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Inference of time irreversibility from incomplete information: Linear systems and its pitfalls

D. Lucente ,1,2 A. Baldassarri ,1,2 A. Puglisi ,1,2,4 A. Vulpiani,1 and M. Viale 1,2,3

1Dipartimento di Fisica, Università La Sapienza, 00185 Rome, Italy
2Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, 00185 Rome, Italy

3INFN, Unità di Roma La Sapienza, 00185 Rome, Italy
4INFN, Unità di Roma Tor Vergata, 00133 Rome, Italy

(Received 20 May 2022; accepted 5 October 2022; published 14 November 2022)

Data from experiments and theoretical arguments are the two pillars sustaining the job of modeling physical
systems through inference. In order to solve the inference problem, the data should satisfy certain conditions
that depend also upon the particular questions addressed in a research. Here we focus on the characterization of
systems in terms of a distance from equilibrium, typically the entropy production (time-reversal asymmetry) or
the violation of the Kubo fluctuation-dissipation relation. We show how general, counterintuitive and negative
for inference, is the problem of the impossibility to estimate the distance from equilibrium using a series of
scalar data which have a Gaussian statistics. This impossibility occurs also when the data are correlated in
time, and that is the most interesting case because it usually stems from a multi-dimensional linear Markovian
system where there are many timescales associated to different variables and, possibly, thermal baths. Observing
a single variable (or a linear combination of variables) results in a one-dimensional process which is always
indistinguishable from an equilibrium one (unless a perturbation-response experiment is available). In a setting
where only data analysis (and not new experiments) is allowed, we propose as a way out the combined use
of different series of data acquired with different parameters. This strategy works when there is a sufficient
knowledge of the connection between experimental parameters and model parameters. We also briefly discuss
how such results emerge, similarly, in the context of Markov chains within certain coarse-graining schemes. Our
conclusion is that the distance from equilibrium is related to quite a fine knowledge of the full phase space, and
therefore typically hard to approximate in real experiments.
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I. INTRODUCTION

Inference from the knowledge of only partially accessible
information is a central challenge in many physical fields.
We can say that such a topic is an unavoidable link between
the experimental science and the theoretical approach in terms
of mathematical description as well as for the building of
effective models from data [1]. A paradigmatic example of
the importance to have an efficient inference protocol is the
problem of the phase space reconstruction in chaotic sys-
tems. Typically, experimental measurements provide just a
time series of one observable y sampled at discrete times
t1, t2, . . . , tm, so we have a time series y1, y2, . . . , ym, depend-
ing on the (unknown) D dimensional state vector x = {xi}i=1,D

of the underlying system. The problem of phase space recon-
struction consists in computing, from this series, quantities
such as Lyapunov exponents or to assess the deterministic or
stochastic nature of the system, as well as to build up from the
time series a mathematical model enabling predictions. Tak-
ens was able to show, using the embedding method, how, for a
deterministic system under quite general assumptions, a time
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series of the vector {yk}k=1,m allows to faithfully reconstruct
the properties of the underlying dynamics [2–4]. Such a result
has a tremendous conceptual, as well as practical, relevance:
it is a bridge between experiment and theory. On the other
hand, even important results have their practical difficulties:
it is now well known that there are rather severe limitations
for the application of the Takens method in high dimensional
systems [5,6].

Inference is rather a wide topic, and its relevance in statis-
tical mechanics is well recognised [1]. Let us briefly introduce
the problem in general terms: we have a system whose state
is determined by a vector x ∈ RD, or an integer i ∈ IN ≡
{1, . . . , N}. In the first case the evolution rule is given by a
differential equation (or a map), possibly including noise; for
the second case typically one has a Markov chain or master
equation. In many interesting systems we have N, D � 1;
in addition some variables can be much faster than others;
usually in the experiments it’s impossible to observe the whole
state of the systems but only a part. So instead of x ∈ RD or
i ∈ IN sometimes we can prefer, or are forced, to deal only
with a vector y = y(x) : x ∈ RD → y ∈ Rd or an integer a =
ai : i ∈ IN → a ∈ IM with d < D and M < N (and sometimes
d � D and M � N).

The ys or as can be the result of some coarse graining,
projection, or decimation procedure, due to the particular
measurement protocol. At a theoretical level the natural
question is how to build an effective description for y or a,
an important topic treated in many works [7–11]. However,
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the present paper is not devoted to such an aspect. On the
contrary, we focus on a question which is relevant from an
experimental point of view. Namely, we wonder whether or
how from a time series, y or a, it is possible to understand the
original problem, or at least some of its salient features.

Before going on, let us briefly summarize some results
which, at first glance can appear negative, but have their
relevance showing how, in the building of models, it is vital to
adopt a pragmatic approach. We already mentioned the crucial
contribution of Takens in the analysis of the experimental data
of chaotic systems and the severe limits in many practical
cases. However, it has been shown that such a result does not
hold for noisy systems [12]; the basic reason is that noise
can be seen as a function of time with an infinite number
of Fourier terms, and therefore it is not possible to apply to
it the embedding technique using a finite dimensional vec-
tor. For instance, when x = (x1, x2, x3) ∈ R3 is a Gaussian
process, the knowledge of an even very long time series of
y = (x1, x2) ∈ R2, in general is not sufficient to understand
the features of x.

Another practical limit is in the resolution of the data. An
arbitrarily fine resolution of the state of the system could
allow one to determine whether a given experimental signal
(i.e., a time series of an observable) originates from a chaotic
deterministic or stochastic dynamics, with the help of methods
from information theory combined with the Takens approach
[13]. However such a distinction is strongly limited by the
practical impossibility to reach an arbitrarily fine resolution.
Given that, it becomes very useful to perform an entropic
analysis of a given data record in terms of ε entropies (and
associated finite size Lyapunov exponents) which characterize
the entropy of data at different resolution scales ε [14]. Such
a result has its practical relevance: it allows us a resolution-
dependent classification of the stochastic or chaotic character
of a signal. In practice, without any reference to a particular
model, one can define the notion of deterministic or chaotic
behavior of a system on a certain range of scales [13]. Thus,
it should be evident that although Takens’ theorem is a very
powerful tool it is not always applicable, and in particular it is
not valid for all those systems that are inherently stochastic.

In the present paper we face a different inference question,
relevant in the context of nonequilibrium statistical mechanics
[15], for which we give a brief introductory example here. Let
us assume that we know only the time series of a unique vari-
able y of a system and we know that the underlying dynamics
is a Gaussian process, e.g., y is a component or a linear combi-
nation of the components of a vector x ∈ RD whose evolution
law is ruled by the linear Langevin equation ẋ + Ax = Bξ . Of
course, a well-designed perturbation-response experiment can
tell us if the underlying system is at thermodynamic equilib-
rium or not [16]. However, such a test requires observing the
system at least in two states: the unperturbed and the perturbed
ones. A quite natural question in an experiment emerges: is the
knowledge of one component, e.g., y, enough to understand
that the system has a nonequilibrium character [17,18]? Note
that there is, for Markov processes, a neat connection between
the violation of Kubo relation (or “equilibrium” fluctuation-
dissipation relation, EFDR) and the presence of an asymmetry
under time reversal, typically measured as nonzero entropy
production [19]. However, previous results have shown that

for linear systems the above question may have negative an-
swer [20–22]. For instance, in the case with x = (x1, x2) ∈ R2

ruled by a set of linear Langevin equations with two different
temperatures in such a way that the entropy production is pos-
itive, the dynamics of y has always zero entropy production
even if it does not satisfy the EFDR [23]. Such a result is rather
disappointing: the knowledge of an even very long time series
y coming from the system does not allow us to understand a
qualitative and fundamental aspect of the system.

In this paper we put this problem in a wider perspective,
considering the class of linear systems, Markovian and non-
Markovian, in full generality, and we try to suggest strategies
to solve this problem in practice, from the point of view of
experimental measures. The question we address has received
a lot of attention in the recent years, for several categories of
systems, particularly systems with a discrete space of states.
For this reason we briefly review some of the strategies dis-
cussed in the literature.

We also note that recently concepts such as entropy pro-
duction and time-reversal symmetry are receiving interest in
the context of inferring directional causal relationships among
variables of a given system. Generally, the most used theo-
retical tools in this context are transfer entropy and Granger
causality [24,25]. These tools are a measure of the information
flow between different components of a system, and it has re-
cently been shown that they can be used as precursors to detect
transitions between equilibrium and nonequilibrium [26,27].
It is also interesting to note that the behavior of the Granger
causality under time-reversal has been studied in [28], where
the authors show that in general a measure based on Granger
causality and its time-reversed version is more robust against
spurious detection of causal interaction. Furthermore, as ex-
plained in [29], transfer entropy and Granger causality are
equivalent for Gaussian variables. Hence, studying the class
of linear systems and in particular the characterization of their
thermodynamics properties may be crucial also for under-
standing applicability and limits of these two theoretical tools.

The rest of the paper is organised in the following way: in
Sec. II we consider a few explicit examples which highlight
the impossibility of inferring the thermodynamic state of a
system from partial observations. We apply different analysis
upon the data, including conditional averages and excursion
analysis: all procedures report perfect symmetry under time
reversal, when they are applied to a single component, regard-
less of whether the underlying two-dimensional system is at
equilibrium or not. In Sec. III we demonstrate that this is a
general limit intrinsic of linear systems, i.e., it is impossible to
distinguish equilibrium from nonequilibrium looking at a time
series of a scalar observable which is a linear function of state
space variables without performing response experiments. In
Sec. IV we finally show a procedure which is successful
in the equilibrium-nonequilibrium distinction, but requires in
fact the availability of data taken with different parameters, a
condition which could be met in experiments even without a
direct control of the parameters. Section V is a brief discussion
of the extension of this problem to Markov chains with simple
topologies (rings), motivated by the observation that very sim-
ilar results apply. Conclusions and perspective are discussed
in Sec. VI. Appendix A contains a brief discussion of the
generality of the reduction of entropy production under coarse
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graining. Appendix B gives a detailed treatment of Gaussian
stochastic systems, in order to make self-consistent the paper.
Finally, Appendix C shows the algorithm we use to perform
numerical simulations of Ornstein-Uhlenbeck processes.

A. Brief review of recent approaches

From a statistical mechanics point of view, the lack of
thermodynamic equilibrium is measured by the time-reversal
asymmetry, typically measured by entropy production (EP),
whose most straightforward definition has been given for
Markov processes in [30]. From an informational point of
view, it coincides with the Kullback-Leibler (KL) divergence
between the probability of time-forward and time-backward
sequences of positions in the full phase space [31,32]. In
principle such a definition can be applied also to time series
of observables which bear partial information about the sys-
tem, but it can result only in a lower bound to the EP; see
Appendix A.

The need for a better understanding of stochastic thermo-
dynamics from an inferential point of view has emerged in the
last years [18]. Part of such an interest has been triggered by
the discovery of thermodynamic uncertainty relations (TURs)
[33–36], which give, under quite general conditions, a bound
to the total EP of a system based upon the knowledge of
fluctuations of any partial current. This observation has led to
recipes for the estimate of EP from incomplete information,
such as in [37,38]. It has been also shown that TUR-based
approaches are usually more powerful, i.e., they give closer
estimates of EP, than measuring the Kullback-Leibler infor-
mation of the available partial data [39]. Given the fact that
a TUR-derived bound can be improved by looking for op-
timal currents, machine learning approaches have also been
proposed [40,41]. The use of TURs for the estimate of EP
is certainly promising; however, it requires the measurements
of currents, i.e., of observables which are already indicating
some breaking of time-reversal symmetry, and it is usually
hard to evaluate the tightness of the obtained bound, i.e., one
may obtain arbitrarily low estimates [38,42].

We remark that currents are frequently measured by col-
lecting a number larger than one of observables, in order to
see immediately the presence of cyclical trajectories. Recently
several studies have put in evidence the possibility to observe
cyclical trajectories in small biological systems, measuring
two or more coarse-grained observables [43], e.g., the main
Fourier modes (or principal components) of some complex or-
ganism, for instance C. elegans worms [44], Chlamydomonas
[45], filaments in actin-myosin networks [46] and with mam-
malian sperms [47,48]. In these studies the nonequilibrium
character of the system is verified but a quantitative estimate
of EP is rarely considered [39].

Strictly related to dynamical asymmetries, is the concept
of avalanche shape, which has a mathematical counterpart in
the concepts of bridges and excursions. In terms of stochas-
tic processes, an avalanche or excursion corresponds to a
portion of the stochastic trajectory between two successive
passages through a chosen threshold. Similarly, a “bridge” is
the portion of a stochastic trajectory joining a chosen start-
ing point to a given final one without further constraints.
Both these quantities have been studied for a broad class

of processes, with several applications in physics [49–52].
Stochastic thermodynamics represents an ideal framework
where these studies could reveal their utility, for instance,
in comparing an excursion from an initial to a final config-
uration and its time-reversed counterpart. Not surprisingly,
tools and results from stochastic control theory and optimal
transport have very recently been transferred and adopted in
stochastic thermodynamics [53]. Extending these studies to
non-Markovian dynamics or for incomplete information looks
intriguing. In the present paper we show how bridges and
excursions appear symmetric when measured on a single time
series from a Gaussian stochastic process, even if it is non-
Markovian and strongly asymmetric in full phase-space, as it
happens when out of equilibrium. More recent papers have
addressed the problem of estimating EP, or at least discrimi-
nating if it is zero or positive (that is, distinguishing between
equilibrium and nonequilibrium), even when the available
data do not bear any signature of currents [54]. The distribu-
tion, or some of its moments, of the residence times in certain
states have been shown to be useful constraints also when
observable currents are zero, leading to inferior bounds to the
entropy production, but certain assumptions are required, for
instance, the observed states to obey semi-Markov statistics
[55], or in alternative a complex optimisation problem must be
solved in order to account for all possible hidden Markov state
networks compatible with the constraints [56,57]. The dis-
tribution of the time elapsed between certain transitions also
provides a promising approach [58–60]. All these approaches
can be applied under the validity of specific conditions and/or
result in lower bounds. A lower bound is better than nothing
(provided that it is not zero), but can be frequently very far
from even the correct order of magnitude of EP, particularly
when the investigated system is macroscopic: for instance,
the authors of [57] when analyzing an experimental time
series of “residence” times for a cow to stand or lie, can
conclude only that “the cows consume at least 2.4 × 10−21

Cal/h, in deciding whether to lie or stand.” The study of
times between transitions is also important in the presence
of strong nonlinearities, e.g., potentials with several local
equilibria (multi-wells) [39,61,62]. Another quantity which
is not directly related to time-reversal asymmetry, emerged
in the study of nonequilibrium fluctuation-dissipation rela-
tions, is dynamical activity (or sometimes “frenesy”), which is
also known to provide bounds to entropy production [63,64].
A different interesting strategy is to compare data coming
from regimes realised with different choices of a certain
parameter [65]. This approach is, for some aspects, similar
to a response experiment, but one could imagine that such
parameter-dependent sets of data are already available and can
be exploited in order to realize a kind of “a posteriori” (in
principle nonlinear) response experiment. For instance, this
situation could be realized even if the observer cannot directly
influence the parameters of the system (e.g., in weather or
climate observations). We will apply similar ideas to our prob-
lem in Sec. IV.

II. PITFALLS OF LINEAR SYSTEMS

Let’s first introduce a very simple example of stochastic
linear system, which in its most general form is called Brown-
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FIG. 1. Average trajectory for Brownian gyrator (drift parameters α = γ = 1, λ = μ = −0.5) for trajectories of duration τ = 5, from
xi = (0, 0) to x f = (1, 2) and viceversa. The two panels represent different choices of temperatures T1, T2: in (a) the system satisfies detailed
balance (T1 = T2 = 2); in (b) detailed balance is broken (T1 = 10, T2 = 1). These are parametric plots, where the axis are the two average
components of the bridge Li(t ) = 〈xi(t )〉xi→x f

τ , while time t is the parameter.

ian gyrator, a model recently adopted to describe experimental
systems and nanomachines [66–69]. It consists of a linear
two-variable Markovian system whose evolution is ruled by
the following stochastic differential equation [70]:

ẋ1 = −αx1 + λx2 + ξ1

ẋ2 = −γ x2 + μx1 + ξ2, (1)

where the ξ are two independent noise sources, whose ampli-
tudes may differ 〈ξi(t )ξ j (t ′)〉 = 2Tiδi jδ(t − t ′). It is important
to remark that many of our examples are good descriptions
of overdamped Brownian particles in contact with baths and
therefore it is reasonable (assuming damping coefficients to be
1) to identify the noise amplitudes T1 and T2 as temperatures.
(Here we are interested in the case where α > 0, γ > 0, αγ >

λμ, where the system asymtptotically converge to a stationary
distribution.)

In order to illustrate the behavior of the model, let’s
consider the average trajectory between two points in the
configuration space. In Fig. 1 it is shown the average tra-
jectory between the point x1 = 0, x2 = 0 and x1 = 1, x2 = 2,
for trajectory of fixed duration τ . In each panel we show
the average trajectory for the direct (0, 0) → (1, 2) and the
reverse (1, 2) → (0, 0) path. Not surprisingly, for equal tem-
peratures T1 = T2 (left panel) the direct and the reverse path
coincide. This is a consequence of detailed balance, which
holds for an equilibrium system. On the other hand, when
T1 
= T2 (right panel) detailed balance is broken, and this has
an immediate consequence on the average direct and reverse
trajectories, which now take two completely different paths.
The figure gives a very intuitive visualization of the presence
of the internal probability current, characterizing the nonequi-
librium stationary state for the general T1 
= T2 case. The
problem we are interested in is wether is possible to appreciate
the nonequilibrium nature of the process, having access to the
information given by one component only (say, x1). Given the

simplicity of the model, is it possible to carry out several exact
computations. In fact the quantities shown in Fig. 1 are related
to the the so-called “bridge” of the stochastic process.

The bridge is the process obtained constraining the trajec-
tories of the original stochastic process to some initial and
final (after a chosen time τ ) configurations. In other words,
the bridge is the ensemble of trajectories which connect xi to
x f in a time τ . The probability to observe a value x of the
bridge at an intermediate time 0 < t < τ is given by

Pb(x, t | xi, x f , τ ) = P (x, t | xi, 0)P (x f , τ − t | x, 0)

P (x f , τ | xi, 0)
, (2)

where P (x, t1|y, t2) is the propagator of the Markov pro-
cess [which has been also considered homogeneous in time
P (x, t1|y, t2) = P (x, t1 − t2|y, 0)].

We consider this quantity as a tentative proxy of the equi-
librium status of the process, since it can be shown (for
variables which are even under time reversal) that detailed
balance implies the following symmetry of the bridge distri-
bution:

Pb(x, t | xi, x f , τ ) = Pb(x, τ − t | x f , xi, τ ). (3)

In the case of a Brownian gyrator, because of the linearity
of the process, the bridge is a Gaussian (nonhomogeneous)
process, and the distribution (2) is a multivariate Gaussian
distribution, fully characterized by its mean vector L(t ) and
its covariance matrix Q(t ). Their expressions are [71]

L(t ) = R(t )xi + P(t )R(τ − t )T P−1(t )[x f − R(τ )xi],

Q(t ) = P(t ) − P(t )R(τ − t )T P−1(τ )R(τ − t )P(t ),

where R(t ) = exp(−At ) (being A = ( α −λ

−μ γ ) the drift ma-
trix of the process) is the solution of the deterministic
equation dR(t )

dt = −AR(t ) with initial condition R(0) = I
(i.e., the response; see Appendix B), and P(t ) is the covariance
of the propagator, which satisfy the Lyapunov equation dP

dt =
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FIG. 2. Single component of the average bridge trajectories of Fig. 1, as a function of t . The dotted lines correspond to ±√
Q11 and give a

better ideas of the fluctuations of the bridge trajectories. Same parameters of Fig. 1. Again, (a) is a case with detailed balance (T1 = T2); (b) is
the out-of equilibrium case (T1 
= T2).

−AP − PAT + 	 with initial condition P(0) = 0 and where
	i j = 2Tiδi j . [The covariance of the propagator can be also
expressed in terms of correlation C and response R of the
process as P(t ) = C(0) − R(t )C(0)R(t )T .]

As mentioned before, Fig. 1 shows the mean L(t ) [the plane
coordinates corresponds to the coordinates of the vector L1(t )
and L2(t )] for a bridge of a Brownian gyrator from xi = (0, 0)
to x f = (1, 2) compared with the mean of the bridge with
endpoints reverted xi = (1, 2) and x f = (0, 0). As can be seen,
because of Eq. (3), when detailed balance is satisfied (T1 = T2)
the two paths (direct and reverse) coincide, while they differ
for T1 
= T2.

In the present work, we are not interested in the infor-
mation contained in the full bridge distribution (2). Rather
we consider the case where only a single component of the
Brownian gyrator is accessible by measures. A single compo-
nent is still a Gaussian, stationary process, but it is no more
Markovian (since the other variable is now hidden).

Nevertheless, one can consider the moments of the compo-
nent of the bridge:

〈x1(t )n〉xi→x f
τ =

∫
dx xn

1 Pb(x, t | xi, x f , τ ),

which, for n = 1, recovers the first component of the mean
vector L(t ), while for n = 2 is P11(t ) + L1(t )2. Note that the
moments depend on τ and on the extreme points x0 and x f ,
which include both components of the original Markovian
process.

Again, if detailed balance is satisfied, the symmetry (3)
implies

〈x1(t )n〉xi→x f
τ = 〈x1(τ − t )n〉x f →xi

τ , (4)

which means that the moments have symmetric shape with
respect to t = T/2. In Fig. 2 we show L1(t ), as well as L1(t ) ±√

Q11(t ) for the same bridges considered in Fig. 1. Again, in
the case of detailed balance (T1 = T2), moments satisfy the

time-reversal symmetry (4). However, in the nonequilibrium
case (T1 
= T2), the symmetry is broken.

In particular, one can consider the special bridges with xi =
x f = (0, 0): in this case, since one has obviously L(t ) = 0,
one can measure the second moment, which corresponds to
Q11(t ). In Fig. 3 we show the behavior of Q11(t ) for such a
bridge, with and without detailed balance.

Interestingly, figures such as Fig. 3 are very similar to the
average avalanche shape, a measure introduced in the context
of the study of crackling signals [72,73], in the context of
Barkhausen noise in ferromagnetic materials [74,75]. In this
case, the signal analyzed is a (positive) bursty measure. Given
a small (ideally zero) threshold, the signal is regarded as a se-
quence of avalanches (the signal between to successive zeros).
In practice the avalanche represents a single burst of activity
of the signal, between to quiescent phases (think, for instance,
of the intensity of a single earthquake). Then, avalanches of
the same durations are averaged in order to get the average
avalanche shape.

In terms of the theory of stochastic processes, the
avalanche of the process is called an excursion [51,76]. In
a recent paper [52], for the case of a class of multiplica-
tive stochastic processes (ABBM/CIR/Bessel processes), it
has been shown that the average bridge shape is simply
proportional to the average avalanche shape, suggesting that
the two quantities (bridge and excursion) carry similar infor-
mation about the time evolution of the process. Symmetric
as well asymmetric average avalanche shapes have been ob-
served in several physical [77–80], geophysical [81], and
biological [82] phenomena, but at the moment there is no
general understanding of the meaning of such property. The
only work [83] devoted to the asymmetry of some Barkhausen
average avalanche shape attributes the phenomenon to subtle
inertial effects of the effective motion of magnetic domains
inside the ferromagnetic material.

Coming back to the bridge shapes of the Brownian gyrator,
Fig. 3 could give the illusion to represent a measure on a single
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FIG. 3. In the case of a bridge from xi = (0, 0) to x f = (0, 0) after a time τ = 5, the values of the covariance matrix element Q11 are shown
as a function of time. For the equilibrium case [T1 = T2, (a)] the curve is symmetric around t = τ/2, and the direct curve corresponds exactly
to the reverse bridge. On the contrary, out of equilibrium [T1 
= T2, (b)], direct and reverse path differ, and the curves are no more symmetric.
The values of the paramters are the same as those in Fig. 1.

component, which could discriminate the equilibrium nature
of the whole process: the equilibrium case corresponding to a
symmetric shape, and the off-equilibrium case an asymmetric
one.

Unfortunately, the quantity considered includes more in-
formation with respect to the single component, since it
represent the average shape of a bridge comprising two points
where both the coordinates of the full process are zero. In
other terms, in order to perform such a measure, one needs
information on both coordinates.

In order to consider the more general case, where one has
access strictly to a single component, one must consider the
stationary bridge of such a component, independently from
the value of the second component. This turns to a different
definition of the bridge, with respect to Eq. (2). In fact, once
one has fixed the values of the first components of x0 and
x f , one has to perform a stationary average over the second
component of x0 and then integrate over every possible value
of the second component of x f and x. More precisely, the
bridge distribution for the stationary first component, going
from x1(0) = x1i to x2(τ ) = x2 f is

P (1)
b (x1, t |x1i, x1 f , τ )

=
∫

dx2i dx2 f dx2P s(xi )P (x, t | xi, 0)P(x f , τ | x, t )∫
dx2i dx2 f P s(xi )P (x f , τ | xi, 0)

, (5)

where

P s(x) = lim
t→∞P (x, t |y, 0)

is the stationary distribution of the (free) process.
Due to Gaussianity of the process, the computation of (5)

for the Brownian gyrator can actually be performed, but it’s
too cumbersome to be shown here, even in the case of the
symmetric gyrator α = γ and λ = μ. However, an example
of single component bridge is shown in Fig. 4.

There we compare the average shape (its variance) of the
bridge for the single component between two zero values
(x1i = x1 f = 0), for several values of duration τ :

sb = 〈x1(t )2〉x1i→x1 f
τ =

∫
dx1 x2

1 P
(1)
b (x1, t |x1i, x1 f , τ ).

In the left panel the component comes from a Brownian gyra-
tor at equilibrium (T1 = T2), while the right panel the system
is out of equilibrium (T1 
= T2). In both cases, the shape is
symmetric with respect to t = τ/2, and there is no way to
appreciate the off-equilibrium origin of the second case.

This shows that, for linear systems, the bridge of a single
component can not be a proxy for the determination of the
equilibrium nature of the full system. In fact, this is due to
a very general mathematical results [20]: any scalar Gaus-
sian process, not necessarily Markovian, which is statistically
invariant under time translation is also statistically invariant
under time reversal.

In order to grasp a more physical intuition of such a quite
surprising result, we consider more standard quantities.

Suppose we can carry out an experiment in which the
only measurable quantity is the observable y = x1. Since the
system is linear, the variable y is Gaussian and therefore its
correlation function Cy(t ) completely characterizes observed
stochastic process. Nevertheless, there is an infinity of un-
derlying linear, Markovian bidimensional systems which are
consistent with the observations.

For instance, consider two systems:1

S1: defined by the parameters α  2.466, γ  0.8667,
λ = μ  −0.8969, T1 = T2 = 1

2
S2: defined by the parameters α = 8

3 , γ = 2
3 , λ = μ =

− 2
3 , T1 = 1

5 , T2 = 1
2

1See Eq. (9) in Sec. III for a detailed discussion on how the param-
eters of S1 have been chosen.
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FIG. 4. Average bridge shape for a stationary single component of a Brownian gyrator, with (a) and without (b) detailed balance. In each
panel, the curves represent different duration values τ = 1, 2, . . . , 10, respectively, lines from bottom to top. The parameters of the gyrator are
the same as those of Fig. 1.

Note that, while S1 is at equilibrium (T1 = T2), system S2

is not: the average value of its entropy production rate is
S = 0.12. However, looking at y = x1 only, it can be shown
that both systems share exactly the same correlation function
Cy(t ),

C (1)
y (t ) = C (2)

y (t ) = Cy(t ) = c+e−l+|t | + c−e−l−|t |, (6)

but different response functions,

R(1)
y (t ) = r (1)

+ e−l+t + r (1)
− e−l−t (t > 0)

R(2)
y (t ) = r (2)

+ e−l+t + r (2)
− e−l−t , (7)

as shown in Fig. 5. It is therefore evident that without
knowing the response functions the two systems cannot be
distinguished. One might be tempted to find out whether the
detailed balance is satisfied by looking at suitable statisti-
cal features. Actually, if the system is invariant under the
transformation t → −t then it follows that every statistical

quantity is an even function of time. Figure 6 shows the condi-
tional averages 〈y(τ )|y0〉 and 〈y(−τ )|y0〉 for the two systems.
As can be seen, these objects are invariant under t → −t .

One might naively think that, despite 〈y(τ )|y0〉 =
〈y(−τ )|y0〉, possible dissipative effects occur in statisti-
cal objects that depend on two or more times due to
the non-Markovianity of the process. For instance, given

t > 0, one can consider the two quantities 〈y(τ )|y0,±〉 =
〈y(τ )|y(0), y(−
t ) ≶ y(0)〉. 〈y(τ )|y0,+〉 and 〈y(τ )|y0,−〉
are the mean values of y(τ ) knowing that y(0) = y0 has
been reached from below or from above, respectively. In
some sense, the second conditioning is equivalent to provid-
ing information also on the “velocity” of the process. For a
process which is invariant under the transformation t → −t
we have 〈y(τ )|y0,+〉 = 〈y(τ )|y0,−〉 since there are no differ-
ences to look at the process forward or backward in time. Not
surprisingly, 〈y(τ )|y0,+〉 and 〈y(τ )|y0,−〉 are indistinguish-
able (not shown). Hence, it is not possible to infer the
thermodynamic state of the system.

FIG. 5. (a) Autocorrelation function Cy(t ) for the two systems S1 (blue/dark gray) and S2 (orange/light gray). (b) Response functions
Ry(t ) of S1 (blue/dark gray) and S2 (orange/light gray). The results have been obtained by means of numerical simulations. The analytical
results are shown with dashed black lines.
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FIG. 6. Conditional average 〈y(τ )|y0〉 as a function of the time delay τ for the two systems S1 (left) and S2 (right). In both cases y0 = 0.7σy,
where σy is the standard deviation. The results have been obtained by means of numerical simulations.

In the following sections, we will provide a general proof
of such indistinguishibility, based on an analysis of correlation
and response functions of the system. Furthermore, we pro-
pose a possible way out, which could be used when a limited
control on the system is available.

III. A “NO-GO” THEOREM FOR LINEAR SYSTEMS

First, we assume to know, from previous knowledge, that
the data are generated by a stochastic linear system (being
Markovian or not). Then we know that the only statistical
information that can be retrieved from a time series of a set of
D observables measure during its evolution is the stationary
correlation matrix C(t − t ′) whose elements are 〈xi(t )x j (t ′)〉.

If we are interested only in discriminating equilibrium
from nonequilibrium, and we are lucky enough to have access,
with our available observables, to a subset large enough of the
full phase space, we can simply check if the detailed balance
is satisfied or not, by looking at the condition SC(t )S = C(t )T ,
where Si j = siδi j si ∈ {−1,+1} takes into account the effect
of the time reversal on the different components (see Ap-
pendix B). But what happens when the space of the real phases
of the system under observation is very large and, instead, our
observables are a few or even only one?

In one dimension in particular, the detailed balance con-
dition is inevitably always satisfied, because C(t ) is a scalar
function. If the system is non-Markovian, however, it is
possible that nonequilibrium information is contained in the
comparison between the time correlation of the noise and the
memory kernel function representing the deterministic force
of the system, i.e., by evaluating the so-called second-kind
fluctuation dissipation relation [16]. In order to do so, how-
ever, we need to separate the contribution of the noise from
that of the deterministic forces.

In Appendix B we show in detail that such separation
is impossible; here we summarize the situation. The dy-
namics of our small set of observables x = {x1, . . . , xD} is
described by a linear integral-differential stochastic equa-
tion of the type Lx = Bξ , where L and B are operator
acting on a vector space of functions in L1(R) and ξ is a

(in general nondiagonal) colored noise matrix. In this case
the Fourier transform of the connected correlation function
Ci j (t − t ′) = 〈xi(t )x j (t ′)〉c is related to the linear response of
the system 〈∂xi(t )/∂h j (t ′)〉|h=0 = Ri j (t − t ′) and to the noise
fluctuations 〈ξα (t )ξβ (t ′)〉c = ναβ (t − t ′) according to (see
Appendix B)

C̃(ω) = 2πR̃(ω)	̃(ω)R̃(ω)† = C̃(ω)†, (8)

where
√

2πR̃(ω) = L̃(ω)−1 and

	̃(ω) = B̃(ω )̃ν(ω)B̃(ω)† = 	̃(ω)†.

Equation (8) states that in general, in the absence of any other
information (in particular, without response experiments), it is
impossible to separate the contribution of the noise from that
of the response by simply looking at the correlation function:
the noise and response poles are mixed together and we cannot
assign them to one source or the other without ambiguity.
In order to show such an impossibility we can consider the
following one-dimensional stochastic process with a colored
noise(〈ξ (t )〉 = 0):

ẋ + ax = ξ, 〈ξ (t )ξ (t ′)〉 = 2Te−b|t−t ′ |

with a > 0 and b > 0, for which, a direct computation leads
to the following expression for the Fourier transform of the
time correlation function C̃(ω) and for the response R(t ) of
the system

C̃(ω) = 2T

(ω2 + a2)(ω2 + b2)
, R(t ) = θ (t )e−at .

Without a response experiment we are not able to distinguish
the stochastic process above from the one having inverted
rates

ẋ + bx = ξ, 〈ξ (t )ξ (t ′)〉 = 2Te−a|t−t ′ | R(t ) = θ (t )e−bt ,

or, not necessarily worse, we might think to have δ-correlated
white noise and a second-order SDE: in this case we could
have something like

ẍ + (a + b)ẋ + (ab)x = ξ, 〈ξ (t )ξ (t ′)〉 = 2T δ(t − t ′),

R(t ) = θ (t )
e−bt − e−at

a − b
.
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Then, if we are unable to perturb the system and measure its
response, we are unable to understand what process we are
really looking at. We can hope to deal with this problem by
restricting the set of systems under investigation. For instance,
we can think to have a multidimensional model for variables
{xi} (i = 1, . . . , D) and that an equation like Ly = Bξ arises
once we just observe a single dynamic variable y = xi or a
linear combination y = ∑

i aixi of these or their derivatives. A
very general and natural model is a genuine multidimensional
Ornstein-Uhlenbeck process as ẋ + Ax = Bξ or its subset ẍ +
�ẋ + Kx = Bξ where the dynamical variables x and ẋ have
opposite time-reversal parity and 〈ξi(t )ξ j (t ′)〉 = νi jδ(t − t ′).
In this way, with a good data fit like

Cy(t ) =
∑

α

c(0)
α e−γαt +

∑
β

e−γβ t (c(+)
β cos �βt + c(−)

β sin �βt )

and a robust statistical analysis able to determine the num-
ber of exponentials to consider, we can hope to bet on the
dimension of the hypothetical underlying multidimensional
system (see, for instance, the procedure introduced in [84])
and to recover the poles of the response function (since we
assume the noise does not have it). In many cases this ap-
proach seems to work reasonably well when, for example, we
want to distinguish a second-order dynamic from a first-order
one. Let’s imagine that we have obtained the time correlation
function Cy(t ) = c+e−l+|t | + c−e−l−|t | from the evolution of an
one-dimensional observable y = x1 which, for experimental
reason, we can interpret as a speed. Hence, we look for a
linear stochastic dynamics in two dimensions and we would
like to distinguish between the following two cases always in
equilibrium I and generally not II:

(I)

⎧⎨⎩
mẋ1 + ηx1 + kx2 = ξ

ẋ2 = x1

〈ξ (t )ξ (t ′)〉 = 2T δ(t − t ′)
(II)

⎧⎪⎨⎪⎩
ẋ1 + αx1 − λx2 = ξ1

ẋ2 − μx1 + γ x2 = ξ2

〈ξi(t )ξ j (t ′)〉 = νi jδ(t − t ′)

with

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

η > 0, k > 0

l+ + l− = η/m = α + γ = T
l+l− = k/m = αγ − λμ = D
L̃(ω) = (iω)2 + iωT + D
νi j = ν ji

,

where l+, l−, T ,D are the eigenvalues, trace and determinant
of A respectively. A simple computation prove that there is
a substantial difference in the Fourier transform of correlation
function C̃y(ω). This difference allow us to distinguish the two
cases simply by looking at the coefficients c0 and c1 which
define the C̃y(ω):

C̃y(ω) = c0 + c1ω
2

|L̃(ω)|2

−→
(I)

{
c0 = 0
c1 ∼ 2T/m > 0

(II)

{
c0 ∼ ν11γ

2 + 2γ λν12 + ν22λ
2 > 0

c1 ∼ ν11 > 0
.

Since c0 is a quadratic form and the noise and the drift matri-
ces ν and A are positive definite, case II, unlike I, has surely
c0 strictly positive and then its value is a clear indication of
the case we are observing. But what happens when we have
excluded case I? Is it possible to discriminate equilibrium
from nonequilibrium in case II? Unfortunately, there are an
infinite number of processes like case II which have exactly
the same correlation function C̃y(ω) of an out-of-equilibrium
process while satisfing equilibrium condition (α − γ )ν12 =
λν22 − μν11. For example, given D, T , c0, and c1 which com-
pletely characterize the correlation function, we can look at
the equilibrium processes just by fixing ν12 = 0 and by choos-
ing the parameters as

γ =
(

c0

c1
+ D

)/
T , α = T − γ ,

λμ = c0

c1
− γ 2,

λ

μ
= c1

ν22
ν11 = c1,

and we are still free to choose any value for ν22. In other
words, we are not able to detect the temperatures of the
thermal baths since they are mixed with the deterministic
forces in the relative residues. Definitely, it seems impossi-

ble understand from the simple knowledge of the correlation
function Cy(t ) of the single dynamical variable y if the original
multidimensional system was out or in equilibrium.

IV. A WAY OUT: “A POSTERIORI” RESPONSE

Let us consider an experiment from which we are able to
get the time series of a single scalar observable for which
the single-time fluctuations y around the average value (that
we assume we are able to subtract step by step) are, at least
a first approximation, normally distributed. We estimate the
time correlation function Cy(t ) from the time series of such
fluctuations y and then, with in mind the idea of a under-
lying multidimensional Ornstein-Uhlenbeck process, we fit
Cy(t ) with a linear combination of exponentials. Let’s imagine
now that we have a knob that, even if in an uncontrolled
way, slightly modifies the parameters with which the system
is evolving. How will the relative correlation function be
made? If the knob has changed the drift parameters then we
will find something almost completely different as the poles
will certainly have moved. But if the poles have not moved,
we can think that we have changed only the “temperatures”
Ti → T ′

i of the effective thermal baths with which we can
characterize the contribution of the noise to the process. If
so, only the coefficients have changed cα → c′

α accordingly
with the formula cα = ∑

i Ticiα where the ciα depend on the
drift only (see Appendix B). Still in Appendix B we show
that, when the system is at equilibrium, all the temperatures
Ti are proportional Ti = T gi to the a single temperature T
with constants of proportionality gi which depend on the
drift only: in other word, at equilibrium we have a sin-
gle effective thermal bath. In light of this observation, after
the knob has changed only the noise properties, two things
can happen: either the cα all scale by the same factor or
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FIG. 7. Distributions of the average entropy production rate S for the two systems S1 (a) and S2 (b). The dotted lines correspond to the
theoretical value of the average entropy production rate S.

not. If they scale by the same factor there are two possible
explanation:

(i) There is a single thermal bath and the system, both
before and after turning the knob, was in equilibrium but
at two different temperatures, the ratio between these two
temperatures coincides with the ratio between the coefficients
cα of the correlation functions.

(ii) The system is out of equilibrium but the knob, for
some reason, increases or decreases all the effective tempera-
tures of the thermal baths by the same factor Ti → rTi.

The idea of having a knob that varies some parameters of
the model has already been used to infer the thermodynamic
properties of a system. For example, in [65] the authors
suppose that they can vary the probability of a link in a
Markov chain in order to find the stalling condition (no
current through the link). This condition is then used to pro-
vide a lower bound of the entropy production of the system.
Moreover, in the experiments described in [66,67] the experi-
menters had a knob that allowed to change the temperature of
one of the two thermal baths. The procedure described above
allows us to understand, through two system measurements,
whether both measurements were made in equilibrium condi-
tions or not. However, in the second case, it does not allow
to make precise statements on the two measures individually,
that is, it does not allow to distinguish the three different
situations:

The system is in equilibrium and the knob takes it out of
equilibrium.

The system is out of equilibrium and the knob takes it in
equilibrium.

The system is out of equilibrium both before and after
turning the knob.

Since the cα = ∑
i Ticiα are written as a linear combination

of the temperatures Ti and the relative coefficients ciα are
known functions of the parameters of the model, it could
be possible to distinguish these three cases by taking dif-
ferent measurements by varying several times the effective
temperatures of some thermal baths. Let D be the number of
poles of the C̃(ω) and n the number of the effective thermal
baths whose temperatures change by moving our knob. In this

way the relationship between the cα and the temperatures of
the thermal baths is cα = qα +∑n

i=1 Ticiα where the qα is a
D-dimensional constant vector which does not depend on the
temperatures of the thermal bath we change with the knob and
the ciα are nD coefficients with depend on the drift only. At
each measurement we have D conditions but also n additional
unknowns temperatures so, with m measurements, the number
of the unknown parameters are (n + 1)D + mn and the num-
ber of conditions that must be satisfied at the same time is
Dm. This means that we need at least m � (n + 1)D/(D − n)
measurements in order to be able to fit the qα and the ciα . Note
that the knowledge of the poles entails other D additional con-
ditions that the parameters of the model must satisfy. Hence,
in some particular experimental setups, by putting all these
information together we could be able to infer the nature in or
out equilibrium from few measurements, as we will show in
the next section.

A. Our protocol at work for the Brownian gyrator

Consider again the example of Sec. II. In this case, the
correlation function takes the form

Cy(t ) = c+e−l+|t | + c−e−l−|t |

with

c+=T1l+D − l−Q
T D(l+ − l−)

, c−= l+Q − T1l−D
T D(l+ − l−)

, Q=T1γ
2 + T2λ

2,

where T = α + γ and D = αγ − λμ. From the definition of
c+, c−, l+, and l− we get

l+c+ + l−c− = T1, l+l−(l−c+ + l+c−) = T1γ
2 + T2λ

2. (9)

Let r ( j)
1 = (l+c( j)

+ + l−c( j)
− ) and r ( j)

2 = l+l−(l−c( j)
+ + l+c( j)

− )
where the index j refers to the jth experiment and imagine
that the knob changes only the temperature T1. Then we have

γ 2 = r (1)
2 − r (2)

2

r (1)
1 − r (2)

1

,

T2λ
2 = r (1)

2

(
r (1)

1 − r (2)
1

)− r (1)
1

(
r (1)

2 − r (2)
2

)
r (1)

1 − r (2)
1

. (10)
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TABLE I. Comparison between theoretical and experimental en-
tropy production rate for the two systems.

System 1 System 2

Theory Experiment Theory Experiment

Eq. 0. 0.01 ± 0.01 0. 0.003 ± 0.003
NEq. 0.217 0.25 ± 0.05 0.12 0.115 ± 0.015

From the knowledge of γ , we can estimate α = l+ + l− − γ

and λμ = αγ − l+l−. The entropy production S is propor-
tional to T1μ − T2λ:

S = (T1μ − T2λ)2

(l+ + l−)T1T2
= (T1μλ − T2λ

2)2

(l+ + l−)T1T2λ2
. (11)

Since two measures are sufficient to compute the right-hand
side of Eq. (11), we are able to infer whether the system is at
equilibrium or not and furthermore we estimate the average
Lebowitz-Spohn entropy production rate S. While the above
procedure is theoretically correct, to be useful it must also
work in practical cases. We therefore decided to apply this
procedure to the two systems introduced in Sec. II. For both
systems, different trajectories were simulated by employing
the algorithm described in Appendix C. These data were used
to estimate the correlation functions and the four parameters
l+, l−, c+ and c−. Then, the temperature T1 of the thermal
bath coupled to y = x1 was changed (system 1 was put out
of equilibrium while system 2 at equilibrium) and new data
were generated. By reestimating the correlation functions and
combining the new measurements with the previous ones, we
were therefore able to compute the entropy production S of
each of the two systems before and after the manipulation. To
check the robustness of the procedure and to get an idea of the
error associated with the estimate of S, 40 experiments were
repeated on each system. The results of these experiments
are summarized in Fig. 7, which shows the histograms of the
entropy production for the two systems in the two cases. As
can be seen from the histograms, there is a clear difference
between equilibrium and nonequilibrium cases. In fact, in
the first case the histograms have a peak around zero while
in the second case the distributions are wider and have a

maximum for nonzero values. Furthermore, it should be noted
that in nonequilibrium cases the maximum of the distributions
is close to the theoretical entropy production. Table I shows
the theoretical values of the entropy production rate as well
as the results obtained experimentally which are compatible
considering the error bars.2

V. COARSE GRAINING OF MARKOV CHAINS

So far we have only dealt with linear stochastic pro-
cesses whose states are represented by vectors in RD.
However, it may happen that an appropriate description of
the problem requires the use of a discrete phase space.
In these cases, the state of the system is represented by
an integer index i = 1, 2, . . . , N . In analogy with contin-
uous processes, the experimenter usually does not have
access to all the phase space and is therefore limited to ob-
serve a coarse-grained process that lives in a reduced phase
space.

The aim of this section is to show that two-state semi-
Markov processes play the same role for discrete settings
as one-dimensional Gaussian processes do for continuous
ones, i.e., both are invariant under time reversal. In par-
ticular, we show that, in the context of Markov chains or
Markov jump processes, there are coarse-graining procedures
lead to coarse-grained process whose time-forward and time-
backward statistical features are indistinguishable despite the
underlying process is a nonequilibrium Markov process. In
the following, we discuss the case of Markov chains but the
results are correct also for processes with continuous time.

Let � = {1, 2, . . . , N} be the phase space of a system
described by a Markov chain whose transition matrix is de-
noted by G. Now imagine that an experimenter is not able
to observe all the states of the system but rather he observes
a coarse-grained process where the states have been grouped
into two disjoint groups. Let a = 0, 1 represents the state of
the coarse-grained process. Given the nature of the problem,
it is natural to introduce a block representation of both G and
the invariant distribution �:

2Note that the errors in Table I are taken to be three standard
deviations of the means.

� = (π1 · · · πm πm+1 · · · πN ) = (�0 �1),

G =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

G1,1 · · · G1,m
...

. . .
...

Gm,1 · · · Gm,m

G1,m+1 · · · G1,N
...

. . .
...

Gm,m+1 · · · Gm,N

Gm+1,1 · · · Gm+1,m
...

. . .
...

GN,1 · · · GN,m

Gm+1,m+1 · · · Gm+1,N
...

. . .
...

GK,m+1 · · · GN,N

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎝ G00 G01

G10 G11

⎞⎟⎠,

10 =
⎛⎝1

...

1

⎞⎠⎫⎬⎭m 11 =
⎛⎝1

...

1

⎞⎠⎫⎬⎭N − m.
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FIG. 8. Distributions of rescaled exit times τr = τ−〈τ 〉
σ

(σ 2 = 〈τ 2〉 − 〈τ 〉2) from macrostate 0 (containing many microstates) to macrostate
1 (pure state) for Markov chains on a ring. (a)–(c) Markov chain with N = 4 states. (b)–(d) Markov chain with N = 5 states. (a), (b) ε = 0.135
and S = 0.167; (c), (d) ε = 1−α

2 = 0.45 and S = +∞.

The probability of a sequence a = {at }1�t�T of length T (as
well as the other statistical quantities that characterize the
process) can be computed from the knowledge of G and the
invariant distribution �:

P(a) = �a1

T −1∏
t=1

Gat at+1 1aT . (12)

Also note that the sequence a can be encoded with a sequence
of K pairs (ak, nk ) where nk represents the time spent in the
macrostate ak and therefore

P(a) = P(a1, n1; a2, n2; . . . ; aK , nK ), (13)

with
∑

k nk = T and ak+1 = āk ≡ 1 − ak . In general, the pro-
cess describing the evolution of a is non-Markovian and the
computation of the KL divergence between the probability of
time-forward and time-backward sequences provides a lower
bound on the production rate of entropy of the whole system.

Now consider the special case in which one of the two
macrostates, say, the macrostate 1, contains only one mi-
crostate. Since the state 1 is pure and the whole process is
Markovian, the dynamics of the coarse-grained process is cor-
related only in the time interval between two successive visits
of this state. To put it another way, the coarse-grained process

is a semi-Markov process [55]. Let paā(τ ) the probability
distribution of the exit times from state a. Since the process
is semi-Markov, we have that the probability of the sequence
a is

P(a) = pin
a1

(n1)

(
K−1∏
k=2

pakak+1 (nk )

)
pf

aK
(nK ), (14)

where pin (pf ) is the initial (final) probability of ob-
serving a sequence starting (ending) with n1 (nK ) charac-
ters a1 (aK ). The reverse sequence will instead be ←−a =
(aK , nK ; aK−1, nK−1; . . . ; a1, n1) and its probability is

P(←−a ) = pin
aK

(nK )

(
K−1∏
k=2

pakak−1 (nk )

)
pf

a1
(n1). (15)

Since ak−1 = ak+1, P(a) and P(←−a ) differ only for the bound-
ary terms. Therefore, when the length T of the two sequences
a and ←−a goes to infinity the two probabilities are equal and
the entropy production rate vanishes:

S = lim
T +∞

1

T

∑
a

P(a) log

(
P(a)

P(←−a )

)
= 0. (16)
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This result seems to leave no hope of understanding the
thermodynamic state of the system through the observation
of the coarse-grained process. However, in [57] the authors
show that even in these cases there is a more powerful anal-
ysis based upon residence time statistics, showing in some
cases that the only Markovian processes compatible with the
observations are not at equilibrium. Note that the same is
true for linear processes whose correlations have sinusoidal
modulations (see the discussion in Appendix B 3).

Nevertheless, we expect that, in general, for such a coarse-
grained procedure it will be possible to find two Markov
chains, one at equilibrium and one out of equilibrium, that
produce the same statistics for the exit times.

To support this conjecture we have considered Markov
chains with a simple topology, that is, translation invariant
Markov chains on a ring with periodic boundary condition of
size N , for which the invariant distribution is uniform and the
transition matrix is such that

Gii = α, Gii+1 = 1 − α

2
+ ε, Gii−1 = 1 − α

2
− ε,

and Gi j = 0 otherwise. In Fig. 8 we show the comparison
between the distributions of the rescaled exit times, i.e., τr =
τ−〈τ 〉

σ
where σ is the standard deviation of τ , in the cases at

equilibrium (ε = 0) and out of equilibrium (ε 
= 0) for two
different chains with N = 4 (left) and N = 5 (right) states.
As might be expected, for small values of ε (top panels) it is
very difficult to distinguish a distribution that originates from
an equilibrium process from one determined from an out of
equilibrium process. More surprisingly, also in the case with
Gii−1 = 0 (completely irreversible process) the distribution of
the rescaled exit times is not too dissimilar from its equilib-
rium counterpart (see bottom panels).

VI. CONCLUSIONS

In this paper we have shown results whose mathematical
aspects are in part already present in the (physical or math-
ematical) literature [20–23,54], quite scattered in time and
not widely known, i.e., that one-dimensional Gaussian data—
even when non-Markovian and coming from a system which
is out-of-thermodynamic equilibrium—are always indistin-
guishable from equilibrium. In all the papers where we have
found something of it, the authors do not draw conclusions
about the inference problem neither they propose strategies to
circumvent the observed obstacles: in the present paper we do
both.

After discussing the problem in its full generality, we have
given concrete examples where one-dimensional data coming
from equilibrium and nonequilibrium systems are indistin-
guishable, even if an observation in full phase space shows
very strong differences. This result appears more surprising
when looking to quantities such as bridges which are strongly
asymmetric in the full phase space of an out-of-equilibrium
system, they are still asymmetric if the bridge observed in full
phase space is projected in one dimension, but lose completely
their asymmetry when they are constructed directly in the
reduced (one-dimensional) space. We have discussed a gen-
eral demonstration of the problem, which amounts to the fact
that correlations, which are the only information contained in

Gaussian-distributed data, contains an entangled product of
quantities related to both memory and noise. Disentangling
these two ingredients would allow us to check the second-kind
fluctuation-dissipation relation [16], but in one dimension this
is indeed impossible. An additional conclusion that can be
drawn from this observation is that linear response cannot be
deduced, in general, from correlations, in a one-dimensional
non-Markovian systems. We underline that these negative re-
sults bear a certain degree of surprise if one expects analogy
with deterministic systems to hold. In deterministic systems,
in fact, the reconstruction of all the properties of a system in
dimensions larger than one can be done starting from a (long
enough) time series of a 1d observable (embedding technique
[3,4]). Our discussion, therefore, is a more convincing proof
that for stochastic systems the embedding idea is not going to
work in general.
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APPENDIX A: ENTROPY PRODUCTION

Here we briefly recall the fact that a partial observation
cannot overestimate the EP of a system, being it linear, non-
linear, Markovian or not Markovian. We first wish to show
an example of how taking longer, but incomplete, observa-
tions can improve our knowledge of a deterministic system
(approaching, for large times, the knowledge of the full phase
space, as in the embedding Takens’ theorem) while this is
not true for stochastic systems. Consider a deterministic pro-
cess in discrete time, so that at time i it stays in state γi.
When the time goes from 1 to t the process generates the
path �t = γ1...γt which is fully determined by initial state
γ1. One observes the system without maximum precision,
that means that instead of the path �t the observer sees a
path �t = ω1...ωt : the lack of precision is in the fact that
many different �t correspond to the same observed �t , we
can define the set C(�t ) which contains all the paths �t

compatible with the observation �t . When a new ωt+1 state
is observed the number of compatible �t+1 can remain the
same or reduce, it cannot grow because the new observation
is an additional constraint on a fixed information (the ini-
tial state γ1). So, observing longer and longer paths �t →
�t+1 → �t+2 implies smaller and smaller sets of compatible
states C(�t ) ⊇ C(�t+1) ⊇ C(�t+2) ⊇ · · · . This suggests that
a long enough time series of a partial observation should be
equivalent to the observation of the system in full phase space
increasing the length t of the observed path �t . Now imagine
repeating the reasoning above for a stochastic process. Each
new observation ωt+1 does not have the same power as in
the deterministic case: in fact the underlying new state γt+1

is not exactly determined by the previous story, therefore ωt+1

is an additional constraint on a string �t+1 which also contains
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(in general) more information than �t : there is no reason
to expect C(�t ) ⊇ C(�t+1) and therefore it is not true, in
general, that a longer partial observation can help in inferring
features of the full phase space. This fact has been observed
for continuous systems in continuous time in [12].

The lack of information about the full phase space affects
entropy production in the following way. By defining �∗

t the
time-reversed path, the average entropy production measured
in a time length t is

S�
t =

∑
�t

P(�t ) ln
P(�t )

P(�∗
t )

, (A1)

when we observe the system with lower precision we can
measure only

S�
t =

∑
�t

P(�t ) ln
P(�t [�t ])

P(�t [�t ]∗)

=
∑
�t

P(�t ) ln

∑
�t ∈C(�t [�t ]) P(�t )∑
�t ∈C(�t [�t ]∗ ) P(�t )

, (A2)

where the notation �t [�t ] the coarse-grained path �t corre-
sponding to the real path �t . So in general S�

t 
= S�
t . Most

importantly (and perhaps not noticed before), in view of
the previous considerations, there is apparently no reason
to expect, for stochastic systems, that increasing t may let
S�

t → S�
t .

In [23] (Sec. III C) a simple demonstration is given, for a
particular kind of coarse graining (from two dimensions to
one), for continuous stochastic processes that S�

t � S�
t . The

passages can be generalized:

S�
t − S�

t =
∑
�t

P(�t ) ln
P(�t )

Q(�t )
= DKL(P||Q) � 0. (A3)

The validity of the interpretation as a Kullback-Leibler diver-
gence (which is nonnegative) is guaranteed by the fact that
Q(�t ) = P(�t

∗)P(�t [�t ])/P[�t (�t )∗] is positive and nor-
malized:∑

�t

Q(�t ) =
∑
�t

∑
�t ∈C(�t )

Q(�t )

=
∑
�t

P(�t )
∑

�t ∈C(�t )

P(�t
∗)

P[�t (�t )∗]
= 1. (A4)

The last passage requires that C(�t [�t ]∗) ≡ C(�t [�∗
t ]).3 Note

that S�
t = S�

t if P(�t |�t ) = P(�∗
t |�∗

t ) where we have defined
P(�t |�t ) = P(�t )/P[C(�t [�t ]].

APPENDIX B: LINEAR SYSTEMS

In this Appendix we give a complete treatment of lin-
ear systems of integro-differential stochastic equations with

3This seems reasonable but perhaps can be violated by those
coarse-graining procedures that depend on the history.

correlated-in-time noise, that should cover the largest possible
set of stochastic (Markovian and non-Markovian) processes
with Gaussian statistics. Of course the topics are largely
treated in the literature, in probability, and in physics, starting
from the seminal paper of Uhlenbeck and Ornstein in 1930
[85], to modern books on stochastic proccesses such as [86]
and [87] which treat in detail the consequences of response
theory, time-dependent problem and of the consequences
of detailed balance, focusing on the Markovian case. The
non-Markovian case is much less a textbook case, and for
this reason we decided to review the topics in a compact and
general way.

1. Correlation and response

We consider the vector process x(t ) that obeys the follow-
ing equation:

(Lx)(t ) = (Bξ )(t ) + h(t ), (B1)

where x(t ) = {xi(t )}i=1,D ∈ RD is a set of dynamical vari-
ables, h(t ) = {hi(t )}i=1,D ∈ RD is a set of external fields
and ξ (t ) = {ξα (t )}α=1,d ∈ Rd a vector of colored normally
distributed random noise with zero mean 〈ξα (t )〉 = 0 and
covariance matrix 〈ξα (t )ξβ (t ′)〉 = ναβ (t − t ′) depending on
times t and t ′ just by the difference (t − t ′). We have also in-
troduced L = {Li j}i, j=1,D and B = {Biα}α=1,d

i=1,D which are two
matrices whose elements are linear combinations of operators
that act on single variables by multiplying, differentiating, or
integrating them in a convolution, i.e., (A f )(t ) = ∫

dtA(t −
t ′) f (t ′) where the kernels A(t ) must decay fast enough to
make finite the integral on t ∈ (−∞,+∞).4

The above equation can also written, component by com-
ponent, as ∑

j

(Li jx j )(t ) =
∑

α

(Biαξα )(t ) + hi(t ). (B2)

In this framework we consider only real functions, and it is
useful to look at Fourier space (the overline is the complex-
conjugate)

f (t ) =
∫

dω√
2π

f̃ (ω)eiωt ←→ f̃ (ω) =
∫

dt√
2π

f (t )e−iωt

[if f (t ) ∈ R then f̃ (−ω) = f̃ (ω)], introduce a commutative
inner product

( f , g) =
∑

i

∫
dt fi(t )gi(t ) =

∑
i

∫
dω f̃i(ω )̃gi(ω)

= (g, f ),

4We do not pretend mathematical rigor here. Physically the fast
decay of memory kernels are required to get meaningful stationary
states and vanishing of memory of the initial conditions in a finite
time.
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and define the adjoint A† and the inverse A−1 (if it exists) of an generic operator A

( f ,Ag) = (A† f , g) =
∑

i j

∫
dt
∫

dt ′ fi(t )Ai j (t − t ′)g j (t
′) → A†(t ) = A(−t )T (A†

i j (t ) = A ji(−t ))

=
√

2π
∑

i j

∫
dω f̃i(ω)Ãi j (ω )̃g j (ω) −→ Ã†(ω) = Ã(ω)† (Ã†

i j (ω) = Ã ji(−ω) = Ã ji(ω)),

( f ,AA−1g) = (A† f ,A−1g) = ( f , g) →
∑

k

∫
dsAik (t − s)A−1

k j (s − t ′) = δi jδ(t − t ′)

→
{
Ã−1(ω) = (2πÃ(ω))−1

A−1(t ) = ∫
dω√
2π

(2πÃ(ω))−1eiωt 
= [A(t )]−1,

paying attention to the difference between Ã†(ω) [the Fourier
transform of operator A†(t )] and Ã(ω)† [the transposed-
conjugated matrix of Ã(ω)] and between Ã−1(ω) (the Fourier
transform of A−1(t )) and Ã(ω)−1 [the inverse matrix of
Ã(ω)].

Now, we are ready to look at Eq. (B2) in a compact way.
If we assume that x(t ) is known since t = −∞ and up to t =
+∞, in Fourier space it obeys

L̃(ω )̃x(ω) = B̃(ω )̃ξ (ω) + h̃(ω).

In this way the solution will be

x̃(ω) =
√

2π (G̃(ω )̃ξ (ω) + R̃(ω )̃h(ω)),

xi(t ) =
∑

α

∫
dt ′Giα (t − t ′)ξα (t ′)

+
∑

j

∫
dt ′Ri j (t − t ′)h j (t

′),

where

G̃(ω) = R̃(ω)B̃(ω) and
√

2πR̃(ω) = L̃(ω)−1,

so, by computing mean mi(t ) and time-correlation function
Ci j (t, t ′) directly from the solutions of Eq. (B3)

mi(t ) = 〈xi(t )〉 =
∑

j

∫
dt ′Ri j (t − t ′)h j (t

′),

Ci j (t, t ′) = 〈xi(t )x j (t
′)〉c =]〈[xi(t ) − mi(t )][x j (t

′) − mj (t
′)〉

=
∑
αβ

∫
ds
∫

ds′ Giα (t − s)ναβ (s − s′)G jβ (t ′ − s′)

= 2π
∑
αβ

∫
dω√
2π

G̃iα (ω )̃ναβ (ω)G̃ jβ (ω)eiω(t−t ′ )

= C ji(t
′ − t ) [̃ν(ω)† = ν̃(ω)]

we get that the linear response function 〈∂xi(t )/∂h j (t ′)〉|h=0 is
just Ri j (t − t ′) and that the time correlation function C̃(ω) in
Fourier space reads

C̃(ω) = 2πR̃(ω)	̃(ω)R̃(ω)† = C̃(ω)†,

where

	̃(ω) = B̃(ω )̃ν(ω)B̃(ω)† = L̃(ω)C̃(ω)L̃(ω)† = 	̃(ω)†.

Involving only linear operators and assuming Gaussian-
distributed (or delta-peaked) initial conditions, every (joint
or conditional) probability distribution of a sequence of
m observations {x(t1) = x1, x(t2) = x2, . . . , x(tm) = xm} is a
multivariate Gaussian. It is important to stress that even if
x(t ) is non-Markovian, when h = 0, the knowledge of C(t )
is sufficient to reconstruct all such probabilities and therefore
the full path probabilities too.

In particular the joint probability distribution of m obser-
vations, in the case h = 0, reads

P (x(t1) = x1, x(t2) = x2, . . . , x(tm) = xm)

= NĈ (x1, x2, . . . , xm),

where the multivariate Gaussian for a generic vector z in n
dimension with covariance matrix A is

NA(z1, . . . , zn) = 1√|2πA| exp −1

2

∑
i j

ziA−1
i j z j,

and Ĉ is a matrix mD × mD composed of blocks of the ma-
trix two-time correlation C evaluated at the time differences
between all the observations

Ĉ =

⎛⎜⎜⎜⎜⎝
C(0) C(t1 − t2) . . . C(t1 − tm)

C(t2 − t1) C(0) . . . C(t2 − tm)
...

...
. . .

...

C(tm − t1) C(tm − t2) . . . C(0)

⎞⎟⎟⎟⎟⎠.

Note that, since C(−t ) = C(t )T we have ĈT = Ĉ.

2. Detailed balance condition

Now we discuss the detailed balance condition (when
h = 0), considering the difference between the joint
probability P (x(t0) = x0, x(t1) = x1, . . . , x(tm−1) = xm−1)
and the joint probability of the “reverse path” P (x(t0) =
Sxm−1, x(t1) = Sxm−2, . . . , x(tm−1) = Sx0) where Si j = siδi j

takes into account the effect of the time reversal parity of
the different components (si ∈ {−1, 1}, S2 = I, S−1 = S, for
instance, positions have si = 1 and velocities have si = −1).
Such a probability reads

P (x(t1) = Sxm, x(t2) = Sxm−1, . . . , x(tm) = Sx1)

= NĈ′ (x1, x2, . . . , xm)
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with

Ĉ ′ =

⎛⎜⎜⎜⎜⎜⎝
SC(0)S SC(t2 − t1)S . . . SC(tm − t1)S

SC(t1 − t2)S SC(0)S . . . SC(tm − t2)S

...
...

. . .
...

SC(t1 − tm)S SC(t2 − tm)S . . . SC(0)S

⎞⎟⎟⎟⎟⎟⎠.

The two probabilities are equals if and only if Ĉ = Ĉ ′. For the
validity of such a condition for whatever choice of observation
times, one needs SC(t )S = C(−t ) = C(t )T or, in Fourier space
SC̃(ω)S = C̃(ω)T . This is analogous to the renowned Onsager
reciprocity relation [88]. Actually the closest equivalent to
original Onsager reciprocity is obtained by taking the time
derivative of such relation and computing it in t = 0, i.e.,
SLS = LT , where L = Ċ(0) is the Onsager matrix (see chapter
5.3 of Gardiner’s book [86]).

We can also compute the Kullback-Leibler divergence Dm

between the above forward and reverse probabilities of m-
paths, in order to mimic entropy production features (note,
the true entropy production rate is typically computed for the
continuous path probabilities, i.e., taking infinite observations
at infinitesimal time delays):

Dm =
∫ ∏

k

dxk NĈ (x1, . . . , xm) log
NĈ (x1, . . . , xm)

NĈ′ (x1, . . . , xm)

= 1

2
Tr(ĈĈ ′−1 − I ).

From the above considerations, a main thing is evident: for
one-dimensional systems it is immediate to verify that, since
C(t ) = C(−t ) we have Dm = 0, i.e., all groups of m obser-
vations have identical forward and backward probabilities.
This result is true whatever are the operators in the original
equation, i.e., ∀L,B and ν.

3. A Markovian case

Equations like Lx = Bξ can arise from a genuine multidi-
mensional Ornstein-Uhlenbeck process once we just observe
a single dynamic variable or a linear combination of these.
Let us consider the following stochastic process in D
dimensions:

dx

dt
+ Ax = Bξ, 〈ξi(t )ξ j (t

′)〉 = νi jδ(t − t ′), (B3)

where A is an invertible and positive definite D × D real
matrix and ν is the covariance matrix of the noise. It is
convenient to rewrite the equation in the reference frame that
has the eigenstates of symmetric matrix BνBT as a basis. In
this way we can interpret the contribution of noise in terms
of something analogous to the temperatures Ti of D thermal
bath,

BνBT = U	U T , UU T = U T U = I, 	i j = 2Tiδi j,

so, by performing the substitutions U T x → x, U T AU → A,
and U T Bξ → ξ we obtain the effective process

dx

dt
+ Ax = ξ, 〈ξi(t )ξ j (t

′)〉 = 2Tiδi jδ(t − t ′),

from which we verify that the statistical independence be-
tween the effective thermal baths 〈ξiξ j〉 ∼ δi j is not an
approximation. By direct integration we obtain the following
expressions for response R(t ) and time correlation matrix
C(t ):

R(t ) = θ (t )e−tA (R†(t ) = R(−t )T = θ (−t )etAT
),

C(t ) = R(t )C + CR(−t )T [C = C(0)], (B4)

Ċ(t ) = CATR(−t )T − R(t )AC, (B5)

	 = AC + CAT . (B6)

Since the process is Markovian (and given the positivity of
A) it has an invariant measure and it is easy to verify that
the single-time normal distribution NC (x) is the stationary
solution of the following Fokker-Plank equation:

∂

∂x

(
Ax + 1

2
	

∂

∂x

)
NC (x)

= 1

2
Tr(2A − 	C−1) + 1

2

∑
i j

(C−1x)i(	 − 2AC)i j

× (C−1x) j = 0

because from (B4) we have

(	 − 2AC)T = 	 − 2CAT = 2AC − 	 = −(	 − 2AC)

→
∑

i j

yi(	 − 2AC)i jy j = 0 ∀y,

Tr(2A − 	C−1) = Tr(A − CAT C−1)

= Tr(A) − Tr(AT ) = 0.

In Fourier space it is convenient to look at the following ex-
pression obtained by rationalizing the denominators of C(ω),

C̃(ω) = (ω2 + A2)−1[ω2	 + iω(A	 − 	AT ) + A	AT ]

× [ω2 + (AT )2]−1 = C̃(ω)†,

so, by comparing it with its transpose

C̃(ω)T = (ω2 + A2)−1[ω2	 − iω(A	 − 	AT ) + A	AT ]

× [ω2 + (AT )2]−1,

we obtain that the equilibrium condition SC̃(ω)S = C̃(ω)T

for S = I (or S = −I) is A	 = 	AT , (Ai jTj = AjiTi). This
condition slightly differs from the usual Onsager’s rela-
tion AC =CAT but the two formulations are equivalent.
Indeed, since C = ∫ +∞

0 dt e−tA 	 e−tAT
is the solution of

AC + CAT = 	, AC = CAT reads

A
∫ +∞

0
dt e−tA 	 e−tAT

=
∫ +∞

0
dt e−tA 	 e−tAT

AT

⇒
∫ +∞

0
dt e−tA [A	 − 	AT ]e−tAT = 0

⇒ A	 = 	AT .
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Furthermore, if A	 = 	AT we have

AC =
∫ +∞

0
dt e−tA A	 e−tAT

=
∫ +∞

0
dt e−tA	AT e−tAT = CAT .

Hence, AC = CAT ⇐⇒ A	 = 	AT . Interestingly, if the
structure of A is not appropriate, the equilibrium with D
effective thermal baths is impossible. In fact, by assuming
Ai j 
= 0 ∀i < j, we must have

Tj = TiA ji/Ai j

Tk = TjAk j/Ajk = TiA jiAk j/Ai jA jk = TiAki/Aik .

This implies Ai jA jkAki = AikAk jA ji ∀i < j < k. On the other
hand, the condition equilibrium implies pure imaginary
poles only in C̃(ω). In fact, if Ti > 0 ∀i, since A	 = 	AT ,
we can diagonalize the symmetric matrix Â = 	− 1

2 A	
1
2 =

ÂT = U�U T in order to derive the eigenstates of A =
	

1
2 U�U T 	− 1

2 = V �V −1 and verify, due to the spectral the-
orem for symmetric matrices, that all its eigenvalues are real
and then C(t ) is a sum of pure real exponential. In the case
there are some Ti = 0 we simply separate the two types of
variables and we look at the blocks of the matrices

	 =
(

0 0
0 	′

)
, 	′

i j = 2Tiδi j, A =
(

α −λ

−μ γ

)
.

In this way, the condition A	 = 	AT implies λ = 0 and real
eigenvalue for γ since γ	′ = 	′γ T and then

C̃(ω) =
(

0 0
0 (iω + γ )−1	′(−iω + γ T )−1

)
,

which has pure imaginary poles only.
Note that the equilibrium condition A	 = 	AT implies

also the familiar fluctuation-response theorems for equilib-
rium systems, i.e., (θ (0) = 1

2 )

C(t ) = (R(t ) + R(−t ))C → C̃(ω) = 2ReR̃(ω)C,

Ċ(t ) = (R(−t ) − R(t ))	 → C̃(ω) = − 1

ω
ImR̃(ω)	.

If some dynamical variables change the sign in the reverse
trajectory (S 
= ±I) the generalization it is quite more com-
plicated. To begin, we move all the dynamic variables that
change sign at the bottom of the vector and we look at all the
matrices as made up of four blocks

M =
(

M++ M+−
M−+ M−−

)
, S =

(
I 0
0 −I

)
,

SMS =
(

M++ −M+−
−M−+ M−−

)
.

In this way equilibrium condition SC̃(ω)S = C̃(ω)T simply
reads Re(C̃(ω)+−) = 0 where (we omit the ω dependence)

C̃+− = R̃++	̃++R̃†
−+ + R̃++	̃+−R̃†

−−

+ R̃+−	̃−+R̃†
−+ + R̃+−	̃−−R̃†

−−.

The computation is considerably simplified in the case of a
“symplectic” stochastic dynamics like{

ẋ = y
Mẏ = −�y − Kx + Bξ

〈ξi(t )ξ j (t
′)〉 = νi jδ(t − t ′)

(x, y ∈ RD M, �, K, B, ν ∈ RD×D)

for which we can forget that x and y have opposite
time-reversal parity simply by considering the second-order
stochastic equation

Mẍ + �ẋ + Kx = Bξ

and the time correlation function Ci j (t − t ′) = 〈xi(t )x j (t ′)〉
which involves just the x components. In fact, if M is in-
vertible, we are authorized to simplify due to the following
substitutions:

U T Mx → x, U T �M−1U → �,

U T KM−1U → K, U T Bξ → ξ,

where, as in the general case, we are put ourself in the refer-
ence frame that diagonalize BνBT = U	U T .

In this way we get

ẍ + �ẋ + Kx = ξ, 〈ξi(t )ξ j (t
′)〉 = 2Tiδi jδ(t − t ′),

from which

C̃(ω) = (−ω2 + iω� + K )−1	(−ω2 − iω�T + KT )−1

= (K − ω2)−1[I + iω(K − ω2)−1�]−1	

× [I − iω�T (KT − ω2)−1]−1(KT − ω2)−1

(	i j = 2Tiδi j). As in the general case, by rationalizing and by
imposing C̃(ω) = C̃(ω)T we are able to prove that the equi-
librium holds when both the conditions �	 = 	�T (�i jTj =
� jiTi) and K	�T = �	KT are simultaneously satisfied. Even
in this case we have the further condition �i j� jk�ki =
�ik�k j� ji without which equilibrium with D thermal bath is
impossible and, by following the same procedure as in the
general case, � has real eigenvalues only. It is possible to
prove that K also has real eigenvalues: it is sufficient to make
explicit the eigenstates of � = 	

1
2 U�U T 	− 1

2 and to note
that the condition K	�T = �	KT implies that the matrix
K̂ = �− 1

2 U T 	− 1
2 K	

1
2 U�

1
2 must be symmetric from which

immediately we deduce that the eigenvalues of K are real too.

4. One variable from a Markovian system

We look now at a single scalar component y of a generic
multidimensional Ornstein-Uhlenbeck process. We showed
that, unless pathological situations, the linearity of the equa-
tion allows us to scale suitably the dynamical variables and
to look at the stochastic process in the reference frame for
which the covariance matrix of the noise is diagonal and the
coefficient in front at the higher order derivative is unitary.
By focusing on this “effective” process, we minimized the
number of involved parameters and simplified the calcula-
tions relating to the equilibrium conditions but we have lost
the identity as a component of the state vector of the origi-
nal dynamical variable y which we are observing. However,
surely y will be a linear combination of the components of
the effective process so, we can still derive some general
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considerations about the properties of y just by looking at
the time correlation function Cy(t ) of a generic linear com-
bination y = ∑

i aixi of the roto-scaled dynamical variables
xi:

Cy(t − t ′) = 〈y(t )y(t ′)〉c =
∑

i j

aiCi j (t − t ′)a j,

C̃y(ω) = 2
∑

i

Ti

∑
jk

a j (iω + A)−1
ji (−iω + AT )−1

ik ak,

= 2
∑

i

Ti

∣∣∣∣∣∑
j

a j (iω + A)−1
ji

∣∣∣∣∣
2

.

If we imagine to perform the inverse (iω + A)−1 with
the Cramer’s rule for which M−1 = adj(M )/det(M ) where
adj(M ) is the transpose of cofactor of M we get

C̃y(ω) = 2

∑
i Ti|B̃i(ω)|2
|L̃(ω)|2 =

∑
i

Ti fi(ω), (B7)

fi(ω) = 2
|B̃i(ω)|2
|L̃(ω)|2 , (B8)

where L̃(ω) and B̃i(ω) are iω-polynomials with real coeffi-
cients that we can write by looking at their root −λα and −γiβ ,
respectively,

L̃(ω) = det(iω + A) =
D∏

α=1

(iω + λα ),

B̃i(ω) =
∑

j

a jadj(iω + A) ji = Bi

D−1∏
β=1

(iω + γiβ ),

fi(ω) = 2|Bi|2
∏D−1

β=1 |ω − iγiβ |2∏D
α=1 |ω − iλα|2 .

In this way it is evident, as expected, that a stochastic equa-
tions satisfied by y can be formally written as

Ly =
∑

i

Biξi, 〈ξi(t )ξ j (t
′)〉 = 2Tiδi jδ(t − t ′),

which is in the form of Eq. (B2). Note that the equation sat-
isfied by the nth derivative of y, z = ∂ny/∂t n, since z̃(ω) =
(iω)nỹ(ω) in Fourier space simple reads

L̃(ω )̃z(ω) = (iω)n
∑

i

B̃i(ω )̃ξi(ω),

from which we immediately derive that C̃z(ω) = ω2nC̃y(ω).
By using the residue theorem and the complex conjugate root
theorem which states that the nonreal roots of a polynomial
with real coefficient appear always into pairs of complex con-
jugates [this implies fi(−z) = fi(z) and fi(z) = fi(z) ∀z ∈ C]
we are able to compute C(t ). First, the functions fi(ω) have
the same denominator then the same two-dimensional singu-
larities in the complex plane so, if Imλα = 0 we have two pure
imaginary poles in iλα and −iλα while if Imλα 
= 0 we have
four complex poles in ±iλα and ±iλα . We indicate with μα

the set of D poles that have a positive imaginary part then, for

t > 0, we get

Cy(t ) =
∫

dω√
2π

C̃y(ω)eiωt =
D∑

α=1

cαeiμαt ,

cα =
√

2π i
∑

i

TiRes( fi(ω), μα ). (B9)

Finally, the properties of the functions fi(ω) and the simulta-
neous presence of the poles μα and −μα implies

Cy(t ) =
∑
α:

Imλα=0

c(0)
α e−λαt (∀t > 0)

+
∑
α:

Imλα>0

e−Reλαt (c(+)
α cos Imλαt + c(−)

α sin Imλαt ),

where the c(�)
α are a total of D real constant which can be

expresses as a linear combinations of temperatures Ti, i.e.,
c(�)
α = ∑

i Tic
(�)
iα . If the equilibrium condition Ai jTj = AjiTi

holds (or �i jTj = � jiTi in the symplectic case), it means that
we can write all temperatures Ti as a function of only one, for
example, T1 = T and Ti = TAi1/A1i(= T �i1/�1i ) = T gi and
then

c(�)
α = T

∑
i

gic
(∗)
iα = T d (�)

α ,

where the d (�)
α depend on the drift only. In other words, equi-

librium implies a single effective thermal bath.

APPENDIX C: EXACT INTEGRATION ALGORITHM

To perform a numerical integration of the equations of
motion, one could use one of the standard algorithms for
stochastic differential equations such as the Euler or Runge-
Kutta stochastic method, just to give two examples. However,
these methods require the use of integration time steps much
smaller than the characteristic times of the system. In the case
of the Ornstein-Ulhenbeck process, however, it is possible to
use an exact algorithm. We consider the following Cauchy
problem:

ẋ + Ax = Bξ

x(t0) = x0
〈ξi(t )ξ j (t

′)〉 = νi jδ(t − t ′),

for which the formal solution after a time step ε is

x(t0 + ε) = e−εA

(
x(t0) +

∫ ε

0
ds esAξ (s)

)
= e−εA(x(t0) + w(ε) ) = R(ε)(x(t0) + w(ε) ).

The D-dimensional random vector w(ε) is normally dis-
tributed with average 〈w(ε)

i 〉 = 0 and covariance matrix C(ε)
i j =

〈w(ε)
i w

(ε)
j 〉 equal to

C(ε) =
∫ 
t

0
ds esABνBT esAT

= V

(∫ 
t

0
ds es�(V −1BνBT V −T )es�

)
V T

= V

(∫ 
t

0
ds es�	es�

)
V T = V H (ε)V T ,
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where � and V diagonalize A = V �V −1 (�i j = λiδi j), 	 =
V −1BνBT V −T = 	T and

H (ε) =
∫ 
t

0
ds es�	es� = HT ,

H (ε)
i j = 	i j

eε(λi+λ j ) − 1

λi + λ j
= H (ε)

ji .

In general H (ε) is a complex matrix but the spectral theorem
for symmetric matrix assures us that it can still be decom-

posed into H (ε) = UM (ε)U T where U is an unitary matrix
and M (ε)

i j = σ 2
i δi j is a real diagonal matrix with nonnegative

entries. This suggests that, once 
t is fixed, matrix A and
H (ε) are diagonalized and R(ε) = Ve−ε�V −1 is computed, it
is possible to introduce an exact integration algorithm by
implementing the following instructions step by step:

(1) Sample D random numbers zi from a normal distribu-
tions of zero mean and relative variances σ 2

i
(2) Compute the vector w(ε) = VUz
(3) Iterate with x(t + 
t ) = R(ε)[x(t ) + w(ε)].
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