
and incorrectly retrieved variables

(
FNhigh/

⏐⏐⏐Sβ

0

⏐⏐⏐) for channel 1 and 2 and false positives FPhigh for channel 3 for the estimated high resonance signal component. Values are based on 100 simulationswith different
noise realizations for Scenario 2 and SNR = 1.5, 3 and 6.

(TPlow)/plow FNlow/plow (TPhigh)/phigh FNhigh/phigh FPhigh

single-c multi-c BCD SOMP single-c multi-c BCD SOMP single-c multi-c BCD SOMP single-c multi-c BCD SOMP single-c multi-c BCD SOMP

SNR = 1.5

ch1 0.6983 0.9992 0.9925 0.9550 0.3017 0.0008 0.0075 0.0450 0.7825 0.8575 0.8308 0.7692 0.2175 0.1425 0.1692 0.2308 – – – –
ch2 0.7242 0.9992 0.9925 0.9550 0.2758 0.0008 0.0075 0.0450 0.5642 0.8575 0.8308 0.7692 0.4358 0.1425 0.1692 0.2308 – – – –
ch3 0.4233 0.9992 0.9925 0.9550 0.5767 0.0008 0.0075 0.0450 – – – – – – – – 5.0300 35.9400 120.7500 18.8000

SNR = 3

ch1 0.9333 1.0000 1.0000 0.9983 0.0667 0.0000 0.0000 0.0017 0.8158 0.9050 0.8350 0.8758 0.1842 0.0950 0.1650 0.1242 – – – –
ch2 0.9608 1.0000 1.0000 0.9983 0.0392 0.0000 0.0000 0.0017 0.6567 0.9050 0.8350 0.8758 0.3433 0.0950 0.1650 0.1242 – – – –
ch3 0.9133 1.0000 1.0000 0.9983 0.0867 0.0000 0.0000 0.0017 – – – – – – – – 11.6100 38.2500 73.4700 18.8700

SNR = 6

ch1 0.9983 1.0000 1.0000 1.0000 0.0017 0.0000 0.0000 0.0000 0.8292 0.9267 0.8350 0.9325 0.1708 0.0733 0.1650 0.0675 – – – –
ch2 0.9983 1.0000 1.0000 1.0000 0.0017 0.0000 0.0000 0.0000 0.6908 0.9267 0.8350 0.9325 0.3092 0.0733 0.1650 0.0675 – – – –
ch3 0.9983 1.0000 1.0000 1.0000 0.0017 0.0000 0.0000 0.0000 – – – – – – – – 27.5800 42.7800 35.3700 18.9900
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Table 11
Average values (standard deviations between parentheses) of RMSE, RMSElow and RMSEhigh based on 100 simulations with different noise realizations.
Experiment carried out on Scenario 3 with SNR = 1.5, 3 and 6.

RMSE RMSElow RMSEhigh

single-c multi-c BCD SOMP single-c multi-c BCD SOMP single-c multi-c BCD SOMP

SNR = 1.5

ch1 0.0382
(0.0077)

0.0296
(0.0038)

0.0291
(0.0029)

0.0294
(0.0036)

0.0299
(0.0071)

0.0154
(0.0023)

0.0195
(0.0032)

0.0197
(0.0047)

0.0248
(0.0049)

0.0262
(0.0040)

0.0225
(0.0032)

0.0225
(0.0045)

ch2 0.0395
(0.0077)

0.0259
(0.0029)

0.0259
(0.0028)

0.0305
(0.0039)

0.0319
(0.0071)

0.0154
(0.0023)

0.0194
(0.0031)

0.0195
(0.0052)

0.0244
(0.0042)

0.0217
(0.0029)

0.0180
(0.0028)

0.0238
(0.0050)

ch3 0.0324
(0.0072)

0.0162
(0.0023)

0.0204
(0.0028)

0.0281
(0.0035)

0.0321
(0.0076)

0.0154
(0.0023)

0.0192
(0.0031)

0.0195
(0.0055)

0.0050
(0.0048)

0.0038
(0.0021)

0.0081
(0.0019)

0.0198
(0.0050)

SNR = 3

ch1 0.0276
(0.0051)

0.0206
(0.0029)

0.0260
(0.0023)

0.0195
(0.0031)

0.0213
(0.0045)

0.0111
(0.0013)

0.0164
(0.0026)

0.0129
(0.0039)

0.0183
(0.0033)

0.0183
(0.0031)

0.0203
(0.0024)

0.0147
(0.0035)

ch2 0.0283
(0.0046)

0.0193
(0.0020)

0.0235
(0.0019)

0.0207
(0.0026)

0.0222
(0.0042)

0.0111
(0.0013)

0.0167
(0.0023)

0.0132
(0.0038)

0.0183
(0.0030)

0.0167
(0.0021)

0.0166
(0.0019)

0.0163
(0.0028)

ch3 0.0236
(0.0045)

0.0120
(0.0014)

0.0166
(0.0026)

0.0195
(0.0027)

0.0235
(0.0047)

0.0111
(0.0013)

0.0164
(0.0027)

0.0126
(0.0038)

0.0030
(0.0028)

0.0041
(0.0015)

0.0036
(0.0013)

0.0147
(0.0037)

SNR = 6

ch1 0.0194
(0.0031)

0.0150
(0.0019)

0.0256
(0.0018)

0.0136
(0.0017)

0.0145
(0.0029)

0.0076
(0.0011)

0.0160
(0.0016)

0.0090
(0.0023)

0.0135
(0.0024)

0.0136
(0.0022)

0.0200
(0.0019)

0.0103
(0.0023)

ch2 0.0200
(0.0032)

0.0146
(0.0014)

0.0228
(0.0017)

0.0140
(0.0021)

0.0147
(0.0030)

0.0076
(0.0011)

0.0159
(0.0018)

0.0090
(0.0026)

0.0139
(0.0022)

0.0131
(0.0017)

0.0163
(0.0015)

0.0108
(0.0025)

ch3 0.0170
(0.0035)

0.0084
(0.0011)

0.0160
(0.0019)

0.0136
(0.0018)

0.0170
(0.0036)

0.0076
(0.0011)

0.0159
(0.0019)

0.0092
(0.0025)

0.0023
(0.0023)

0.0033
(0.0013)

0.0021
(0.0008)

0.0101
(0.0025)

Fig. 5. EEG segment 6 corresponding to time interval −30 s for the 3 EEG channels, FP1-A1 , CZ-A1 and O1-A1.

channels, it keeps some oscillations that do not persist in time; moreover we can appreciate the 3 oscillatory components,
in which similar but not equal oscillations resonate in the same time intervals. These phenomena correspond to the spindle
events that most likely occur contemporaneously on the three EEG channels with similar characteristics being not exactly
the same. Of course this procedure must be considered as a preprocessing step for an automatic spindles detection, which
in this case appears very clear around sec. 26 in the first excerpt (visually inspecting Fig. 6) and around sec. 32 in the second
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Table 12
Fraction of correctly retrieved variables

(
TPlow/

⏐⏐Sα
0

⏐⏐) and incorrectly retrieved variables
(
FNlow/

⏐⏐Sα
0

⏐⏐) for the estimated low resonance signal component. Fraction of correctly retrieved variables
(
TPhigh/

⏐⏐⏐Sβ

0

⏐⏐⏐)
and incorrectly retrieved variables

(
FNhigh/

⏐⏐⏐Sβ

0

⏐⏐⏐) for channel 1 and 2 and false positives FPhigh for channel 3 for the estimated high resonance signal component. Values are based on 100 simulationswith different
noise realizations for Scenario 3 and SNR = 1.5, 3 and 6.

(TPlow)/plow FNlow/plow (TPhigh)/phigh FNhigh/phigh FPhigh

single-c multi-c BCD SOMP single-c multi-c BCD SOMP single-c multi-c BCD SOMP single-c multi-c BCD SOMP single-c multi-c BCD SOMP

SNR = 1.5

ch1 0.9900 1.0000 1.0000 1.0000 0.0100 0.0000 0.0000 0.0000 0.5467 0.6033 0.8483 0.6467 0.4533 0.3967 0.1517 0.3533 – – – –
ch2 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.4983 0.6033 0.8483 0.6467 0.5017 0.3967 0.1517 0.3533 – – – –
ch3 0.9967 1.0000 1.0000 1.0000 0.0033 0.0000 0.0000 0.0000 – – – – – – – – 7.3300 8.3600 35.7400 8.4200

SNR = 3

ch1 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.6517 0.7950 0.8717 0.7933 0.3483 0.2050 0.1283 0.2067 – – – –
ch2 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.6633 0.7950 0.8717 0.7933 0.3367 0.2050 0.1283 0.2067 – – – –
ch3 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 – – – – – – – – 4.7100 13.9000 9.2600 9.0000

SNR = 6

ch1 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.7433 0.9200 0.8500 0.9133 0.2567 0.0800 0.1500 0.0867 – – – –
ch2 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.7833 0.9200 0.8500 0.9133 0.2167 0.0800 0.1500 0.0867 – – – –
ch3 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 – – – – – – – – 5.9600 13.6600 5.6400 9.2700
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Fig. 6. Retrieved low-transient and high-oscillatory components of segment 6 corresponding to time interval 25–30 s for the 3 EEG channels, FP1-A1 ,
CZ-A1 and O1-A1.

Fig. 7. EEG segment 7 corresponding to time interval 30–35 s for the 3 EEG channels, FP1-A1 , CZ-A1 and O1-A1.

excerpt (visually inspecting Fig. 8). The analyzed segment 25–30 s corresponds to the segment analyzed in paper Parekh
et al. (2017), see Fig. 5, and it can be seen that the position of spindles coincides.
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Fig. 8. Retrieved low-transient and high-oscillatory components of segment 7 corresponding to time interval 25–30 s for the 3 EEG channels, FP1-A1 ,
CZ-A1 and O1-A1.

6. Conclusions

In this paper we presented a method for nonparametric regression analysis of multichannel signals under a structural
hypothesis on the underlying signals covering some specific real life situations. The method leverages on a complete filter
bank (RADWT) that defines a frame in L2(R)which guarantees a perfect reconstruction property and a tunable Q-factor. In our
work we used two frames, one with low Q-factor and one with high Q-factor, able to represent sparsity of signals with low
and high resonance respectively. The structural hypothesis on the underlying signals explicitly states that in each channel
the signal is a sum of two contributions, one (the low resonance signal) is common to all channels, while the other (the high
resonance signal) is channel-specific but retains the same spectral properties in each channel, i.e. the positions of non-zero
RADWT coefficients. We showed the connections with the SSA problem, stressing the difference between our proposal and
the existing literature.

Firstly, we applied the method on a set of synthetic data satisfying the mathematical hypotheses, showing its ability in
retrieving the signal in each channel, as expected from its asymptotic properties. We also compared its performance with
other two techniques proposed in the literature, namely SOMP and BCD, considering a second synthetic dataset from a non
correct RADWT generative model to test the robustness. Moreover, we displayed its skill in reconstructing the individual
components and in controlling the sparsity of the model too. Finally, the proposed technique was tested on human sleep
EEG data, confirming some results already studied in the literature.

Future research is devoted to the improvement of the algorithm in pursuing component specific results.
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Appendix

Before proving Theorem 1, let us present some preliminary results.
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For each j = 1, . . . , d1, define the random variables

uj =
εtX (j)

√
nK

with X (j)
=

⎡⎢⎣(Ψ (j))t , . . . , (Ψ (j))t  
K times

⎤⎥⎦
t

, (A.10)

where X (j) is the jth column of matrix X andΨ (j) the jth column of matrixΨ .

Proposition 1. For the random variables uj it holds for any x > 0

P
(

max
1≤j≤d1

2|uj| <
√
nKλα0

)
≥ 1 − 2e−x2/2, (A.11)

where

λα0 =
2 σ
√
nK

√
x2 + 2 log(d1).

Proof. Since uj =
1

√
nK

∑K
k=1

∑n
i=1 ϵ

(k)
i Ψ

(j)
i ∼ N (0, σ 2) we can apply lemma 6.2 of Bühlmann and van de Geer (2011) and

result is proved.

For each j = 1, . . . , d2, define the random variables

vj =

εt X̃
(j)

2

√
nK

with X̃
(j)

=

⎡⎢⎢⎣
Φ(j) 0 · · · 0
0 Φ(j)

· · · 0
· · · · · ·

0 0 · · · Φ(j)

⎤⎥⎥⎦ , (A.12)

being a matrix of dimension nK × K withΦ(j) the jth column of matrixΦ.

Proposition 2. For the random variables vj it holds for any x > 0

P
(

max
1≤j≤d12

2|vj| <
√
nKλβ

0

)
≥ 1 − e−x, (A.13)

where

λ
β

0 =
2 σ
√
nK

(
1 +

√
(4x + 4 log(d2))/K + (4x + 4 log(d2))/K

)
.

Proof. By definition we have that

vj =
1

√
K


(∑n

i=1 ϵ
(1)
i Φ

(j)
i

√
n

, . . . ,

∑n
i=1 ϵ

(K )
i Φ

(j)
i

√
n

)
2

=
σ

√
K

⎛⎝ K∑
k=1

(∑n
i=1 ϵ

(k)
i Φ

(j)
i

σ
√
n

)2
⎞⎠1/2

.

Since
∑n

i=1 ϵ
(k)
i Φ

(j)
i

σ
√
n are K independent normal standard variables, we have that Kv2j /σ

2
∼ χ2(K ). Finally, applying lemma 8.1

of Bühlmann and van de Geer (2011) result is proved.

Proposition 3. For all θ ∈ Rd1+Kd2×1 and for any x > 0 it holds

P
(
2 εt X θ

nK
≤ λ0

√
G⋆∥θ∥2,1

)
≥ 1 − 2e−x2/2

− e−x,

with ε the concatenation of noise vectors given in Eq. (3.3) and λ0 = max{λα
0 , λ

β

0/
√
K }.

Proof. By definitions of θ we can write

2 εt X θ

nK
=

2 εt X
nK

⎡⎢⎢⎢⎢⎢⎣
α

β(1)

β(2)

...

β(K )

⎤⎥⎥⎥⎥⎥⎦ =
1

√
nK

⎛⎝ d1∑
j=1

2
εtX (j)

√
nK
αj +

d2∑
j=1

(
εt X̃

(j)

√
nK

)
β
(·)
j

⎞⎠ ,
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where β
(·)
j =

[
β

(1)
j , . . . , β

(K )
j

]t
, while X (j) and X̃

(j)
are given in (A.10) and (A.12). Using Propositions 1 and 2 and the fact that

uv ≤ |u||v|, ∀ u, v ∈ R and< u, v >≤ ∥u∥2∥v∥2, ∀ u, v ∈ RK , with probability at least 1 − 2e−x2/2
− e−x it follows

2 εt X θ

nK
≤

1
√
nK

⎛⎝ d1∑
j=1

2

⏐⏐εtX (j)
⏐⏐

√
nK

|αj| + 2
d2∑
j=1

εt X̃
(j)

2

√
nK

β(·)
j


2

⎞⎠
≤

1
√
nK

⎛⎝ d1∑
j=1

2|uj||αj| +

d2∑
j=1

2|vj|
β(·)

j


2

⎞⎠
≤

1
√
nK

⎛⎝ max
1≤j≤d1

2|uj| ∥α∥1 + max
1≤j≤d1

2|vj|
d2∑
j=1

β(·)
j


2

⎞⎠
≤

⎛⎝λα
0 ∥α∥1 +

λ
β

0
√
K

√
K

d2∑
j=1

β(·)
j


2

⎞⎠
≤

√
G⋆λ0

⎛⎝ 1
√
G⋆

∥α∥1 +

√
K
G⋆

d2∑
j=1

β(·)
j


2

⎞⎠ =
√
G⋆λ0 ∥θ∥2,1,

where λ0 = max{λα
0 , λ

β

0/
√
K }.

Proof of Theorem 1. By definition of θ̂ and θ0 it holds
1
nK

y − X θ̂

2
2
+ λ

√
G⋆
θ̂

2,1
≤

1
nK

∥y − Xθ0∥
2
2 + λ

√
G⋆ ∥θ0∥2,1 ,

then, by using y = Xθ0 + ε, it also holds

1
nK

X(θ̂ − θ0)
2
2
+ λ

√
G⋆
θ̂

2,1
≤

2εtX(θ̂ − θ0)
nK

+ λ
√
G⋆ ∥θ0∥2,1 .

Choose any x, then with probability at least 1 − 2e−x2/2
− e−x, by Proposition 3, it holds

1
nK

X(θ̂ − θ0)
2
2
+ λ

√
G⋆
θ̂

2,1
≤

√
G⋆λ0∥(θ̂ − θ0)∥2,1 + λ

√
G⋆ ∥θ0∥2,1 .

Choose λ > 2λ0, and observe that, whatever S0 ⊆ P , one has ∥θ∥2,1 = ∥θ(S0)∥2,1 +
θ(Sc0)2,1 for any θ and in particular

∥θ0∥2,1 = ∥θ0(S0)∥2,1, then it holds

2
nK

X(θ̂ − θ0)
2
2
+ 2λ

√
G⋆
θ̂(Sc0) − θ0(Sc0)


2,1

≤
√
G⋆λ

θ̂ − θ0


2,1

+

+ 2λ
√
G⋆
(

∥θ0(S0)∥2,1 −

θ̂(S0)
2,1

)
.

By using the triangle inequality for the l2/l1−norm,
⏐⏐ ∥v∥2,1 − ∥u∥2,1

⏐⏐ ≤ ∥u − v∥2,1 and rewriting
θ̂ − θ0


2,1

=θ̂(S0) − θ0(S0)

2,1

+

θ̂(Sc0) − θ0(Sc0)

2,1

, it holds

2
nK

X(θ̂ − θ0)
2
2
+ λ

√
G⋆
θ̂(Sc0) − θ0(Sc0)


2,1

≤ 3λ
√
G⋆
θ̂(S0) − θ0(S0)


2,1
. (A.14)

Now from Eq. (A.14) we obtain two consequences.
The first is that

θ̂(Sc0) − θ0(Sc0)

2,1

≤ 3
θ̂(S0) − θ0(S0)


2,1

, hence for assumption (A2), it holds

G⋆
θ̂(S0) − θ0(S0)

2
2,1

≤

X(θ̂ − θ0)
2
2
G⋆|S0|

nKφ(S0)2
. (A.15)

The second is obtained adding λ
√
G⋆
θ̂(S0) − θ0(S0)


2,1

on both sides of Eq. (A.14), hence

2
nK

X(θ̂ − θ0)
2
2
+ λ

√
G⋆
θ̂ − θ0


2,1

≤ 4λ
√
G⋆
θ̂(S0) − θ0(S0)


2,1
. (A.16)
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Now, substitute Eq. (A.15) into Eq. (A.16) and obtain

2
nK

X(θ̂ − θ0)
2
2
+ λ

√
G⋆
θ̂ − θ0


2,1

≤ 4λ

X(θ̂ − θ0)

2

√
G⋆ |S0|

√
nK φ(S0)

.

Finally, using the inequality 4uv ≤ u2
+ 4v2, we obtain

2
nK

X(θ̂ − θ0)
2
2
+ λ

√
G⋆
θ̂ − θ0


2,1

≤

X(θ̂ − θ0)
2
2

nK
+ 4

λ2 G⋆ |S0|
φ(S0)2

,

which gives Eq. (4.9).

References

Argyriou, A., Evgeniou, T., Pontil, M., 2008. Convex multi-task feature learning. Mach. Learn. 73, 243–272. http://dx.doi.org/10.1007/s10994-007-5040-8.
Barros, A.K., Rosipal, R., Girolami, M., Dorffner, G., Ohnishi, N., 2000. Extraction of sleep-spindles from the electroencephalogram (eeg). In: Malmgren, H.,

Borga, M., Niklasson, L. (Eds.), Perspectives in Neural Computing. In: Artificial Neural Networks Med. Biol., Springer, London, pp. 125–130.
Bayram, I., Selesnick, I.W., 2009. Frequency-domain design of overcomplete rational-dilation wavelet transform. IEEE Trans. Signal Process. 57, 2957–2972.

http://dx.doi.org/10.1109/TSP.2009.2020756.
Bobin, J., Moudden, Y., Fadili, J., Starck, J., 2009. Morphological diversity and sparsity for multichannel data restoration. J. Math. Imaging Vision 33, 149–168.

http://dx.doi.org/10.1007/s10851-008-0065-6.
Breheny, P., Huang, J., 2009. Penalized methods for bi-level variable selection. Stat. Interface 2, 369–380. http://dx.doi.org/10.4310/SII.2009.v2.n3.a10.
Breheny, P., Huang, J., 2015. Group descent algorithms for nonconvex penalized linear and logistic regressionmodels with grouped predictors. Stat. Comput.

25, 173–187. http://dx.doi.org/10.1007/s11222-013-9424-2.
Bühlmann, P., van de Geer, S., 2011. Statistics for High-Dimensional Data. In: Springer Series in Statistics, Springer, Berlin, Heidelberg.
Coppieters, D., Maquet, P., Phillips, C., 2016. Sleep spindles as an electrographic element: Description and automatic detection methods. Neural Plast. 1–19.

http://dx.doi.org/10.1155/2016/6783812, Article ID 6783812.
Deun, K.V., Wilderjans, T.F., van den Berg, R.A., Antoniadis, A., Mechelen, I.V., 2011. A flexible framework for sparse simultaneous component based data

integration. BMC Bioinformatics 12, 1–17. http://dx.doi.org/10.1186/1471-2105-12-448.
Donoho, D., Elad, M., 2003. Optimally sparse representation in general (nonorthogonal) dictionaries via l1 minimization. Proc. Natl. Acad. Sci. USA 100,

2197–2202.
He, D., Kuhn, D., Parida, L., 2016. Novel applications of multitask learning andmultiple output regression tomultiple genetic trait prediction. Bioinformatics

32, i37–i43. http://dx.doi.org/10.1093/bioinformatics/btw249.
Huang, J., Breheny, P., Ma, S., 2012. A selective review of group selection in high-dimensionalmodels. Statist. Sci. 27, 481–499. http://dx.doi.org/10.1214/12-

STS392.
Jenatton, R., Audibert, J., Bach, F., 2011. Structured variable selection with sparsity-inducing norms. J. Mach. Learn. Res. 12, 2777–2824.
Lajnef, T., Chaibi, S., Eichenlaub, J., Ruby, P.M., Aguera, P., Samet,M., Kachouri, A., Jerbi, K., 2015. Sleep spindle and k-complex detection using tunable q-factor

wavelet transform and morphological component analysis. Front. Hum. Neurosci. 9, 414. http://dx.doi.org/10.3389/fnhum.2015.00414.
Liu, H., Lafferty, J., Wasserman, L., 2008. Nonparametric regression and classification with joint sparsity constraints. In: Proceedings of the Twenty-Second

Annual Conference on Neural Information Processing Systems, NIPS. Curran Associates Inc., Red Hook, New York NY, pp. 969–976.
Lozano, A.C., Swirszcz, G., 2012. Multi-level lasso for sparse multi-task regression. In: Proceedings of the 29th International Coference on International

Conference on Machine Learning. Omnipress, USA, pp. 595–602, http://dl.acm.org/citation.cfm?id=30425733042652.
Parekh, A., Selesnick, I., Osorio, R.S., Varga, A., Rapoport, D.M., Ayappa, I., 2017. Multichannel sleep spindle detection using sparse low-rank optimization. J.

Neurosci. Methods 288, 1–16. http://dx.doi.org/10.1016/j.jneumeth.2017.06.004.
Parekh, A., Selesnick, I., Rapoport, D.M., Ayappa, I., 2015. Detection of k-complexes and sleep spindles (detoks) using sparse optimization. J. Neurosci.

Methods 251, 37–46. http://dx.doi.org/10.1016/j.jneumeth.2015.04.006.
Rakotomamonjy, A., 2011. Surveying and comparing simultaneous sparse approximation (or group-lasso) algorithms. Signal Process. 91, 1505–1526.

http://dx.doi.org/10.1016/j.sigpro.2011.01.012.
Ruffalo, M., Stojanov, P., Pillutla, V.K., Varma, R., Bar-Joseph, Z., 2017. Reconstructing cancer drug response networks using multitask learning. BMC Syst.

Biol. 11, 96. http://dx.doi.org/10.1186/s12918-017-0471-8.
Selesnick, I.W., 2011. Resonance-based signal decomposition: A new sparsity-enabled signal analysis method. Signal Process. 91, 2793–2809. http://dx.doi.

org/10.1016/j.sigpro.2010.10.018.
Simon, N., Tibshirani, R., 2012. Standardization and the group lasso penalty. Statist. Sinica 22, 983–1001. http://dx.doi.org/10.5705/ss.2011.075.
Tropp, J.A., 2006. Algorithms for simultaneous sparse approximation. part ii: Convex relaxation. Signal Process. 86, 589–602. http://dx.doi.org/10.1016/j.

sigpro.2005.05.031.
Tropp, J.A., Gilbert, A., Strauss, M.J., 2006. Algorithms for simultaneous sparse approximation. part i: Greedy pursuit. Signal Process. 86, 572–588. http:

//dx.doi.org/10.1016/j.sigpro.2005.05.030.
Yang, Y., Zou, H., 2015. A fast unified algorithm for solving group-lasso penalize learning problems. Stat. Comput. 25, 1129–1141. http://dx.doi.org/10.1007/

s11222-014-9498-5.
Yuan, M., Lin, Y., 2006. Model selection and estimation in regression with grouped variables. J. R. Stat. Soc. Ser. B Stat. Methodol. 68, 49–67. http:

//dx.doi.org/10.1111/j.1467-9868.2005.00532.x.
Yuan, H., Paskov, I., Paskov, H., González, A., Leslie, C., 2016. Multitask learning improves prediction of cancer drug sensitivity. Sci. Rep. 6, 1. http:

//dx.doi.org/10.1038/srep31619.

http://dx.doi.org/10.1007/s10994-007-5040-8
http://refhub.elsevier.com/S0167-9473(18)30279-2/sb2
http://refhub.elsevier.com/S0167-9473(18)30279-2/sb2
http://refhub.elsevier.com/S0167-9473(18)30279-2/sb2
http://dx.doi.org/10.1109/TSP.2009.2020756
http://dx.doi.org/10.1007/s10851-008-0065-6
http://dx.doi.org/10.4310/SII.2009.v2.n3.a10
http://dx.doi.org/10.1007/s11222-013-9424-2
http://refhub.elsevier.com/S0167-9473(18)30279-2/sb7
http://dx.doi.org/10.1155/2016/6783812
http://dx.doi.org/10.1186/1471-2105-12-448
http://refhub.elsevier.com/S0167-9473(18)30279-2/sb10
http://refhub.elsevier.com/S0167-9473(18)30279-2/sb10
http://refhub.elsevier.com/S0167-9473(18)30279-2/sb10
http://dx.doi.org/10.1093/bioinformatics/btw249
http://dx.doi.org/10.1214/12-STS392
http://dx.doi.org/10.1214/12-STS392
http://dx.doi.org/10.1214/12-STS392
http://refhub.elsevier.com/S0167-9473(18)30279-2/sb13
http://dx.doi.org/10.3389/fnhum.2015.00414
http://refhub.elsevier.com/S0167-9473(18)30279-2/sb15
http://refhub.elsevier.com/S0167-9473(18)30279-2/sb15
http://refhub.elsevier.com/S0167-9473(18)30279-2/sb15
http://dl.acm.org/citation.cfm?id=30425733042652
http://dx.doi.org/10.1016/j.jneumeth.2017.06.004
http://dx.doi.org/10.1016/j.jneumeth.2015.04.006
http://dx.doi.org/10.1016/j.sigpro.2011.01.012
http://dx.doi.org/10.1186/s12918-017-0471-8
http://dx.doi.org/10.1016/j.sigpro.2010.10.018
http://dx.doi.org/10.1016/j.sigpro.2010.10.018
http://dx.doi.org/10.1016/j.sigpro.2010.10.018
http://dx.doi.org/10.5705/ss.2011.075
http://dx.doi.org/10.1016/j.sigpro.2005.05.031
http://dx.doi.org/10.1016/j.sigpro.2005.05.031
http://dx.doi.org/10.1016/j.sigpro.2005.05.031
http://dx.doi.org/10.1016/j.sigpro.2005.05.030
http://dx.doi.org/10.1016/j.sigpro.2005.05.030
http://dx.doi.org/10.1016/j.sigpro.2005.05.030
http://dx.doi.org/10.1007/s11222-014-9498-5
http://dx.doi.org/10.1007/s11222-014-9498-5
http://dx.doi.org/10.1007/s11222-014-9498-5
http://dx.doi.org/10.1111/j.1467-9868.2005.00532.x
http://dx.doi.org/10.1111/j.1467-9868.2005.00532.x
http://dx.doi.org/10.1111/j.1467-9868.2005.00532.x
http://dx.doi.org/10.1038/srep31619
http://dx.doi.org/10.1038/srep31619
http://dx.doi.org/10.1038/srep31619

	Simultaneous nonparametric regression in RADWT dictionaries
	Introduction
	The data model
	Inference
	Algorithm
	Connections with literature

	Theoretical properties
	Simulations and real examples
	Synthetic data
	Comparisons and further studies
	Real data

	Conclusions
	Acknowledgments
	Appendix 
	References


