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Abstract

The noise-like coding, which was first defined in our early model of assaciative memory, provides a
very good solution to the problem of massively measuring the degree of similarity between
high-dimensional items over large collections, according to a specific metric, with the minimum
computational cost. In this paper, we give the most efficient form of the noise-like coding to
implement different metrics, among which the city block (L;) and Euclidean ( L,) metrics. Our
coding transforms the representative feature vectors of the original items into new vectors, called
noise-like keys, with a much Jower dimension. Superimposition is the metric-preserving principle
used for reducing the item dimensionality. This is achieved by /) assigning pre-fixed random keys to
the features of the items; if) suitably weighting these random keys with the specific values of the
features to realize the metric chosen; and finally iii) superimposing the results additively to obtain
the compressed noise-like keys. In the established correspondence between the high-dimensional
feature space of the itemns and the lower-dimensional space of such noise-like keys, the distances are
conserved on the average, with a very good accuracy. Their reduced calculation, for all the defined
metrics, is invariably based on the measure of the cosine of the angle separating certain two
noise-like keys. Thus, the level of lowering of the computation time is the same as the spatial
compression. For items of dimension 10" (with n here tested up to seven) the compression factor
may range from the order of about 10" to 10"™%, depending on the desired accuracy in the metric

measurernents.

Categories and Subject Descriptors: E.4 [Coding and Information Theory]: Data compaction and compression;
H.3.0 [Information Storage and Retrieval]: General; 1.4.2 {Image Processing and Computer Vision]: Compression
(Coding) — Approximate methods; 15.1 [Pattern Recognition]: Models — Neural nets; 1.5.3 [Pattern Recognition]:

Clustering - Similarity measures



1. Introduction
Performing massive measures of simnilarity over large collections of items which are represented by
feature vectors with a very high dimensionality requires more efficient and effective methods of
treating unstructured information. The aim is making these measurements extremely faster,
nevertheless maintaining a good accuracy. Generally, the similarity between items is evaluated in
accordance with a given metric: the closer two items are in distance, the more similar they are
considered. This kind of measures is widely used in the field of information retrieval and in many
applications throughout a variety of different sectors. Among the most common criteria of similarity
there are the city block and Euclidean metrics, which belong to the class of the L, metrics, for p =
1 or 2, respectively, with the distances defined by
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where /; and I; are the respective components of two N, -dimensional vectors, I and I,

describing two given items. Also used is a measure related to the Euclidean metric, namely the

measure of the cosine of the angle which separates these representative vectors
r-I
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i.e. their normalized inner product. The significance of the cosine similarity relies on the fact that
two vectors with close values of their homologous components point into near directions.
Essentially, all these measures make it possible to rank the items of a collection in accordance with
the found degree of similarity to a given current item, thus serving functions such as the recovering
of relevant items from an archive for a given query, the clustering process, or the automaied
categorization (for a review, see Refs. [1-3]).

The present strategy for obtaining a reliable measure of the item similarity with the
minimum amount of computation consists in strongly lowering the item dimensionality through a
coding pre-processing step, while preserving the chosen metric in the compressed space. A solution
to this difficult task has been initially found in the context of the associative memories long before
it was recognized as a problem. This was the case of our model of associative memory based on the
noise-like coding [4 - 9]. Our early coding consisted of a set of pre-assigned random vectors, one
for each feature of the items, by which the items are transformed into the so called roise-like keys,
through the linear combination of these random vectors with the specific values of the item features
as coefficients. The space of the original items is thus made to correspond to the space of the
noise-like keys in which the cosine measurement is conserved on the average. Therefore, it is
possible to perform a reduced, faster measure of the cosine similarity between high-dimensional
items by choosing a much lower dimension for the noise-like keys. The possibility of reducing the
dimensionality of the representative space of the items in our associative memory was, on the other



hand, responsible for the dramatic damage-tolerance for canceliation of large parts of the

recall-keys and memory traces.

There are two crucial points of the early noise-like coding that will be substantially
improved here. One strictly concerns the metric-preserving pre-processing step which codes the
items into the corresponding noise-like keys. This operation of coding, which is preliminary to the
metric computation, will be made much faster by surprisingly reducing its complexity by some
orders of magnitude. The other point concerns the possibility of defining distinct variants of the
noise-like coding to establish different metrics by which the degree of similarity between items can
be alternatively measured. Specific encoding rules will be introduced to implement the Euclidean
(computable from the cosine measure) and the city block metrics. In all cases, the accuracy of the
approximate calculation of the various distances carried out in the reduced space of the noise-like
keys will result to be very good even for factors of spatial compression, and equivalent levels of

time reduction, extraordinarily high.

2. The early noise-like coding

In our model of an associative noise-like coding memory, the recall performs a measure of the
similarity degree between the item acting as the current input to the memory and the items stored,
according to the above mentioned measure of the cosine of the angle formed by the respective
representative vectors. The items are feature vectors I of dimension N, generally with real
components normalized between 0 and 1, i.e. 0 < J jSlforj=1,..., Ny,,). The noise-like coding
(NLC) is a pre-processing step by which all the items (I) that enter the memory system, both on

storage and recall, are transformed into noise-like keys (v):
I -2, v, (3)

The central idea was that "each feature (of the item) is made to correspond to a given fixed random
key” [7], specifically a random vector @'/’ of dimension Ny (for j=1,2,..., Ny, ) with
Zero-mean components, so that, in the model simulations {4, 5], the whole item I was coded by a

weighted linear superimposition of all these elemental random vectors, i.e.
Nz‘mm ]
Vo= EIJ-OWJ. (4)
Jj=1
The sequence of convolution and correlation (indicated with * and @) that, in the model, performs
the storage of item I into the memory and its recall (R) by the current input I, respectively, yields
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in which v’ is the noise-like key obtained from I” still through Egq. (4); Il denotes the L, norm;
0 (v', v) is the angle comprised between the directions of the two noise-like vectors v’ and v; and

* )= Icos @(V, V) (5)

cos 8 (V, V) = v (6)
vl v i



The recalled item R is thus scaled according to whether I' is a greater or a smaller part of I. In fact,
from the property of quasi-orthogonality [4, 7] of the random vectors o//, with a constant L,

NOrImy, i.e.

a(j),a(j') o 6}}” (7)

{where the proportionality factor equals their norm squared and & is the Kronecker symbol), it

follows
cosB (v, vy =cosp (I', 1) (8)

with ¢ (I', I) being the angle between the vectors I' and I, Eq. (2). This means that for a dimension
of the noise-like vectors v, N, , much lower than the dimension of items I, N, , the approximate
calculation of cos ¢ (I', I), performed in the space of these noise-like keys as cos 8 (V', V), is much
less expensive than its exact calculation in the space of the original items I. This fact, furthermore,
is definitely more remarkable since, as it will be seen, even the computation complexity of the
noise-like coding expressed by Eq. (4) can be strongly reduced by some orders of magnitude in the

number of the elementary operations needed.

3. The most efficient noise-like coding.

Very interestingly, a drastic simplification can be introduced in our original noise-like coding. It
consists in making each feature 7, (withj= 1, ..., N,,,,) of the item being coded to correspond to
only one random number, instead of a random vector of dimension N, as initially done.
Furthermore, more than one metric (and, potentially, a large variety of metrics) can be realized with

our coding. The new noise-like coding takes the following form

vi= Y f(I) ©)

j=ti=1)a+l

for i = 1,.... Ny, in general with Ny, <<N,,.: where n= N, /Ny, , and fis a scalar-valued
"randomizing” function that defines the metric. In other words, f determines which type of distance
between the items J can be obtained from the direct measure of the cosine of the angle formed by
the corresponding noise-like keys. The number of operations required by Eq. (9) to code item I is
N, times smaller than that required by Eq. (4), with N, being, in general, of the order of a
hundred to a thousand. The particular choice of dimension N key Of the noise-like keys is related to
the desired accuracy in the calculation of the various distances, with a lower variance for a greater
Nigy -

The Euclidean ( L,) metric. For

f1) =u,, (10)




where the u ; are fixed zero-mean real random numbers with a uniform distribution, or,
alternatively, fixed binary random numbers equal to 1, we again obtain Eq.(8) but at much less

computational expense. As an implication of Eq. (8), it is

AT )i = LA +iv IP=2 1 v L v I cosB (v, v)] (11)

<u >
where <u’ > is the mean value of the ; squared, and d(1I'.I )z, 4., 1S the usual Euclidean
distance given by Eq. (1) for p = 2. In particular, in the important case of items with a constant L,
norm, M I'I1* =112 = C*, Eq. (11) becomes

1
_C],: d( I,’I )Euc'.'idecm = [2 (]- - CDSG(V', V)] = 2 sin le_e(vr, V)- (12)

Proof. To demonstrate that for the noise-like coding function J given by Eq. (10) the approximate
equality expressed by Eq. (8) still holds true, we start defining of /7 as a vector of dimension N key
having only one nonzero component equal to «; in the i-th location determined by i = int =)+ 1
i.e. the maximum integer contained in (j - 1)/n increased by one. Thus, Eq. (9) takes the form of a
scalar version of Eq. (4), while Eq. (7) remains valid on the average as

E{a' al} « 5. (13)
Consequently, it still turns out v'-v o< I'-F, v II*e<ll T11* and IIV'IIZ o<l I'11? with a common
proportionality factor, here equal to < urs, by which Eq. (8) and, likewise, also Eq. (11) or (12),
are proved. Let us note that for « ; =xI the Euclidean distance in the space of the noise-like keys is
aiso conserved in form (besides that in value). This is always true, for any u I in the particular case
of Eq. (12).
The city block (L) metric. The L; metric is implemented by applying the following type of
noise-like coding to item I

f([j) :dj"'(“j_’dj)H{Ij“éj} (14)

where the u; and d ; are fixed zero-mean real random numbers with a uniform distribution, or,
alternatively, fixed binary random numbers (i.e. u ;= *1 and 4 ;= x1); the g ; are fixed real
random numbers with a uniform distribution in the same range as the feature values / ; of the items,
ie. with 0 & ; <1i and H{-} is the Heaviside function (unity for positive values and zero

elsewhere). In fact, it results

1
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where d( I, 1 )y, 1S the city block distance between the items I' and I, given by Eq. (1) for

p=1




Proof. The noise-like coding function f defined by Eq. (14) assigns two pre-fixed random numbers
to each item feature, u; and d; (forj = l...., Ny, ). These numbers can be considered to form

two N, -dimensional vectors, o'/’ and oc;:” , With ; and d Iz respectively, as i-th component

for i = int V%' ]+ 1, and zero elsewhere. Then, Eq. (9) can be re-written as
Nirem
v= Y uldi) (16)
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where u'//(1 ;) 1s either a'l’or 0:;1 / depending on [ ;» precisely according to whether /; > < )

<& S
or ;<& . Since

eur; ) pt )y =0 for j# (17)
and
B{u' (1, ) @t (1)) = 1=11;=1;1 (18)
we have
Nr‘fem ’
ViV s Ny, = 3 =1 (19)
=l
and
Vi livlee N, (20)

with the same proportionality factor. Hence Eq. (15) is shown to be valid.
Another metric. From the restriction of Eq. (14) realized for all 4;=0, i.e.

f(lj)=uJ-H{[j—§j} 2
we obtain
A1) =1- cosé(v,v) (22)
where
1 Nirem
d( .1 )min =1- y 2 min {IJ'".IJ'} (23)
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is the distance defined as the complement to unity of the summation of the lower values of the
respective features of items I’ and I divided by the square root of the product of their L, norms

{indicated with [{-11).




Proof. For the f given by Eq. (21), we can retrace the scheme of the demonstration used in the case
of the city block metric. Again, Eq. (9) takes the form of Eg. (16), where, however, ,u“ ) I ) now
is either et'// or 0 according to whether 1;>&; or ;<& ;. Equation (17) still holds true, while
Eq. (18) writes

E{p /(1 ) uti1,)) o mm{f;,-fj}. (24)
Accordingly
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with the same proportionality factor, whence Eq. (22) follows.
Observation. If threshold & ;in Eq. (21) was changing at random any time for each j (instead of
being fixed), then the equivalent of Eq. (22) would be

cos8 (v, v) = I'1 = (27)
(NI T )72
Similarly, if the noise-like key v was coded by Eq. (14) and the noise-like key v' by Eq.{21), still

with the & ; varying at chance any time, we would obtain

i
—.
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This means that the method of the variable threshold provides a new coding rule to implement again
the inner product and, under the condition that items I have a constant L, norm, the cosine measure

(28)

cosé (v, v) =

and, accordingly, the Euclidean metric.

Generalization of the noise-like coding. Assigning a single random number to each item feature is
clearly the most economical choice. However, in view of coverin g any possible range of
applications, we consider that in certain cases it might be useful to have a supplementary degree of
freedom in associating strings of random numbers of length greater than one with the item features
(although, possibly, only a small fraction of the entire length N key Of the noise-like keys v). Thus,
for the sake of completeness, in the Appendix we give such a general form of the noise-like coding.

4. Item collections re-written as highly-compressed associative memories
With our coding, we can then build a representation of a given collection of N ror items I [kl

A={I'""}, (29)

sreNroT

in terms of the corresponding noise-like keys as
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M=1——F— = (30)
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in which the dimension of the vectors representing the items is lowered from N, 10 Ny,.. As has
been seen, the transformation of A into its compressed version M preserves the metric established
by the specific noise-like coding applied. The choice of N, will, of course, determine the
accuracy in the reduced caiculation of the distances performed- on M. Dimension N, and the
number of bits used for each component of vi* determine together the factor of spatial
compression, iLe. the ratio between the capacities required to store A and M. For example, in the
case of the city block metric with binary u; and d;, where therefore any single contribution in
forming the component values of vid in Eq. (9) is constant for all j, this namber of bits per
key-element can be easily evajuated as being of the order of log,(6n'’? ) [cf. Ref. 7]. This value is,
furthermore, substantially indicative even of all other cases, so that the minimum capacity sufficient

to store M is always readily computable.

5. Binary noise-like keys

A further property of our coding is its capability of producing binary noise-like keys that still
preserve the metrics. This is realized by operating a quantization into two levels of the components
of the final noise-like key v associated with each item 7, only retaining the bit of their sign. The
transformation of a noise-like key into a binary vector still maintains valid all the results shown,
although, of course, with an increase in the variance for the calculated distances. This property was
studied in Ref. [7], where the memory was quantized into two levels at the end of the processes of
storage of all the items, with the consequence that the storage capacity only decreased by a factor of
/2 (changing from the value of Llog, e to —log, e bit/element),

Thus, by applying the sign function 1o the noise-like keys

ﬁt-[“:sgn{vi[“} (31)

(with x?[-[ k< +1), a minimal representation of the original item collection A, Eq. (29), can be

obtained as

M={v'*} (32)

- Nror

in terms of the two-level quantized noise-like keys, i.e. a collection of N, binary vectors, each
v*/ only consisting of N wey Dits. The relationship between the cosines of the angles in the space

of the noise-like keys in the two cases in which V' is applied to M or M is
cos@ (v, vIFy = Jm /2 cosh (v, vIFTy (33)

from which the correct normalization of the cosine measurements on M is obtained.

6. Computer tests
The real effectiveness of the new noise-like coding, Eq. (9), in correctly implementing all the

defined metrics has been successfully tested on both synthetic vectors of dimension up to 10°, with



uniform distribution components, and items with a potential interest in practical applications,
specifically Meteosat images of 800800 dimensions (with 8-bit pixels). For the synthetic items we
have a statistics from samples of a hundred experiments each. There is a complete agreement
between the average values of the distances caiculated in the highly compressed space of the
noise-like keys and the distances measured directly on the original high-dimensional items (Fig. 1).
The accuracy depends on the length N kev Of the noise-like keys v. For statistically independent
random keys, the variance in the calculation of cos8{V/, v) would be 1/ N key OF, in the particular
case of two-level quantized keys, W/(2N,,.) [7]. But, by their construction, our keys v strongly
correlate with each other even for completéiy independent items I. Consequently, as demonstrated
in general in the Appendix of Ref. [7], the variance tends to vanish as the distance between the
items approaches zero

lim ¢2=0 (34)

dis rance— 0
still maintaining the dependence on the inverse of the key length

020 (35)
Ny

This is shown in Figure 2 for the L, metric with both real and binary keys. The property expressed
by Eq. (34) is particularly lucky for applications. It means that, for all N key » the error 1ntroduced by
computing the distances through the noise-like coding tends to become increasingly smaller just as
the items are more similar, i.e. when a greater accuracy is a more crucial quality. This is well
evident in the reported tests on the Meteosat images for our three metrics (Figs. 3-5), where, for an
exemplifying purpose, values of N, ranging from one hundred to two thousands are used, for
256-level and two-level quantized k;?}’s, i.e. keys with 1-byte elements (graded keys) or 1-bit
elements (binary kevs).

Finally, as a further application, we have used the new noise-like coding for the fast
calculation of the L; and L, distances between whole sequences of Meteosat images (Fig. 6). In
one case, these sequences have a global dimension of about N, =107, which is their total number
of pixels, and are coded in single binary noise-like keys with dimension N key = 2 10%. Thus, the
factor of spatial compression is 4.1-10°, which corresponds to only 2-10™° bits per pixel spent in
the space of the keys to represent one sequence. Factor 4.1-10° also gives the present level of

efficiency, i.e. the order of lowering of the computational cost.

7. Concluding comments

The noise-like coding, that we first defined in our model of associative memory, was a
pre-processing step by which any item described by a feature vector could be transformed into a
quasi-orthogonal vector, called a noise-like key, and thus stored with the maximum storage
efficiency. The early coding consisted in pre-assigning random vectors to the item features and
combining them linearly with the current feature values to obtain the final noise-like keys. In the
transformation from the original space of the items to the space of the noise-like keys, the
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dimensionality can be strongly reduced, still preserving the cosine measure. This is due to the
property of the pre-assigned random vectors of forming highly-overcomplete quasi-orthogonal
bases.

Here, we have introduced a substantial improvement of the noise-like coding just in the
crucial step of the preliminary transformation of the items, which precedes the metric measures, by
disentangling the choice of the dimension of the noise-like keys, which is related to the accuracy of
the measures, from the length of the random keys associated with the item features. In the early
noise-like coding, these pre-fixed random keys, whose number equals the item dimensionality, had
all the same dimension as the final noise-like keys. Especially for very-high-dimensional items, this
would require uselessly-expensive calculations for the pre-processing step of the specific operation
of item coding. In the present formulation of the noise-like coding, used in our tests, the new
random keys consist of only one random number each, which makes this coding extremely simple
and then fast. We have shown, furthermore, that our coding allows us to implement different
metrics in addition to the cosine measure, among which the most common ones, namely the
city block (L) and Euclidean (L, ) metrics, and, potentially, unconventional suitable metrics for
specific applications.

Summarizing, the new noise-like coding makes it possible to realize very high levels of
compression of data with the minimum effort of computation, while conserving the chosen distance
on the average. Huge collections of high-dimensional items can be easily coded into
ultra-compressed versions, in which similarity measures are very quickly performed according to
the current metric. The accuracy of these fast calculations of distances can be made very good, with
the variance decreasing to zero as the items are increasingly similar. The level of reduction in the
computation time is the same as the factor of spatial compression of the iems, generally of the
order of about 10" to 10"72 for an item dimension of 10", depending on the desired accuracy.
This is the most efficient noise-like coding for a highly effective and efficient computation of

distances in any high-dimensional space.



APPENDIX.

The most general noise-like coding. There are, of course, many intermediate possibilities between

making to correspond an N key -dimensional random vector with all nonzero components or a single
random number to each item feature 7, (withj=1,..., N,,,). We could, in fact, choose strings of
random numbers of length in between 1 and N,,.. Then, the most general form of the noise-like
coding is

gn

v.":( a-LIN +p = Z fp( Ij) (A]_)

j=tg=1)In+i
where p = L,..., N;, with N, a fixed submultiple of Ny.: ¢ = 1,..., Ny, /N
n=(N; Ny, Ny, and the f, are N scalar-valued randomizing functions that define the

metric. In detail, for the Euclidean metric
Follj)=u,l, (A2)
for the city block metric
Fpll;) =dy+Guy,—d Y H{I, - £} (A3)
and for the metric defined by Eq. (23)
Foll;)=uy H{L = €.} (A4)

where u,, d 5, and E jp are the elements of three fixed N,,, XN matrices consisting of random
numbers with the already seen qualities. The value of N fixes the length of the strings of random
numbers associated with the item features. Clearly Eq. (Al) contains Egs. (9) and (4) as opposite
extreme cases for the length N, of these strings. In fact, Eq. (Al) becomes Eq.(9) for N =1
(accordingly, with ¢ = i, and p dropped because always p = 1); or Eq. (4) for N;=Ny,, (withp =),
although written in a scalar instead of a vector form, precisely with f,(1;) = ol jé Uyl

To prove that the noise-like coding functions f ,» expressed by Eqs. (A2-A4) actually make
it possible to calculate the approximate distances in the three given metrics, it suffices to define the
analogues of vectors a'!’ and a;f ) introduced in the demonstration of Eq. (9) (i.e. with N;=1)
and then follow all its steps in the three cases considered {with the supplementary vectors a;*’ )
used only for the city block metric). This is accomplished by considering N, -dimensional vectors
o'/’ and a;f ), for each J, having only N, nonzero components equal to the u,, and d,,
respectively, for p=1, ..., N, arranged consecutively starting from location i = N_x int k% )+ I.
Let us note, finally, that random vectors o'/ with many zero components were already tested in
the simulations reported in Ref. [7], although they were of a sparse kind, i.e. not structured in the

present convenient form.
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Figure Captions

Fig. 1. Average distances (dots) between synthetic items (with dimension N, ) calculated in the
reduced space of the noise-like keys (with dimension N,,.), for the city block (Z;) and
Euclidean (L, ) metrics, with the normalization given by Egs. ( 15) and (12), respectively. Both
real (a) and two-level quantized (b) noise-like keys are used. The items have real components
uniformly distributed in the range (0, 1). The solid lines represent the same distances directly
measured in the space of the original items. The degree of similarity reported in abscissa expresses
the percentages of the components with common values between any two items, while the other
components have statistically independent values. Various other ways of introducing differences
between the items, including slight and/or heavy, random and/or systematic changes of the values of
all the components together, were also tested, always with as very good results as the present one.
For completely independent items the L, and L, distances have the respective mean values of 1/3
and 1/ '\/E . Also shown are the standard deviations of the calculated distances, which tend to zero as

the items become increasingly similar.

Fig. 2. Standard deviations, g, of the measurements of the city block distance in the reduced space
of real (a) and binary (b) noise-like keys, at different values of dimensions N, . For items
increasingly closer, ¢ decreases to zero for all N, . For any fixed value of the distance between
the items, the values of o obey the property of beiﬁg inversely proportional to the square root of

dimension Ng,...

Fig. 3. City block distances (diamonds) between Meteosat images, with N,,, = 6.4-10°, calculated
in the compressed space of the corresponding noise-like keys, graded (with 256-level elements, i.e.
I-byte elements) or binary, for two values of N,.. For comparison, the same distances (squares)
directly measured on the original images are repofted. The order in which the various pixels of the
images are taken to form the noise-like keys in Egq. (9) is irrelevant, provided, of course, that it
remains settled once for all. The factor of compression is 640 in (a); 5120 in (b), equivalent to
1.6-1072 bits per pixel; and 2560 in (¢).

Fig. 4. Euclidean distances (diamonds) calculated through the noise-like coding, compared to their
direct measurements (squares) on Meteosat images. In (a) and (b) the cosine measures (circles) are
also shown. The factor of compression in (¢) is 51200, equivalent to 1.6-10 ™ bits per pixel.

Fig. 5. Comparison between the reduced caiculations of the distances (diamonds) defined by

Eq. (23) and their direct measurements (squares) on Meleosat images.

Fig. 6. Reduced calculation of distances {diamonds) for items consisting of sequences of Meteosat
images. The reported distances concern two sequences formed, respectively, by the images
occupying the odd and even positions of a series of contiguous images, and then shifted from each
other by one position at a time. Each whole sequence of dimension N,,, is coded as a single
noise-like key of dimension N key - Metric L, is used in (a), for sequences of 9 Meteosat images



each, and metric L, in (¢), for sequences of 16 images. For the last case, the reduced cosine
measures (circles) are given in (b). The direct measurements of distance between the original
sequences are indicated with squares. The factor of compression in (b) and (¢) is extraordinarily

high, 4.1-10°, equivalent to 2.10 ™ bits per pixel.
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