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Foreword 

Dear Delegate, 

Since its conception in 2005 with the Inaugural Meeting in Chatou, France, the 
Smoothed Particle Hydrodynamics rEsearch and Engineering International 
Community (SPHERIC) has foster, steered and disseminated the development 
and application of the Smoothed Particle Hydrodynamics (SPH) method in 
academia and industry alike.  

The International SPHERIC Workshops are a unique series of yearly events with 
exclusive focus on the SPH method and associated particle-based methods. SPH 
has been widely adopted in the field of computational fluid mechanics, solid 
mechanics, geomechanics, manufacturing engineering and many other 
disciplines. The SPH scheme is considered to be the mainstream method for free-
surface flows, and multi-phase flows, high non-linear deformation, fracture and 
fragmentation and, complex physics due to its meshless particle-based nature. 

The SPHERIC workshop brings together state-of-the-art developments from 
academia and novel interdisciplinary applications from industry in a unique blend 
towards the advancement of the numerical scheme.    

It is our pleasure and privilege to host the 17th edition of the International 
SPHERIC Workshop in Rhodes Island, Greece and I am looking forward to 
welcoming you for a stimulating and fruitful event. 

Sincerely, 

Georgios Fourtakas 
Chair of the Local Organizing Committee 
17th International SPHERIC Workshop 
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Abstract—In the present work we define a novel technique
for the enforcement of boundary conditions along solid pro-
files. Thanks to the absence of interpolation nodes inside the
fluid domain associated with the ghost particles, the proposed
technique highly simplifies the mirroring procedure described
in Marrone et al. [22] without jeopardizing the accuracy and
the robustness of the overall approach. The novel technique,
called clone particle technique, consists in two main steps. In
the first one, the normal and tangent vectors to the solid profile
are extended inside the solid body. Then, a local mirroring
is applied, meaning that each fluid particle generates its own
mirrored field over the solid particles placed inside the body.
Unlike Marrone et al. [22], such a mirroring not only applies to
the main fluid quantities but also works as a local correction to
the normal and tangent fields in the solid body. Such a correction
is enforced when the fluid particle is close to sharp profiles, in
order to avoid that the fluid particle interacts with the normal
vectors along the rear side of the angle/corner. This allows for
a straightforward modelling of convex/concave angles and thin
solid profiles. Numerical benchmarks at increasing complexity
are considered to prove the reliability of the proposed technique.
The results are compared and validated with other numerical
methods, proving to be accurate and robust.

I. Introduction

The present work deals with a novel approach for enforcing
Solid Boundary Conditions (SBC) along body contours in the
Smoothed Particle Hydrodynamics (SPH) scheme. The central
importance of a correct SBC implementation pushed the
SPHeric community to dedicate the second Grand Challenge
of the SPH to this topic (see https://spheric-sph.org/grand-
challenges). Several approaches have been presented over the
years for both weakly-compressible and incompressible SPH
models. Summarizing, these latter can be divided in the
following categories:

i) repulsive forces [29, 30],
ii) normal-flux approaches [8, 6],

iii) boundary integrals [16, 21, 28, 12, 18]),
iv) dummy particles [15, 33, 11],
v) ghost particles (also referred to as imaginary particles).

It is well known that approach (i) is rather easy to imple-
ment but it su�ers of a significant drawback related to the
numerical error introduced by the kernel truncation and by
the arbitrariness in the choice of the repulsive forces.

A more sound and theoretically-based approach is repre-
sented by the normal-flux techniques (ii) which originate in
the context of hyperbolic systems of conservation laws.

In the boundary integral technique (iii) the missing area of
the kernel support close to the body is taken into account by
adding a forcing term to the momentum equation, so that the
SBC are satisfied.

As an alternative to the use of wall particles and boundary
forces, the dummy particles (iv) represent the first attempt to
enforce SBC by filling of the body with solid particles and
avoid the errors due to the lack of volume inside the kernel
support. In this case, a simple null-velocity field is assigned
to the solid particles, while the density field is computed
through summation over the neighbouring particles or through
interpolation/extrapolation from the fluid.

The ghost-particles approach (v) is already mentioned in
[36]. It corresponds to an enhancement of the dummy-particle
technique, where a proper ghost-field is assigned to the par-
ticles inside the body (hereinafter ghost particles) in order
to enforce the required SBC. The ghost particles are placed
inside the body by reflecting the positions of the fluid particles
during their motion. Both pressure and velocity ghost fields
are obtained from the fluid particles through proper mirroring
techniques.

The use of ghost particles to enforce velocity and pressure
boundary conditions were discussed in [7] for enforcing the
boundary conditions in incompressible SPH models. In the
latter work the ghost particles have identical properties of real
particles while in the former reflective conditions are imposed
to simulate a rigid wall. Furthermore, the modelling of both
concave and convex right angles with the ghost particles
approach is discussed in [17].

The ghost particles approach is easy to implement when
the geometry of the boundary has a rectangular (2D) or a
cuboid (3D) shape, but di⇥culties arise when the boundary has
a more complex geometry. To overcome this limitation, [22]
introduced the Fixed Ghost Particles (FGP), in which the solid
particles are fixed in the frame of reference of the solid body.
In particular, the field values are obtained through interpolation
in correspondence of specific nodes within the fluid domain.
These values are then mirrored to the solid particles with
specific techniques in such a way that the required SBC are
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satisfied (see also [5, 23]). Similar techniques to the FGP of
[22] were developed in [1] and, more recently, in [13].

For a thorough comparison between the above-mentioned
techniques, we address the reader to the work [32], where the
FGP of [22] proved to be one of the most accurate approaches
for modelling solid boundaries. Finally, in [26] the FGP was
extended to a multi-node technique, allowing for an easier
modelling of thin solid boundaries immersed in the fluid.

In two dimensions the FGP permits a reliable treatment
of regular solid profiles. However, as underlined in [22],
the mirroring procedure around the corners is very com-
plex because of the superimposition or lack of interpolation
nodes around the geometric singularities. In those cases the
implementation of the FGP technique in a two dimensional
framework is not straightforward and its extension to three-
dimensional problems may become rather hard. The aim of
the present work is, therefore, to overcome those drawbacks
with a easier technique without a detriment of accuracy of the
FGP approach. To clarify the innovative points with respect
to the above-mentioned strategies, we start recalling some
details about the mirroring techniques on which the ghost-fluid
approach founds.

The idea behind the present work is to extend and simplify
the FGP approach presented in [24] by using a local mirroring
for both pressure and velocity fields. This is achieved by
equipping each fluid particle with a normal and tangential
vector fields extrapolated from the solid profile. This technique
leads to a global simplification of the algorithm of [24], thanks
to the absence of interpolation nodes inside the fluid domain
associated with the ghost particles.

The proposed approach is suitable for modelling complex
moving bodies with sharp corners and/or geometric singulari-
ties. Even the treatment of thin surfaces is naturally embedded
and does not require special operations. By getting rid of
interpolation nodes within the fluid domain, the generalization
of the proposed technique to three dimensions is expected to
be easier with respect to the FGP technique. In any case, the
extension to three dimensions is not discussed in the present
article and it is left to future studies.

Hereinafter, the solid particles with the local mirroring
of all the physical quantities are called clone particles for
distinguishing them from the Fixed Ghost Particles (FGP). The
term ‘clone’ is motivated by the fact that each clone particle
takes its mirrored values from a specific fluid particle, instead
of relying on a sort of interpolation.

II. Brief recall of the �+-SPH scheme

In the present section we summarize the �+-SPH scheme,
defined in [34] and further inspected in [4], which is the
reference model for the simulations shown in the following.

The Navier-Stokes equations for compressible fluids are
discretized as a set of fluid particles whose masses mi are
constant during the motion. The particles are initially set on a
lattice with homogeneous spacing ⇤r, and hence the particles’
volumes Vi are evaluated initially as ⇤rn where n is the number

of spatial dimensions. The particle masses mi are calculated
through the initial density field, using the equation of state and
the initial pressure field. During the time evolution, volumes
Vi change in time according to the particle density ⇥i.

For the sake of brevity, in the following the notation r ji
indicates the di�erences of the particles positions (r j � ri)
and the same holds for the velocity fields u ji and �u ji, while
for the generic scalar field the notation fi j just indicates the
dependency of the field f on the indices i and j.

The spatial gradients are approximated through convolution
summations with a kernel function Wi j. This function has a
compact support whose reference length is denoted by h and
referred to as smoothing length. As in [3] a C2-Wendland
kernel is adopted in the present work. For this kernel the radius
of the support is 2h and the number of particles inside the
support satisfies the relation 2h = 4⇤r. Regarding the spatial
derivative of W, due to its properties, it is possible to write
⇥i Wi j = r ji Fi j, where the scalar function Fi j only depends
on the particle distance ⇤r ji⇤ and it is strictly positive.

The Navier-Stokes equations for compressible fluids are
discretized within the �+-SPH scheme as:
�⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇤
⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⌅

d⇥i

dt
= �⇥i

X

j

(u ji + �u ji) · ⇥i Wi j V j +

+
X

j

(⇥ j �u j + ⇥i �ui) · ⇥i Wi j V j +D⇥i

⇥i
dui

dt
= F p

i + F v
i + ⇥i g +

+
X

j

(⇥ j u j ⌅ �u j + ⇥i ui ⌅ �ui) · ⇥i Wi j V j

dri

dt
= ui + �ui, Vi = mi

⇧
⇥i, p = c2

0(⇥ � ⇥0),
(1)

where F p
i and F v

i are the pressure and viscous forces acting
on the particle i. The vector �u is the Particle Shifting
velocity adopted to regularize the particles’ spatial distribution
during their motion. The specific law for �u is described
in [27] and is not reported here for the sake of brevity.
Incidentally, we highlight that the present shifting technique
is based on the use of a shifting velocity rather than a particle
displacement, as originally conceived in [19]. Accordingly, the
time derivative d/dt used in (1) indicates a quasi-Lagrangian
derivative, since the particles are moving with the modified
velocity (u + �u) and the above equations are written in an
Arbitrary-Lagrangian-Eulerian framework. For this reason the
continuity and the momentum equations contain terms with
spatial derivatives of �u (for details see [4]).

The term D⇥i is the numerical di�usive term introduced
by [2] to filter out the spurious high-frequency noise in the
pressure field. Following [3] this term is rewritten as follows:
�⇥⇥⇥⇥⇥⇥⇤
⇥⇥⇥⇥⇥⇥⌅

D⇥i := � c0 h
X

j

⇤ ji Fi j V j ,

⇤ ji := 2
"
(⇥ j � ⇥i) �

1
2

⌃
⇧⇥⇥⌃L

i + ⇧⇥⇥⌃L
j

⌥
· r ji

# (2)

where � is a dimensionless constant set equal to 0.1. The
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superscript L in (2) indicates that the gradient is evaluated
through the renormalized gradient. Regarding the pressure
force F p, following the work by [35] this is expressed as:
�⇥⇥⇥⇥⇥⇥⇤
⇥⇥⇥⇥⇥⇥⌅

F p
i = �

X

j

⌃
p j + pi

⌥
⇥i Wi j V j + S i

X

j

⇥i Wi j V j

S i :=
(

2pi for pi < 0 and i < SF
0 elsewhere

(3)

where SF denotes the region of the fluid domain close to
the free surface, that is the free-surface particles and their
neighbouring particles. The free-surface particles are detected
through the algorithm described in [25].

The last term on the right side of the Eq. (3) leads to a switch
in F p

i from the “plus” formulation of the pressure gradient
(namely, p j + pi) to the minus formulation (that is, p j � pi) in
the fluid regions where the pressure pi is negative. This switch
allows removing the so-called “tensile instability”.

For the viscous forces, those are modelled as:

F v
i = µ

X

j

(u j � ui) · (r j � ri)
⇤r j � ri⇤2 ⇥iWi jV j (4)

where µ is the dynamics viscosity.

III. Clone Particles

Before proceeding with the description of the local mirror-
ing of the pressure field, we briefly recall the main steps of
the procedure. Apart form some small changes (highlighted
in the following), the current technique essentially follows the
approach described in [22] for the FGP.

We assume the body profile to be piece-wise regular and we
use a spline to discretize it through body nodes equally spaced
with distance ⇤s = ⇤r/4. Then, the normal and tangent unit
vectors are evaluated along the profile, with the normal vectors
oriented out of the fluid domain. After that, the body nodes
are duplicated out of the fluid domain in the normal direction
to create solid particles. This procedure is repeated until the
solid body is filled over a kernel radius length (see Fig. 1).

Fig. 1. Sketches of solid surface nodes and solid particles.

After the solid particles are placed, the normal and tangent
vectors are extended over them from the body profile. The
same is done for the body acceleration, which is assigned as
an external condition. In practise, at the end of the procedure
each solid particle brings its own acceleration (a), normal (n)
and tangent vectors (� ).

As explained in the next subsection, the fluid particles may
locally modify the normal and tangent vectors during their
interaction with the solid particles.

A. Local mirroring for the normal and tangent vectors
After the solid particles are generated, a local mirroring

procedure is applied. As explained in Section I, this means
that each fluid particle generates its own mirrored field over
the solid particles. Unlike [22], such a mirroring also applies
as a local correction to the normal and tangent fields in the
solid body. This correction is needed when the fluid particle is
close to sharp corners, in order to avoid that the fluid particle
‘sees’ the normal vectors to the rear side of the angle/corner.
The algorithm is divided in two steps. In the first step, the
fluid particle is provided with the normal vector of the closest
body node on the body contour (see, for example, Figure
2). The second step consists in a local modification of the
normal vectors extended inside the body. By indicating with
index i the fluid particle and with j the solid particle in the
neighborhood Ni of the i-th particle, the normal vectors of the
j particles remains unchanged if the condition n j ·(r j � ri) ⌥ 0
is satisfied by all the solid particles in Ni. On the contrary, if
any of the normal vectors n j satisfies n j · (r j � ri) > 0, then
n j = ni is set for all the j-th solid particles.

Summarizing:
�⇥⇥⇥⇥⇥⇥⇥⇤
⇥⇥⇥⇥⇥⇥⇥⌅

n j = ni � j  Ni if max j
h
n j · (r j � ri)

i
> 0

n j as mirrored from the solid profile if
max j

h
n j · (r j � ri)

i
⌥ 0

(5)

It is understood that the above change in the normal direction
is only valid for the specific particle i under consideration
(hence the wording local mirroring). The tangent vectors are
mirrored accordingly, by assuming that the pair (n j, � j) forms
a right-handed frame of reference.

Figures 3 show some geometrical configurations where the
local mirroring is applied.

B. Local mirroring for the velocity and pressure fields
On the basis of the work of [9] and of the theoretical

results of [20], di�erent mirroring techniques are used for

Fig. 2. Sketches of angles where the local modification of the normal vectors
(see eq. (5)) does not apply. The fluid particle are in blue while the solid
particles are in green. The larger circles represent the kernel support with
radius RW , while the smaller circle indicate the distance from the solid profile.
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Fig. 3. Sketches of the local mirroring of the normal vectors close to a sharp
corner during the motion of a fluid particle around it. In the left column the
normal vectors mirrored inside the solid are shown, while in the right column
the local mirroring through eq. (5) is displayed. The fluid particles are in blue
while the solid particles are in green. The grey particles indicate the previous
positions of the fluid particles. The larger circles represent the kernel support
with radius RW , whereas the smaller circles indicate the distance from the
solid profile.

the divergence and the Laplacian of the velocity field. This
part essentially follows the work of [24]. In particular, for the
divergence operator we consider the local mirroring below:

⇧⇥ · u⌃i :

�⇥⇥⇥⇥⇥⇥⇤
⇥⇥⇥⇥⇥⇥⌅

u j · � j = ui · � j

u j · n j =

"
(u(b)

k � ui)
s j

max(si,⇤s)
+ u(b)

k

#
· n j

(6)

where the subscripts i and j indicate the quantities associated
with the fluid particle i and with its neighboring solid particle
j. The velocity u(b)

k is the velocity of the body frontier at
the node k, which is the closest to the fluid particle i. Here,
si and s j are the distances of the particles i and j from the
body contour while ⇤s is the mean particle distance inside
the solid, defined above. The denominator of fraction s j/si is
de-singularized such avoiding that a fluid particle approaching
to the body contour causes the fraction to diverge. Finally, the
mirroring for the Laplacian operator is:

⇧⇤u⌃i :

�⇥⇥⇥⇥⇥⇥⇤
⇥⇥⇥⇥⇥⇥⌅

u j · � j =

"
(u(b)

k � ui)
s j

max(si,⇤s)
+ u(b)

k

#
· � j

u j · n j = ui · n j

(7)

The last step is the definition of a local mirroring for the
pressure field, which represents a significant di�erence respect
to [22] where, conversely, the pressure was mirrored through
interpolation from the fluid domain. The pressure field at the
position of the j-th solid particle is reconstructed by using a
Taylor expansion approximation and neglecting the tangential

components:

p j ⌦ pi +
⌅p
⌅n j

������
j
(r j � ri) · n j . (8)

Finally, the component ⌅p/⌅n is estimated in analogy to the
momentum equation as below:

⌅p
⌅n j

������
j
= ⇥
h
f j � a j

i
· n j , (9)

where f j is a generic volume force at the j-th position. In
equation (9) the viscous term is omitted, since for the Reynolds
numbers considered in the present work the e�ect of the
viscosity on the pressure normal gradient is always negligible.

IV. Numerical Validation

In this section we provide some challenging applications
where the clone particles are used to model the solid bound-
aries.

In particular, we consider the flow past a triangular cylinder
and an internal flow associated to the roto-translation motion
of a spiked cylinder in a confined domain (see Fig. 4). To the
authors knowledge the latter was never investigated before and
can be useful for the scientific community.

The presence of sharp angles implies the onset of large
pressure gradients, which make these test cases particularly
challenging. This point was also highlighted in [14], where the
flows past a triangular cylinder were simulated with a particle
vortex method (named Di�used Vortex Hydrodynamics or
DVH) and compared with a Finite Volume Method (FVM). In
[14] the simulations were carried out in unbounded domains
only, whereas in the present work we consider confined
domains. For this reason, the values of the drag and lift
coe⇥cients computed in [14] are slightly di�erent than the
same results discussed in the present work. Similarly to [14],
in the present work an FVM algorithm is also used for
comparisons.

The FVM numerical code used in the present work is a
thoroughly validated solver named Xnavis and it adopts multi
block, body-fitted structured grids that may be eventually
overlapped. The solver was developed at INSEAN, the Italian
Ship Model Basin (see e.g. [31]) and currently used at CNR-
INM for researching purposes. Within this solver a Chimera

Fig. 4. Sections of the cylinders adopted in the two test-cases.
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technique is exploited for managing the dynamic overlapping
of di�erent mesh blocks and the matching of the flow fields
between di�erent blocks is attained through a body force term
included in the momentum equations. The mesh stretching
toward the body wall guarantees that the first cells’ line over
the body has a height ⇤h ↵ y+. In the boundary layer region
the spatial resolution of the FVM is always finer than the SPH.

1) Viscous Flow past a triangular Cylinder at Re = 1000:
In the present Section the flow past a triangular cylinder
is investigated. For this test case the accuracy of the clone
particles technique for describing the body walls is crucial
because of the presence of sharp angles. The centroids of the
cylinders are placed at the origin of the reference frame and
the fluid domain spans [�6D, 12D]◊[�4D, 4D] where D is the
side of the triangle. An inflow boundary condition is enforced
on the left side of the domain (i.e. x = �6D), while an outflow
condition is implemented on the right side (x = 12D). Finally,
on the horizontal planes at y = ±4D free-slip conditions are
enforced. A free stream of constant intensity U along the x-
axis is considered whereas the speed of sound is set equal to
c0 = 10U. The Reynolds number is defined as Re = ⇥UD/µ,
Re = 1000 are considered for the simulations. In order to avoid
an impulsive start, the inflow velocity U is reached through
an acceleration ramp, as described below:

u(t) = U

�⇥⇥⇤
⇥⇥⌅
⇧2(3 � 2⇧), ⇧ < 1;

1, ⇧ � 1,

with ⇧ = t U/D. We underline that the use of the time-ramp
for the flow rate avoids the onset of pressure shock waves, and
their consequent reflections, due to the impulsive start.

According the definitions above, the drag, lift, torque coef-
ficients and the Strouhal number are defined as:

CD =
Fx

1
2 ⇥U2 D L

, CL =
Fy

1
2 ⇥U2 D L

CM =
Mz

1
2 ⇥U2 D2 L

, St =
f D
U

(10)

where f denotes the frequency of the vortex shedding. For the
sake of clearness, hereinafter the symbol N = D/⇤r indicates
the spatial resolution of the simulations.

Details of the flow fields near the cylinder are shown in
figure 5. In the right panel a snapshots of the pressure field is

Fig. 5. Triangular cylinder. Vorticity (left) and pressure (right) fields at
maximum lift force for Re = 1000. Vorticity color map range from -10 to 10.

Fig. 6. Triangular cylinder. Pressure coe⇥cient evaluated along the body
contour for maximum lift. Comparison between the FVM, the DVH and the
�+-SPH solver for Re = 1000 (right).

CD CL CM St
N = 50 3.05 ± 0.455 ±0.721 ±0.464 0.191

N = 100 2.87 ± 0.475 ±0.709 ±0.400 0.199
N = 200 2.73 ± 0.402 ±0.700 ±0.349 0.210

FVM 2.33 ± 0.330 ±0.650 ±0.355 0.213

TABLE I
Force coefficients (mean ± oscillation amplitude) for triangular cylinder at

Re = 1000.

provided, with the aim of highlighting the large gradients that
occur on the rear side of the cylinder.

The presence of high gradients is further highlighted in
figure 6 where the pressure coe⇥cient Cp is computed along
the contour of the body at maximum lift force. The solution
of �+-SPH solver is compared with the outputs of the FVM
code and of the DVH method, described in [14]. The results
of the �+-SPH scheme are between the FVM and the DVH
and exhibit a good agreement with the other solvers for both
the Reynolds numbers. The accuracy of the clone particle
approach is further confirmed in Table I where the coe⇥cients
CD, CL, Cp and the Strouhal number St are computed with
di�erent spatial resolutions. Again, a good agreement with the
FVM outputs is achieved.

A. Flow generated by roto-traslating spiked circular cylinder
in a confined domain at Re = 100 and Re = 1000

The last and challenging benchmark is the roto-translating
motion of a spiked cylinder in a confined domain. In this case,
the centre of the cylinder is placed at the origin of the reference
frame and the fluid domain is a solid box with dimensions
[�3D, 11D] ◊ [�3D, 3D]. Free-slip boundary conditions are
enforced on the domain walls, whereas no-slip conditions are
imposed on the cylinder contour.

Figure 7 shows the time laws of the horizontal displacement
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of the centroid xG(t) and of the angle of rotation ⌃G(t)
around the centroid. The time laws are composed by piecewise
functions composed by constant acceleration stages followed
by constant velocity motions. Here U indicates the maximum
horizontal velocity reached by the centroid, and it is used
as reference in the definition of the Reynolds number, i.e.
Re = U D/⌥.

The dynamic Chimera approach used in the FVM code
Xnavis is able to manage the overlapping of the near body-
fitted mesh on the background fixed mesh. In order to correctly
describe the vorticity evolution within the domain box, such
avoiding a severe numerical di�usion, a su⇥ciently mesh with
high resolution is adopted. The total number of numerical
volumes exceeds 1.5 Mln.

Figure 8 shows four time instants of the evolution of the
vorticity field for Re = 100. The left column contains the
results from the FVM, while the right column the outputs of
the �+-SPH . It can be appreciated that, despite the complexity
of the body contour, the vorticity fields are very similar at this
Reynolds number. The thin vortex structures shed by the cylin-
der and stretched by its motion are well captured by both codes
and a remarkable agreement can be appreciated. Some minor
discrepancies are appreciable at the final simulation instant,
however not a�ecting the overall quality of the comparison.

The time history of the forces confirms what highlighted
by comparison of the vorticity fields. Although the drag
coe⇥cient calculated with �+-SPH is more oscillating, the
match between the two approaches is very encouraging. In
particular, despite its small variation range, the torque CM
is the coe⇥cient that is more a�ected by the fluid-body
interaction for a roto-translating body and the superposition
between the two outcomes is remarkable.

At higher Reynolds numbers, the situation becomes more
critical and even little local discrepancies may amplify the
global disagreement between results. In figure 9, the same
time instants depicted in figure 8 are proposed again. At
t U/D = 5 and t U/D = 10 a good agreement is obtained,
whereas for later times a significant departure between the �+-
SPH and FVM solutions is evident. Small di�erences in the
shed vorticity are amplified with time, leading to di�erent final
configurations of the dipoles within the fluid domain.

Despite this, the force coe⇥cients are in a fairly good
agreement, as depicted in the right column of figure 10. The

Fig. 7. Time law for the motion imposed to the spiked circular cylinder.
Solid lines represent the displacement xG(t) and velocity ẋG(t) of the centroid,
while the dashed-dotted line refers to the angle of rotation ⌃G(t) and to the
angular velocity ⌃̇G around the centroid.

Fig. 8. Flow generated by the roto-translating spiked circular cylinder in a
confined domain at Re = 100. Vorticity fields by FVM (left columns) and by
�+-SPH (right column). The color map range from -5 to 5. The full video of
the �+-SPH simulation is available at Link Video N1.

Fig. 9. Flow generated by the roto-translating spiked circular cylinder in a
confined domain at Re = 1000. Vorticity fields by FVM (left columns) and by
�+-SPH (right column). The color map range from -10 to 10. The full video
of the �+-SPH simulation is available at Link Video N2.

presence of little vorticity scales in the domain induces high
frequency oscillations of the forces on the body, but the global
behaviour is rather similar between the two codes. The lift
coe⇥cient, which is less oscillating than the drag (see also
[10]), shows a remarkable superposition between the results
in particular when the cylinder inverts its motion and a large
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Fig. 10. Force coe⇥cients from the roto-translating spiked circular cylinder in
a confined domain at Re = 100 (left column) and Re = 1000 (right column),
obtained using the FVM (black dot-solid lines) and the �+-SPH (red solid
lines).

oscillation is exhibited.

V. Conclusions

In the present work we proposed a new technique for
the enforcement of boundary conditions along solid profiles,
which highly simplifies the mirroring procedure described in
[22], without jeopardizing the accuracy and the robustness of
the overall approach. The clone particles algorithm is based
on a local mirroring of the flow fields after the local definition
of the normal and tangent vectors over the solid body.

The proposed technique is tested on benchmarks of increas-
ing complexity and compared with a Finite Volume Method
and a vortex particle method (the DVH described in [14]),
proving to be accurate and robust.

The present work is restricted to the analysis of two-
dimensional problems, although, in principle, the proposed
algorithm can be extended to three-dimensions without any
substantial change. This topic, which is currently under in-
vestigation, will be considered in future studies, especially for
applications with complex fluid-structure interactions. Simi-
larly, the proposed technique will be adopted in the analysis

of free-surface and multi-phase flows.

Acknowledgments

The research was developed within the Project Area Ap-
plied Mathematics of the Department of Engineering, ICT
and Technology for Energy and Transport (DIITET) of the
Italian National Research Council (CNR). This work was
performed by using HPC resources of the Centrale Nantes
Supercomputing Centre on the cluster Liger.

References

[1] S. Adami, X. Y. Hu, and N. A. Adams. A gener-
alized wall boundary condition for smoothed particle
hydrodynamics. Journal of Computational Physics,
231(21):7057–7075, 2012.

[2] M. Antuono, A. Colagrossi, and S. Marrone. Numerical
di�usive terms in weakly-compressible SPH schemes.
Computer Physics Communications, 183(12):2570–2580,
2012.

[3] M. Antuono, S. Marrone, A. Di Mascio, and A. Cola-
grossi. Smoothed particle hydrodynamics method from
a large eddy simulation perspective. generalization to a
quasi-lagrangian model. Physics of Fluids, 33(1):015102,
2021.

[4] M. Antuono, P.N. Sun, S. Marrone, and A. Colagrossi.
The �-ALE-SPH model: An arbitrary lagrangian-eulerian
framework for the �-SPH model with particle shifting
technique. Computers & Fluids, 216:104806, 2021.

[5] B Bouscasse, A Colagrossi, S Marrone, and M Antuono.
Nonlinear water wave interaction with floating bodies in
sph. Journal of Fluids and Structures, 42:112–129, 2013.

[6] L. Chiron, M. De Le�e, G. Oger, and D. Le Touzé.
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