Effect of temperature on D retention in WN_x layers exposed to low-energy, high-fluence D plasmas

E. Vassallo¹, G. Angella², R. Caniello¹, G. Gittini¹, G. Granucci¹, V. Mellera¹, D. Minelli¹, F. Pallotta¹, M. Pedroni¹, D. Ricci¹ and V. Rigato³

¹ Istituto di Fisica del Plasma - CNR, Via R. Cozzi 53, 20125 Milano, Italy
² Istituto per l'Energetica e le Interfasi - CNR, Via R. Cozzi 53, 20125 Milano, Italy
³ INFN - Laboratori Nazionali di Legnaro, Legnaro, 35020 Padova, Italy

vassallo@ifp.cnr.it

For a burning plasma device (ITER), the removal of radiative power by seed impurities will be inevitable to avoid divertor damage by excessive heat flux [1]. N₂ gas is likely to be used to reduce the power load. However, because of re-deposition phenomena, WN_x compounds will be produced in the divertor and tritium retention is issue of concern. We report experiments using the GYM linear plasma device that examined D retention in WN_x compounds exposed to D plasma at divertor relevant fluence ($\approx 10^{24}$ m⁻²) as a function of temperature in the range of 300-750 K. In order to determine the D retention, the WN_x specimens were examined ex situ by Elastic Recoil Detection Analysis (ERDA). It is shown that WN_x compounds have very similar D retention, lower than the case of the tungsten without nitrogen and in any case lower than the acceptable limit for operation in ITER [2].

[1] K. Tobita et al, Nucl. Fusion 49 (2009) 075029

[2] E. Vassallo et al, Journal of Nuclear Materials 466 (2015) 621-626